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Outline

• Operational challenges caused by DERs
• How AI & ML can help?
• Several case studies
• Research needs
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Transformation of Power Systems

flow of energy

Large, centralized, unidirectional

Clean, localized, multi-directional
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flow of energy
Source: Scottish energy news

The well-known 
Californian duck 
curves showing 
abrupt changes in 
system net load

System fast dynamic 
responses under 
extreme events – the 
August 2003 North 
American Blackout

Grand challenges: the increasing dynamics and stochastics 
in the modern power grid, making it difficult to design and 
implement optimal control actions in real time 

• Increased penetration of IBRs, ESS, etc.
• Demand response
• New market behavior
• Experience/model-based control suggestions using limited 

studied cases are either conservative or risky for operation
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Challenges - cont.
• Bi-directional power flow causes grid 

voltage instability

• Over-voltage and fluctuation

• PV/Wind are highly intermittent

• Power quality issues

• Equipment failure

• Challenging for grid operator

Fig. 1 Voltages become more difficult to control

Fig. 2 Time constants of IBRs and turbine electric generators

• Time constants of synchronous 
machines are in seconds or longer

• Time constants of power electronic 
converters are in the order of 
milliseconds or shorter

• System dynamics are becoming faster 
and faster as the penetration DER 
increases

• Faster decision support is much needed

Presenter Notes
Presentation Notes
Power systems are becoming increasingly difficult to operate and control as IBRs continue to expand, especially in distribution grids, where networks are not closely monitored, and operators lack the necessary information to obtain a clear picture of the system states. In the next 3-5 years, distribution grid operators will face three major challenges: (1) dealing with the growing uncertainty of daily operational conditions and system models, (2) balancing system generation and load in real time, with limited control on both, while satisfying network constraints, (3) managing an ever-increasing number of system states, variables, and measurements. To ensure grid stability and reliability, new advanced control techniques are needed.



Opportunities
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Source: phoenix

Source: Bloomberg New Energy Finance

Increasing DERs
increasing communication
increasing controllable devices
increasing measurements

The ubiquity of 
data, connectivity 
and devices

        

Digital technologies are set to 
make energy system around the 
world more connected, 
intelligent, efficient, reliable, and 
sustainable.

Presenter Notes
Presentation Notes
IEA define digitalization as “the increased interaction between digital and physical worlds” 2018. Digitalization will transform the electric systems over the next decade: system operations, grid architecture “system of systems”, consumption and production, industrial organization and business models



Recent Advancement in AI & ML
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Dec. 2018, AlphaStar mastered the real-time 
strategy game StarCraft II and beat top teams, 
by learning from human and then self play.

Robot arms learn to pick things up, hard 
and soft objects in different ways, with 
little human interference.

Oct.2017,《Nature》, AlphaGo Zero beat
AlphaGo Lee with a score of 100:0, after 3
days’ training by learning from scratch.

Core technology: Deep learning + Reinforcement learning

2010 2014 20182015-2017

Deep Mind Founded
Google acquired
Deep Mind

2015, AlphaGoFan (5:0 vs Hui Fan)
2016, AlphaGoLee (4:1 vs Lee Sedol) 
2017, AlphaGoMaster (3:0 Jie Ke)

2019

2017, AlphaZero
2018, AlphaStar 2019, MuZero

Credit of pics: Google

Hints: Power systems have lots of data, but much less event data, and very few of them are labeled.
How about   ML  +  Classical power system analysis and computation approaches?

Self learning/self-supervised learning?



AI/ML vs Traditional Approaches
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Traditional Approach
(Model-centric)

Automatic Program
(Fixed and pre-determined rules, 

automatic execution)

New Approach
(Data-centric, hybrid approaches)

Autonomous Program
(Learn, improve, adapat)

Rules

Data

Answers Data

Answers
Rules

Flexibility: offer greater flexibility and adaptability in dealing with complex and non-linear
control problems. Unlike traditional control methods that often rely on well-defined
mathematical models, AI/ML can learn control strategies directly from data, making it more
capable of handling systems with uncertainties and varying dynamics effectively.
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Shift in Methodology - cont.

Continuous learning: AI/ML algorithms can continuously learn and refine their control
policies as they interact with the system. This dynamic learning ability enables them to
adapt to changing conditions or evolving system requirements over time, ensuring
superior performance in dynamic scenarios.

No need for explicit models: Unlike traditional control methods that frequently require
a priori knowledge of the system’s dynamics and model parameters, AI/MLmethods do
not depend on explicit models. Instead, they can learn control policies directly from
experience, making them well-suited for systems with unknown or difficult-to-model
dynamics. This characteristic provides AI/ML with a notable advantage in addressing
real-world problems where precise system models may not be readily available.

Lack of approaches to synthesize massive number of measurements from
thousands of smart sensors from wide areas to make timely decisions on how
to best allocate energy resources.
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Real-time Optimal Network Topology Optimization/Reconfiguration with Renewables

Do Nothing Agent

• Line 5-6, 4-5, 4-7, 4-9 
are forced to switch off 
continuously, leading to 
grid failure. 1

2 3

45

6 7 8
9

10
11

12 13
14

1

2 3

45

6 7 8
9

10
11

12 13
14

Series of power 
system AI 
competition 
L2RPN: 
https://l2rpn.chal
earn.org/

Trained Agent
• switch-off line 10-11, 
line 5-6 overflow 
alleviated
• switch-off line 13-14, 
line 2-5 overflow 
alleviated
• Successfully goes 
through the system 
peak-load time
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Optimization problem: Goal: Maximize ATCs of the entire system over all time-steps
and scenarios

Action Space/Decision Variables:

Problem Complexity:

Problem Formulation and Complexity
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Conventional Approach Machine Learning based Approach

Test trained models on 200 unseen chronics, each has 5184 continuous steps

Autonomously 
controlling the 
grid for weeks!!

Solution Time: Hours or tens of mins (with dc 
approximation)

Solution Time: Sub-second

Vs.

Comparison of Solutions

Without considering constraints over multiple steps

Our code has been open sourced at: https://github.com/shidi1985/L2RPN
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 Change generator voltage set point
 Switchable shunts on & off
 Adjust transformer tap ratios 

Objective:
Maintain steady-state voltages at all buses within the range of 0.95-1.05pu after disturbance(s) 
or contingencies from any given initial operating point.

Voltage 
Controller

Bus 
Voltages All buses 

stay within a 
secure range

Autonomous Voltage Control (AVC)
(Considering load variation, renewable intermittency and contingency conditions)



DQN Agent for IEEE 14-bus System
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Either no violations 
or 1 iteration step

2 iteration steps
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Learning from scratch Test on 10k new cases

3 iteration steps

4 iteration steps

5 iteration steps

After 10,000 episodes’ learning, the designed DQN agent starts to master the voltage 
control problem by making decisions autonomously.

Episode Episode



Observations:
1. The designed agents work very well under all testing conditions. 
2. The results comply with basic power system principles and engineering judgement very well.
3. The proposed framework is promising for power system autonomous operation and control. 14

DQN; 60%-140%; Enforcing Q limitDDPG; 60%-140%; Enforcing Q limit

3 iteration steps

4 iteration steps
More than 5 
iteration steps

2 iteration steps

x104 x104

Either no violation 
or 1 iteration step

Episode Episode

• Test the DRL agent under different loading conditions: heavily, fully, and lightly loaded. 
• Consider topological changes. For example, random line tripping contingency or N-1 conditions.

Further Testing with Topological Changes-200 Bus System



Deriving Model-free Fast AC OPF Solutions
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Objective: Minimize system-level generation cost without violating security constraints or shedding load, by 
controlling the voltage setpoints and power outputs of generators under various loading conditions.
Advantage: 1) real-time application for system control; 2) no dependence on accurate system models.



The Learning Process of AC-OPF
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Generator ID
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DRL + Imitation Learning (IL): Example Guided DRL

Source: https://medium.com/analytics-vidhya/imitation-learning-from-
why-to-how-7b713a079501

Why: large action space and sparse reward; no simulator.

Using IL to initialize the weights of neural networks used by DRL.
Selection of network structures

Testing systems and data sets

IEEE 14-bus system

Illinois 200-bus system

Cost calculated by 
using interior-point 
AC OPF solver

Average solution 
time: 170ms. 
10x Faster



Power System Model Validation & Parameter Identification
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Action a：load composition 
adjustment

Current State s: current load 
composition

+
Next State s’: new 

load composition

Sample n sets of 
load parameter

+

Generate n 
WECC CLM 
Dynamic Files

TSAT
P

r e f

Running 
Results-Reward

r

QN a g v o e t

A two-stage approach is proposed for ZIP+IM, CLOD, 
and WECC CLM with as many as 130+ parameters.

In the 1st stage, DRL is utilized to identify the percentage of 
each component; in the 2nd stage, parameters of each 
component can be identified.
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Accuracy for P，RMSE 0.12% 
Accuracy for Q，RMSE 0.64%

The approach is robust for faults at different locations,
different fault types, different clearing times.
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DRL-based WECC Model Identification & Validation DRL-based Generator Model Identification & Validation

Results - Model and Parameter Identification


Figure 1

Microsoft Game DVR





Pilot Projects at Real-world Power Systems
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 ~50 substations/plants
 12 generators
 3 500kV substations
 37 220kV substations
 96 transmission lines
 Max load 3500MW
 Max gen. 5800MVA

Multiple Control Objectives: voltage + line flow + system loss



Interface with Existing Energy Management System (EMS)
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EMS
Online 

training and 
update

AI 
Agent

Basecase PFState 
Estimation

System 
snapshots

QS file

Manual 
adjustment

Periodically
5min Control 

actionsSnapshots
QS file

Control 
actions

PF 
Validation

Violation 
mitigated;

loss reduced

Existing 
AVC

Results 
comparsion; 
computation 

speed evaluation

Violation 
mitigated;

loss reduced

Control actions in ms

Results comparison

Performance



Online Deployment with REAL Data
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571 snapshots 
have violations, 
all solved by AI 
agent

239 snapshots 
have violations, 
all solved by AI 
agent

Nov. 22, 2019 Nov. 29, 2019
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Online training process

Online execution process

No. of Snapshots

No. of Snapshots

Reward: positive if violations in Vs and Flows are solved; negative otherwise; the more loss it reduces, the higher the reward



Results-cont.
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Training period:
average loss reduction：
3.4525%

Execution period: average 
loss reduction：3.8747%

Voltage violations 
solved, loss increases 
slightly

Nov. 22, 2019 Nov. 29, 2019

Online training process

Online execution process
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Observations
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Validated by EMS, 

1）following the decisions of the AI agent, all voltage violations are solved;

2）for only one snapshot, voltage violations are solved, loss slightly increases;

3）other than the one case, loss reductions are observed, with highest number reaching ~6%;

4）for all snapshots, before and after control, no violation in line flow is observed.

several million 
dollars’ saving 
per year.



The Research Needs
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• Highly sample efficient algorithms.

• Safety guaranteed inference.

• Edge AI for distribution grids.

Fig.  Illustration of the safety issue of machine learning algorithms

Desired region
Undesired 

regionInsecure 
region

S1

S2

S3

S2'

Fig.  Edge AI - distributed & light-weight

Presenter Notes
Presentation Notes
There are physical safety concerns. In 2018, a self-driving car used by the rideshare company Uber hit and killed a pedestrian in a driving accident. In that particular case, the court ruled that the backup driver of the self-driving car was at fault, as she was watching a show on her phone instead of paying attention to her surroundings. 
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Thank you!
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