AUG. 2023

2023 Power Electronics and Energy Conversion Workshop

Development of High Power Medium-frequency Transformers for Solid State Transformer

Zhicheng Guo, Alex Q. Huang

zcguo@utexas.edu

Semiconductor Power Electronics Center (SPEC)

The University of Texas at Austin

State of the Art Solutions

Magnetic Design of a 4.16 kV/1 MW Medium Voltage PV Plus Storage Solid State Transformer (PVS-SST)

A Novel MFT Insulation/Cooling Structure

Characterization of Partial Discharge in MFT

M4 Inverter

Medium-Voltage

DOE DE-EE0008348 Award Amount: \$3 million, PI: Dr. Alex Q. Huang

3

High Power Power Rating: P >50 kW

Medium Frequency Operating Frequency: 100 kHz > f > 1 kHz

> Core Materials:

- Amorphous
- Ferrite
- Nanocrystalline
- Air

> Cooling Methods:

- Liquid cooling
- Heatsink cooling
- Air cooling

ABB 2011[4]
ETH 2013[5]
CUT 2016[6]
EPFL 2017[7]
The second se
ABB 2017[8]
ABB CERN 2017[9]
UT Austin 2020

Power Rating(kW)	Frequency (kHz)	Magnetic Core Material	Cooling Method	Insulation Voltage (kV)	Efficiency %	Power Density kW/L
150	1.75	Nanocrystalline	Nanocrystalline Oil 15 Nanocrystalline Water N/A		96%	N/A
166	20	Nanocrystalline	Water	N/A	99.5%	32.7
		Ferrite	Air		99.4%	8.21
50	F	Nanocrystalline	Air cooled	6	99.66%	15
50	5	Ferrite	heatsink	0	99.58%	11.5
100	10	Nanocrystalline	Air cooled heatsink	>6	N/A	8.2
240	10	Nanocrystalline	Air	PD (35kV)	N/A	3.6
100	15kHz - 22kHz	Nanocrystalline	Air Oil	PD (30kV)	N/A	1.1
200	15kHz	Nanocrystalline	Air	13 kV PDIV (5kV)	99.85%	>19.23

Challenges

Efficiency: system expectations

Power density: volume/weight limitations

Thermal management: materials limitations

> Insulation design Increasing electric insulation/reliability requirements

	Power Rating (kW)	Frequency (kHz)	Core Material	Cooling Method	Insulation Voltage (kV)	Efficiency %	Power Density (kW/L)	Hot Spot Temperature (°C)
21[10]	200	15	Nanocrystalline	Air	5.3 kV (**)	99.84	19.23	55
11]	250	10	Nanocrystalline	Air	18 kV (**)	99.76	4.9	62.6
[12]	166	77.4	Air-core	Air	> 6.36 kV (*)	99.5	7.8	106@225 kW
		40	Ferrite			99. 7	12.2	>94.2@250 kW
2 [13]	80	43	Ferrite	Air	42 kV (*)	N/A	21.1	102.1
[14]	100	50	Ferrite	Air	N/A	99.62	17.7	106
k	100	20	Nanocrystalline	Air	14 kV (**)	99.73	10.6	64.2

* Applied voltage insulation test. ** Partial discharge insulation test.

Map of MFTs (frequency and power density)

Magnetic Design of a 4.16 kV/1 MW Medium Voltage PV Plus Storage Solid State Transformer (PVS-SST)

WHAT STARTS HERE CHANGES THE WORLD

Optimization Methodology

➤ Target:

- High efficiency
- High power density
- Superior insulation & thermal

- > Boundary conditions:
- Magnetic core dimension limitation
- Electrical insulation requirements
- Thermal limitation

 Efficiency versus maximum electric field of feasible MFTs according to the proposed design methodology

* MFT design optimization flowchart

Z. Guo, R. Yu, W. Xu, X. Feng and A. Q. Huang, "Design and Optimization of a 200-kW Medium-Frequency Transformer for Medium-Voltage SiC PV Inverters," in IEEE Transactions on ⁸ Power Electronics, vol. 36, no. 9, pp. 10548-10560, Sept. 2021.

Cooling Design

Standing Core with Air-channel Bobbin

Steady state thermal network

* Fluid thermal simulation of cooling structures @200kW

***** MFT efficiency & temperature

Insulation Design

* 3D printed bobbin

		Secondary W	inding				
Kapton Tape Bobbin Air Gap d_1 (Polyimide) Primary Winding d_2							
	Thickness (mm)	Material	Dielectric Strength@25 °C	Dielectric Constant	Thermal conductivity		
Bobbin	3	Acrylonitrile Butadiene Styrene (ABS)	16.7 kV/mm	2.87	0.17 W/mK		
Insulation tape	0.05	polyimide	102 kV/mm	3.5	0.12 W/mK		

Insulation structure and materials

* Maxwell electrostatic simulation under applied voltage of 7.5 kV

✤ Partial discharge test

Primary H-bridge module

* 200 kW DAB converter

* Thermal camera image of the MFT steady state at 15 kHz and 200kW output power

99.837% 100.00% 99.834% 99.50% 99.53% 99.00% 98 85% 98.50% 98.00% 97.50% 97.00% 96.50% DAB --- MFT 96.00% 140 150 160 170 180 190 Power(kW)

Experimental waveforms of MFT

 (α) 15 kHz and output power 200kW (5µs/div)

* Measured DAB converter efficiency and MFT efficiency

4.16 kV/1 MW PV Plus Storage Solid State Transformer

DOE DE-EE0008348 Award Amount: \$3 million, PI: Dr. Alex Q. Huang

A Novel MFT Insulation/Cooling Structure

- > Novel MFT insulation/cooling structure:
- Potted windings
- Two layers 3D printed bobbin with heatsink fins

Windings Potted Design

Peak E-field 2.77 kV/mm

3D PRINTED FILAMENT CANDIDATES

Material	Glass Transition Temperature* - Tg (°C)	Dielectric Strength@25 ° C (kV/mm)	Dielectric Constant	Thermal Conductivity (W/mK)
PLA	60-65	13.4	3.1	0.13
ABS	105	16.7	2.87	0.17
PEEK	143	23	3	0.29

*The temperature where the material begins to lose the ability to hold its shape

Polyether ether ketone (**PEEK**) filament is one of the best materials on the market. Exceptional mechanical, thermal, and electric properties make this an ideal material for this application.

POTTING MATERIAL CANDIDATES

Material	Viscosity (mPa·s)	Dielectric Strength@25 ° C (kV/mm)	Dielectric Constant	Thermal Conductivity (W/mK)	Pot Life (min)
CoolTherm® SC-309	3600	23.6	4	1	30
DOWSIL™ CN-8760	2850	33	2.7	0.66	120
WACKER SilGel® 612	1000	23	2.8	0.2	150

SilGel® 612 was selected due to the lowest viscosity, longest pot life which helps to remove air bobbles during the vacuum fabrication process.

Temperature reduction

✤ Fin thickness and pitch

Cooling Considerations

* Airflow speed passing through the bobbin air channels

***** MFT temperature distribution

Effect of inlet airflow speed on core / windings hotspot temperature

Effect of encapsulant thermal conductivity on hotspot temperature

*****Partial discharge insulation test (20 kV peak)

DOE DE-OE0000905 Award Amount: \$2.2 million, PI: Dr. Alex Q. Huang

* Assembled DABSST with the developed MFT prototype

* Thermal camera image of the MFT steady state temperature

***** Recorded temperature rise curve of the windings with thermocouples

- □ Working waveform Partial discharge(PD) test?
- Different voltage
- Different dv/dt
- ***** Different frequencies

IEEE P3105 (Recommended Practice for Design and Integration of Solid-State Transformers in Electric Grid)

***** Twisted Litz wire test sample and cross-section view.

***** Direct parallel PCB windings and cross-section view.

Z. Guo, A. Q. Huang, R. E. Hebner, G. C. Montanari and X. Feng, "Characterization of Partial Discharges in High-Frequency Transformer Under PWM Pulses," in IEEE Transactions on Power Electronics, vol. 37, no. 9, pp. 11199-11208, Sept. 2022.

✤ (PCB winding sample, f=10 kHz, v=±1.25 kV)

RPDIV under different slew rates PCB/Litz wire winding sample, f=10 kHz

 ✤ RPDIV under different frequency Litz wire winding sample, dv/dt=5 kV/us, PCB winding, dv/dt=2.7 kV/us.

