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1500V PV Panels

900V Energy Storage

Medium Voltage 

Distribution Grid

Medium-VoltageMulti-port

PV + Storage Solid State Transformer, PVS-SST

Multi-function

MPPT Energy Storage

Fast Frequency Response

Reactive Power Support Micro-grid

Other Grid Forming Functionalities

DOE DE-EE0008348 Award Amount: $3 million, PI: Dr. Alex Q. Huang

M4 Inverter
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➢ High Power

     Power Rating: P >50 kW

➢ Medium Frequency 

Operating Frequency:

     100 kHz > f > 1 kHz

➢ Core Materials:

▪ Amorphous

▪ Ferrite

▪ Nanocrystalline

▪ Air 

➢ Cooling Methods: 

▪ Liquid cooling

▪ Heatsink cooling

▪ Air cooling 
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➢ Efficiency: 

system expectations

➢ Power density: 

volume/weight limitations

➢ Thermal management:

materials limitations

     

➢ Insulation design

Increasing electric 

insulation/reliability 

requirements

* Applied voltage insulation test. ** Partial discharge insulation test.

❑ Challenges
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Map of MFTs (frequency and power density)
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Magnetic Design of a 4.16 kV/1 MW Medium Voltage PV 

Plus Storage Solid State Transformer (PVS-SST)
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❖ MFT design optimization flowchart

❖ Efficiency versus maximum electric field of feasible 

MFTs according to the proposed design methodology

➢ Target:

▪ High efficiency

▪ High power density

▪ Superior insulation & thermal

➢ Boundary conditions:

▪ Magnetic core dimension limitation

▪ Electrical insulation requirements

▪ Thermal limitation

Z. Guo, R. Yu, W. Xu, X. Feng and A. Q. Huang, "Design and Optimization of a 200-kW Medium-Frequency Transformer for Medium-Voltage SiC PV Inverters," in IEEE Transactions on 

Power Electronics, vol. 36, no. 9, pp. 10548-10560, Sept. 2021.

❑ Optimization Methodology

System Requirements

Winding Loss Calculation

Core Loss Calculation

Insulation Evaluation

Thermal Evaluation

Magnetic Core

Bsat, pcm,Ae,lm...

Litz Wire

Rdc,W,H,Vins

Insulation Material

Ɛ, k,Eb
A

B

C

D

E

F

Np,Ns,da,db,

P,Vs , Vp ,Is, Ip,  f , Vins, Lr,T, 

Winding Structure Selection

Free Parameters

Separate, Parallel , Concentric, Parallel-concentric

Optimal Design MFT

Predesign

Preliminary

Design

Optimal

Design

 f=[10,15 .50]kHz

System Efficiency 

Optimization 

Optimization Engine

 f=[10,15 .50]kHz

 f=[10,15 .50]kHz
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❖ 3D printed two layers bobbin design

❖ Fluid thermal simulation of cooling structures @200kW ❖ MFT efficiency & temperature❖ Steady state thermal network

❑ Cooling Design
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❖ 3D printed bobbin

❖ Insulation structure and materials ❖ Maxwell electrostatic simulation 

under applied voltage of 7.5 kV
❖ Partial discharge test

❑ Insulation Design
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❑ Experimental Verifications
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❖ 200 kW DAB converter

❖ Thermal camera image of the MFT steady state at 15 kHz and 200kW output power

❖ Experimental waveforms of MFT

      @ 15 kHz and output power 200kW (5μs/div)

❖ Measured DAB converter efficiency and MFT efficiency
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1500V PV Panels

900V Energy Storage

Medium 

Voltage 

Distribution Grid

4.16 kV/1 MW PV Plus Storage Solid State Transformer
DOE DE-EE0008348 Award Amount: $3 million, PI: Dr. Alex Q. Huang
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➢Novel MFT insulation/cooling structure:

▪ Potted windings

▪ Two layers 3D printed bobbin with heatsink fins 

Z. Guo et al., "A Novel High Insulation 100 kW Medium Frequency Transformer," in IEEE Transactions on Power Electronics, 2022, doi: 10.1109/TPEL.2022.3205646.

A Novel MFT Insulation/Cooling Structure
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❑ Windings Potted Design

3.83 kV/mm 2.77 kV/mmPeak E-field Peak E-field 
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❑ Insulation Considerations

Material

Glass Transition 

Temperature* - Tg 

(°C)

Dielectric 

Strength@25 °C

(kV/mm)

Dielectric 

Constant

Thermal 

Conductivity

(W/mK)

PLA 60-65 13.4 3.1 0.13

ABS 105 16.7 2.87 0.17 

PEEK 143 23 3 0.29

Material
Viscosity 

(mPa·s)

Dielectric 

Strength@25 °C

(kV/mm)

Dielectric 

Constant

Thermal 

Conductivity

(W/mK)

Pot Life

(min)

CoolTherm® 

SC-309
3600 23.6 4 1 30

DOWSIL™ 
CN-8760

2850 33 2.7 0.66 120

WACKER 

SilGel® 612
1000 23 2.8 0.2 150

3D PRINTED FILAMENT CANDIDATES POTTING MATERIAL CANDIDATES

*The temperature where the material begins to lose the ability to hold its shape

Polyether ether ketone (PEEK) filament is one of the best 

materials on the market. Exceptional mechanical, thermal, 

and electric properties make this an ideal material for this 

application. 

SilGel® 612 was selected due to the lowest viscosity, longest pot 

life which helps to remove  air bobbles during the vacuum 

fabrication process.



16

❖ Temperature reduction

❖ Fin thickness and pitch

❑ Cooling Considerations
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❑ Cooling Considerations

❖ Airflow speed passing through the bobbin air channels ❖MFT temperature distribution
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❑ Cooling Considerations

❖ Effect of inlet airflow speed on core / 

windings hotspot temperature
❖ Effect of encapsulant thermal conductivity on 

hotspot temperature
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❖Partial discharge insulation test (20 kV peak)
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❖ Assembled DABSST with the developed MFT prototype

❖ Recorded temperature rise curve of the windings with thermocouples

❖ Thermal camera image of the MFT steady state temperature 

DOE DE-OE0000905 Award Amount: $2.2 million, PI: Dr. Alex Q. Huang
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❑ Working waveform Partial discharge(PD) test?

❖ Different voltage

❖ Different dv/dt

❖ Different frequencies

IEEE Standard for General Requirements for Dry-Type Distribution and Power Transformers, IEEE Standard C57.12.01-2015 (Revision of IEEE Standard C57.12.01-2005), 2015.

IEEE P3105 (Recommended Practice for Design and 

Integration of Solid-State Transformers in Electric Grid)

Characterization of Partial Discharge in MFT 
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❖ Twisted Litz wire test sample and cross–section view. ❖ Direct parallel PCB windings and cross–section view.

Z. Guo, A. Q. Huang, R. E. Hebner, G. C. Montanari and X. Feng, "Characterization of Partial Discharges in High-Frequency Transformer Under PWM Pulses," in IEEE 

Transactions on Power Electronics, vol. 37, no. 9, pp. 11199-11208, Sept. 2022.
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❖ (PCB winding sample, f=10 kHz, v=±1.25 kV）
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❖ RPDIV under different slew rates 

PCB/Litz wire winding sample, f=10 kHz 

❖ RPDIV under different frequency

Litz wire winding sample, dv/dt=5 kV/us, 

PCB winding, dv/dt=2.7 kV/us.
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