

ARPA-E's Power Electronics Portfolio Materials to Applications

Olga Spahn, Program Director (olga.spahn@hq.doe.gov)

August 2, 2023

Evolving Grid - Needs Better Technologies

100+ years old ASCE infrastructure grade C-

Changing weather

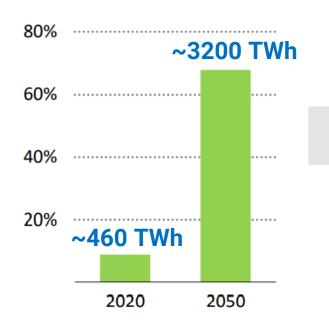
8+ hours/customer/ year

Changing threat patterns

Changing usage patterns

Changing generation patterns

Impact: Net Zero by 2050 Requires More DER Integration

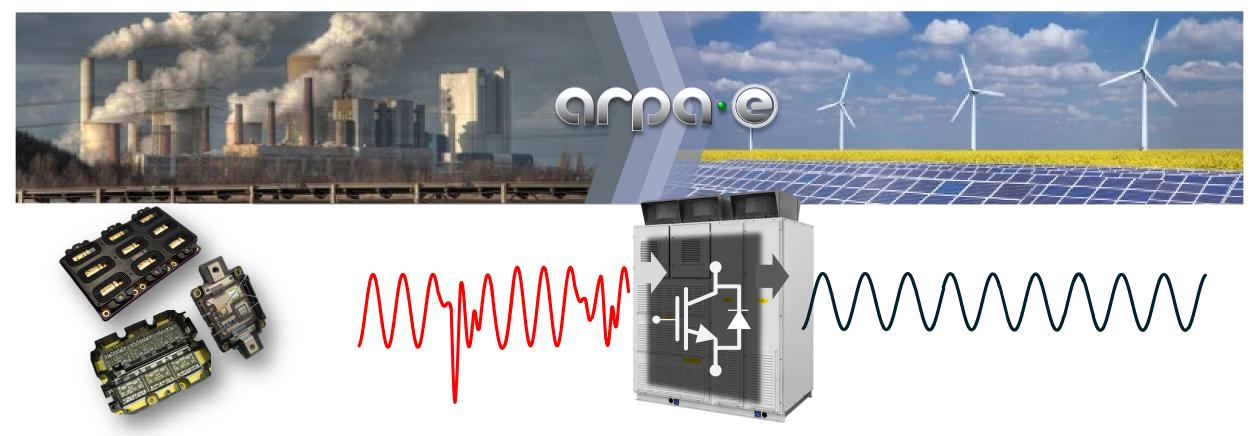


CIO

Share of solar PV and wind in electricity generation

- Share of electrified final power consumption to grow from 20% to 50%
 electrification is driving everything
- Renewables key to reducing emissions
- More and better power electronic will enable greater DER penetration

~10x increase in power electronics conversion required in the next 25 years just to support the primary source increase (generation to grid connection)


by 2050 – A Roadmap for the Global Energy Sector, International Energy Agency - https://www.iea.org/reports/net-zero-by-2050

20

International

Energy Agency

Power Electronics Are a Key Enabler

- "Universal adapters" for grid to function like a standard bus allowing generic connections
 - Continuously controlled bidirectional power flow
 - Decoupled dynamics between loads, generators and the grid
 - Independent regulation of voltage and frequency at each side
 - Intrinsic protection, faults actively limited to a nominal value or interrupted
 - No thermo-mechanical switchgear
 - Low-frequency transformer-less voltage step-up / step-down

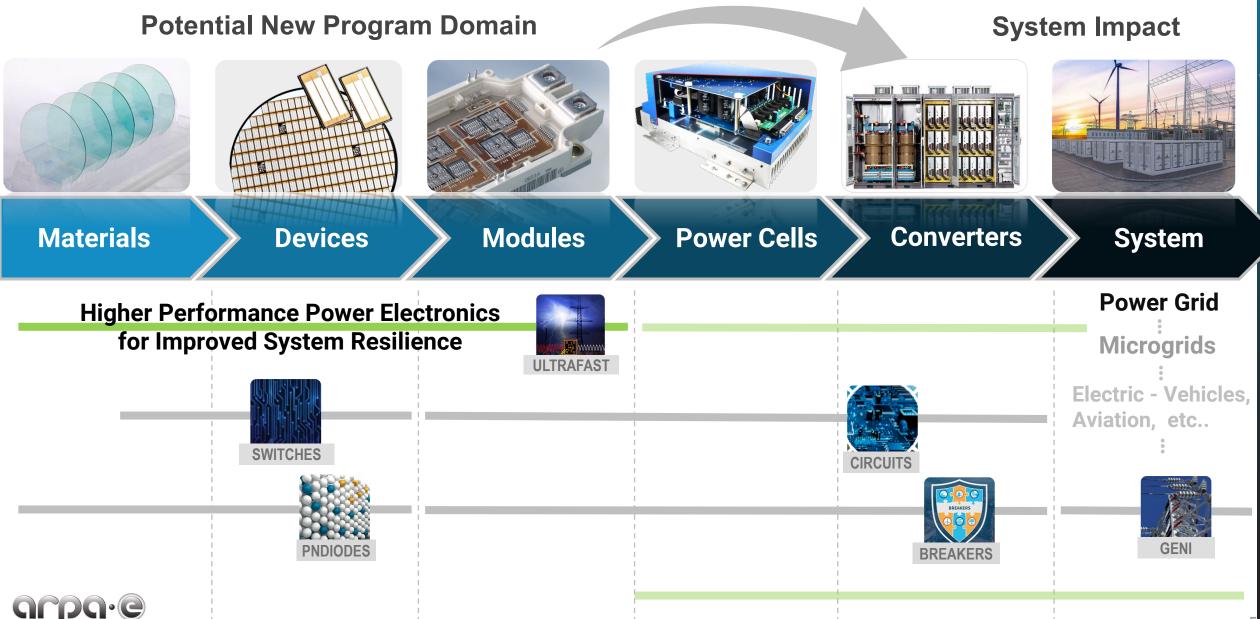
Impact: Power Conversion Opportunities for Energy Efficiency

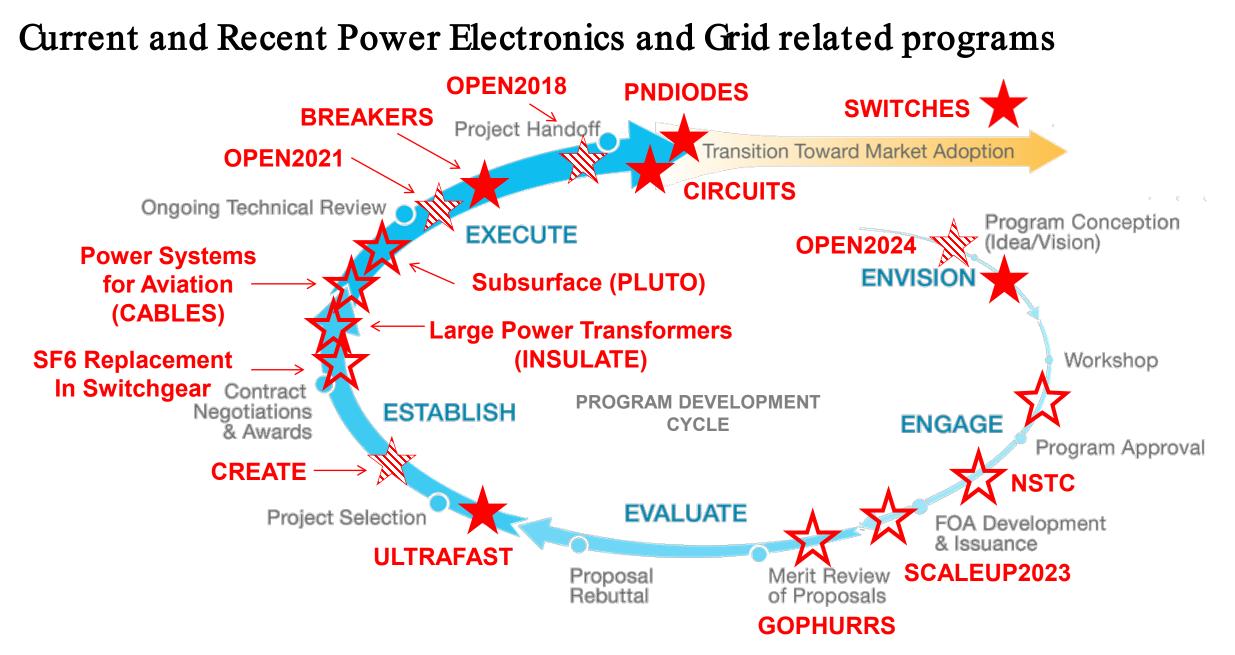
	UPSs	High-End Power Supplies, Servers, etc	Hybrid Electric Vehicles	Solar Panel Inverters	Industrial Motors and Drives	Wind Turbines	Rail Traction, Ships	Grid Systems (FACTS, HVDC)
						\rangle		来来
Peak Currents	2-100A	0.5-10A	50-200A	75A	3-100A	>150A	>200A	1-10kA
Rated Voltage	600-1200V	600V	650-2000V	600-1200V	600-1200V	690V -> 3-4kV	>5kV	10-100kV
	1			,			/	

Additional Opportunities

- Electricity Usage
 - 40% energy used 1st converted to electricity
 - Will grow to 80 % with electric and plug-in cars and other electrification

- Electricity Use in Various Sectors
 - Lighting (12%)
 - Motors (50%)
 - HVAC (16%)
 - IT (14%)


Grid


- Sustainability and Energy Security
 - Conversion efficiency
 - Generate from Renewable Sources
 - Resilient and Flexible Grid

POWER ELECTRONICS is KEY in more than grid (80% of electricity will flow through power electronic converters by 2030)

CHANGING WHAT'S POSSIBLE

Power Electronics Specific Focused Programs

SWITCHES

Launched by Timothy Heidel Program Director: Isik C. Kizilyalli

Strategies for Wide-bandgap, Inexpensive Transistors for Controlling High Efficiency Systems

2014, \$34.3 Million 14 projects

Enable the development of high voltage (1200 V⁺), high current (100A⁺), wide-bandgap power semiconductor devices that have the potential for functional cost parity (\$/A) with Si power transistors.

- High current density vertical GaN transistors (5)
- Large area, low-cost bulk GaN substrates (6)
- Low cost, foundry-based, SiC device fabrication (1)
- Proof-of-concept diamond power semiconductor devices (2)

Discrete Device Price	Discrete Device Price ≤ \$0.10 /A		> 2 V @ I _D = 5 mA	
Breakdown Voltage	≥ 1200 V	Dynamic Performance	Hard switched boost (PFC)	
Continuous Drain Ourrent	≥ 100 A		f ≥ 40 kHz, 800 V, 50 A.	
Continuous Drain Current			(2 - 2) = 0 + 2 = 2 = 2 = 1 = 1 = 1 = 1	
Operating lunction Terms	EE to 1E0 °O	Specific R _{DSON}	< 3 mΩ*cm² @ V _{GS} = 15 V	
Operating Junction Temp.	-55 to 150 °C			
I _{ON} / I _{OFF} Ratio	> 10 ⁶	Switching Loss E _{ON} +E _{OFF}	< 0.5 mJ @ 800 V and 50 A	

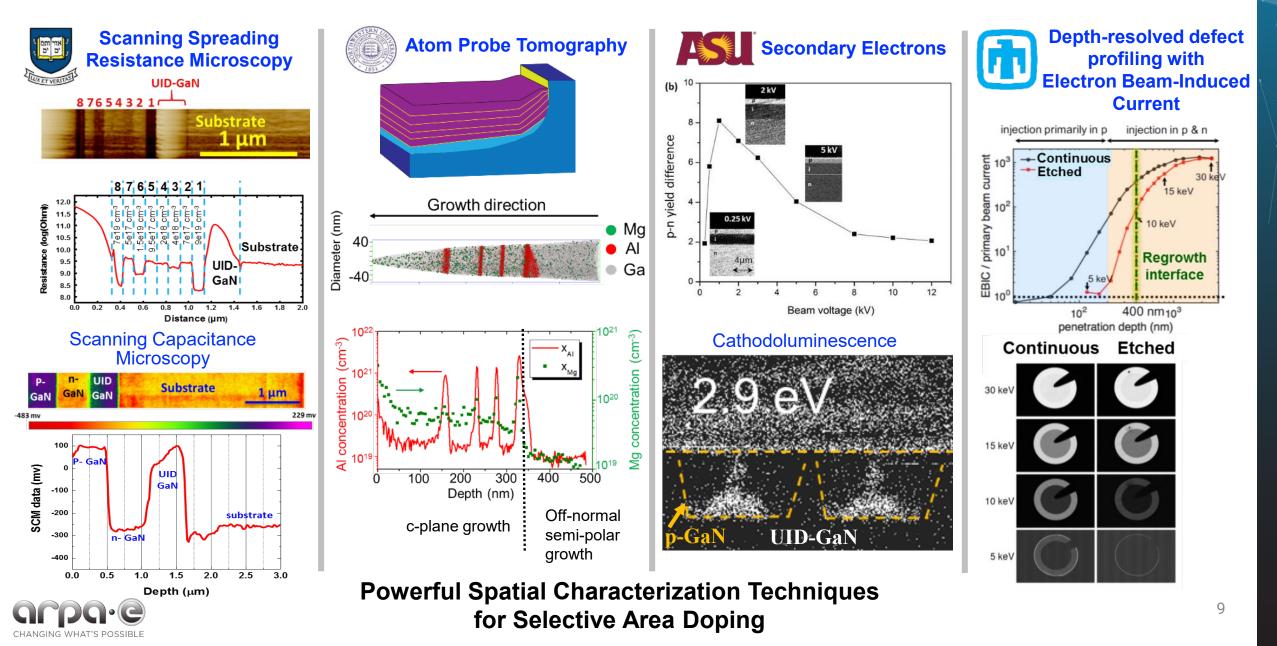
Most transformative potential

SWITCHES Technical Targets For High Performance and Market Viability

PNDIODES

Program Director: Isik C. Kizilyalli

Power Nitride Doping Innovation Offers Devices Enabling **SWITCHES**


2017, \$17.4 Million 10 projects

- A mechanistic understanding of selective area doping in the III-Nitrides material system
- Leading to the demonstration of arbitrarily placed, reliable, contactable, and generally useable p-n junction regions that enable high-performance and reliable vertical power electronic semiconductor devices.
 - Patterned etch and regrowth technologies (3) PROJECTS
 - Ion implantation and innovative activation annealing technologies (3)
 - Neutron transmutation doping for extremely uniform n-type GaN wafers (1)
 - Expanded the Program to include Mg diffusion (1) and advanced characterization

Breakdown voltage	Breakdown voltage ≥ 1200 V		< 3 mΩ*cm ²	
Leakage current	≤ 10 ⁻⁹ A @ 600 V	Avalanche capability	No parametric shift after	
Turn-on voltage	~ 3.0 V		repetitive avalanche testing> 20 A surge capability for 10 µs	
I_{ON}/I_{OFF} Ratio > 10 ¹⁰		Surge capability	pulse at 25° C	

PNDIODES Program Specifications

Some Highlights from the PNDIODES Program

CIRCUITS

Program Director: Isik C. Kizilyalli

Creating Innovative and Reliable Circuits Using Inventive **Topologies and Semiconductors**

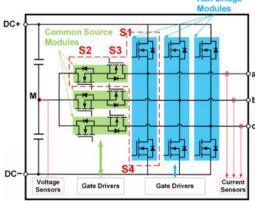
10

Use advanced circuit topologies and fundamentally higher performing WBG semiconductor materials to realize efficiency gains both directly and indirectly in electric power conversion

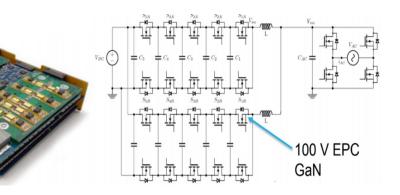
- Efficient DC/DC, DC/AC, & AC/DC converters (≥10 kW, 97.5%)
- Small size, low weight, reliable Power Density > 150 W/inch³
- PROJECT • Major contributions in power supplies, data centers, motor drives
 - Enable adoption of EV/HEV, Solar PV, Wind, VFM, Aviation, Ship, Rail

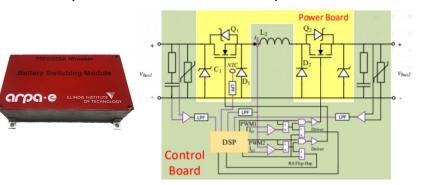
Power and voltage	≥ 10 kW & ≥ 600 V	EM Compliance	FCC Part 15 B	
Efficiency (Q = P _{out} /P _{loss})	≥ 97.5% (Q ≥ 39) @ rated power			
	≥ 95% (Q ≥ 19) @ 5% rated power	Cooling	Passive or forced air	
Power density	≥ 150 W/in3	coomig		
	(≥ 9.15 kW/L)	Operation	168-hour continuous basic	
Specific power	≥ 5 kW/kg	operation	operation	
Specific power	2 J KW/KY			

CIRCUITS Performance Metrics


CIRCUITS: Projects on Ampaire Electric Aviation Testbed

University of Arkansas: 250 kW Motor Drive





UC-Berkeley: 10kW Flying Capacitor Converter

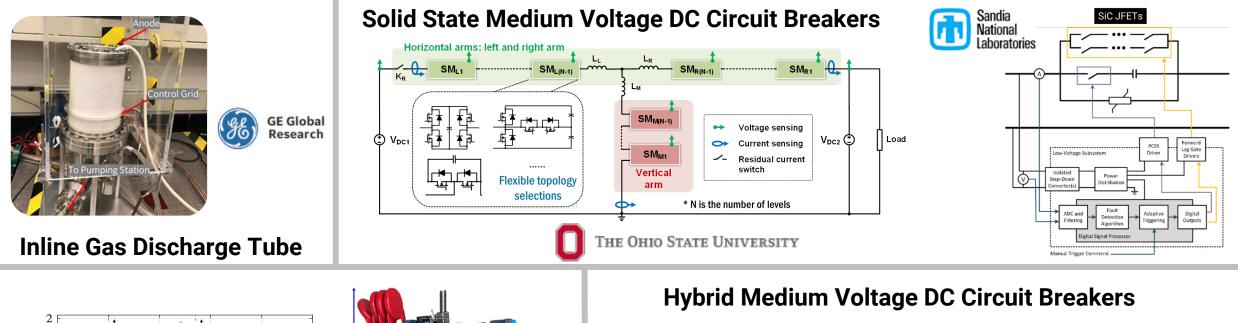
IIT: 800V/240A iBreaker (DC Circuit Breaker)

Other CIRCUITS, CABLES, ASCEND, REEACH, INTERGRATE next

BREAKERS

Building Reliable Electronics to Achieve Kilovolt Effective Ratings Safely

Program Director: Isik C. Kizilyalli

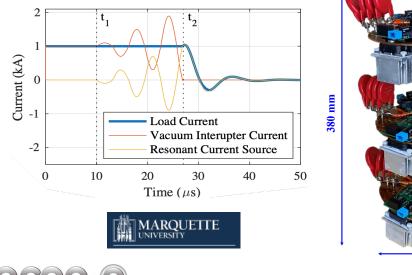
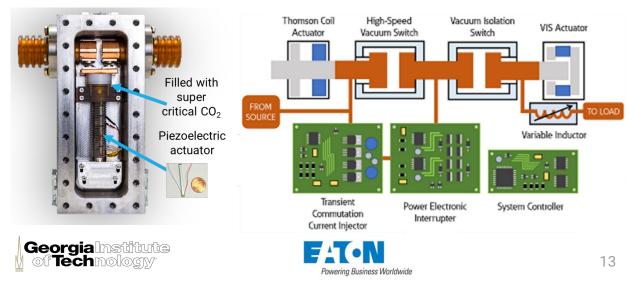

2018, \$23 Million projects

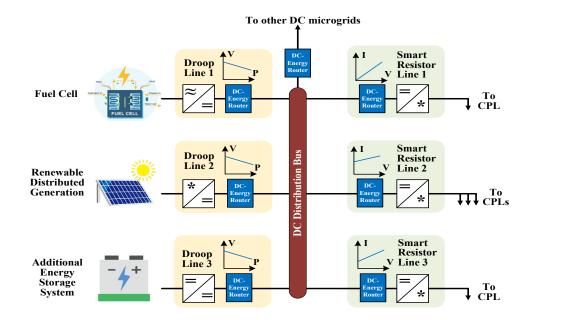
Enable and create MVDC markets in the range of 1.5kV – 100kV by developing novel DC circuit breaker technologies.

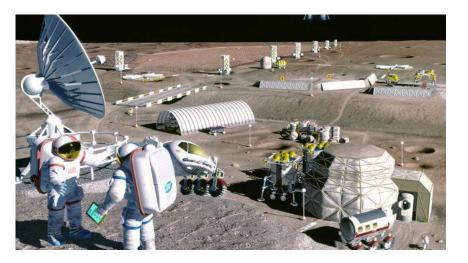
- MVDC has potential applications in grid resiliency, renewable and storage interconnection, electric aviation, electric ships, and oil & gas.
 - It can save 1.1 quads of energy per year, reduce U.S. emissions by 3% via electrification of transportation, and lower offshore oil and gas rig costs by 5%.
- High speed, low-loss MVDC circuit breakers will enable MVDC markets by providing circuit and electrical equipment protection (e.g. power converters, power lines).

Rated voltage	1 kV DC - 100 kV DC	Lifetime	\ge 30,000 cycles, \ge 30 years	
Rated power (instantaneous)	≥ 1 MW	Nuisance trips	≤ 0.1%	
Efficiency	≥ 99.97%	Power density	≥ 60 MW/m ³	
Response time	≤ 500 µs	Cooling	Passive or forced air	
arpa·e 12	BREAKERS Program 7	Cechnical Requirements		

BREAKERS enables MVDC markets in the 1.5kV – 100kV range


 Image: set of the set of



CHAN Resonant Medium Voltage DC Circuit Breakers

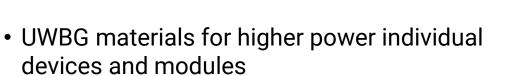
Microgrids in Space

Flexible DC Energy Router based on Energy Storage Integrated Circuit Breaker, NASA Lunar Surface Technology Research, May 2021~May 2023, PI: Jin Wang

The project is to combine OSU's T-Breaker and Smart Resistor* concepts to create and demonstrate a modular DC-Energy Router for interconnected dc microgrids on lunar surface. A digital twin and a 120-V 10-kW GaN based high power density prototype would be built.

https://www.nasa.gov/directorates/spacetech/strg/lustr/2020/Flexible_DC_Energy_Router/

*K. A. Potty, E. Bauer, H. Li and J. Wang, "Smart Resistor: Stabilization of DC Microgrids Containing Constant Power Loads Using High-Bandwidth Power Converters and Energy Storage," in IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 957-967, Jan. 2020, doi: 10.1109/TPEL.2019.2910527.

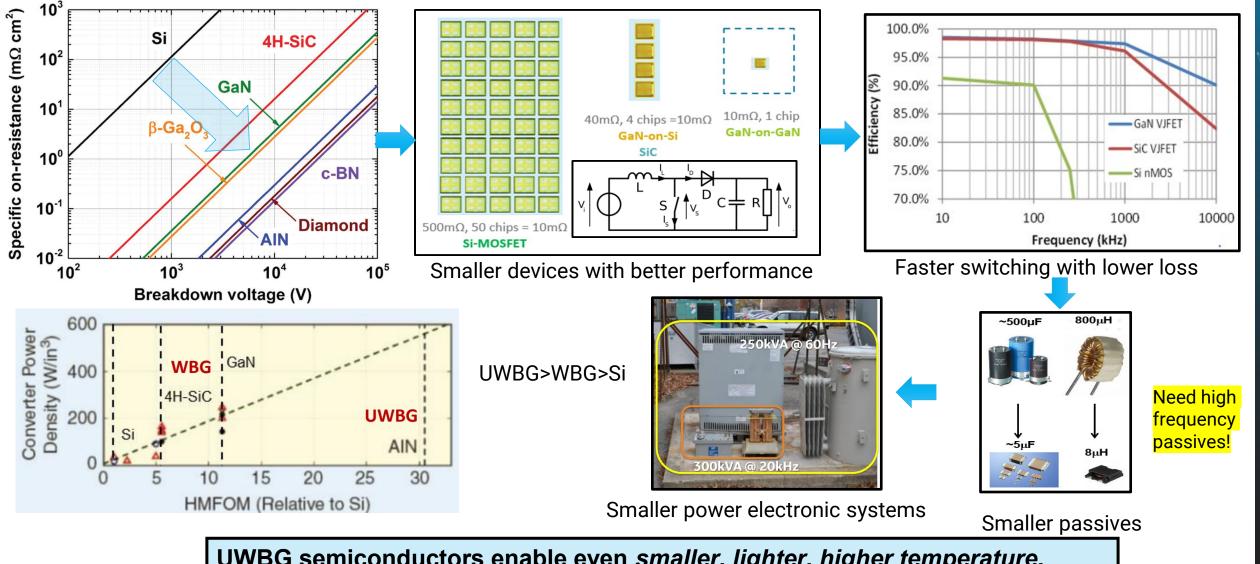

ULTRAFAST Unlocking Lasting Transformative Resiliency Advances

by Faster Actuation of power Semiconductor Technologies

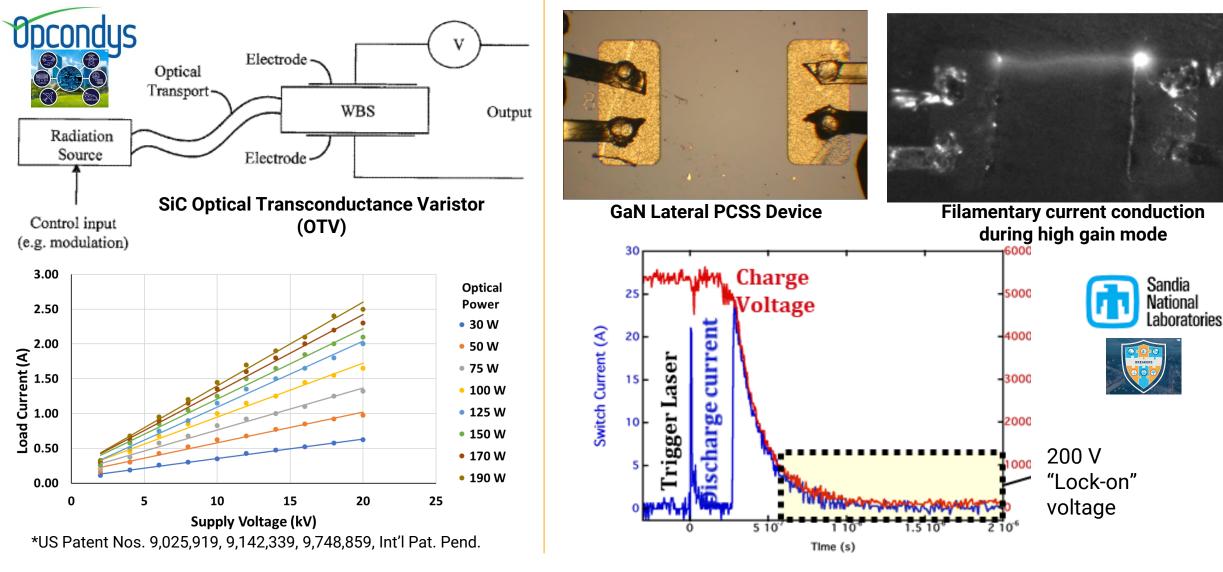
Next generation material, device and module technologies for improved power distribution and control in future grid applications

- Enable future grid supporting Net-Zero Emissions goals by 2050
- Required for increased DER uptake, load electrification, and improved system resiliency

Parameter \ FOA	Category 1	Category 2	
Rated Voltage	≥ 20 kV	≥ 3.3 kV	
Rated Current	≥ 250 A	≥ 10 A	
Switching frequency	n/a	1-100 kHz	
Voltage slew-rate	≥ 500 V/ns	≥ 250 V/ns	
Current slew-rate	≥ 200 A/ns	≥ 100 A/ns	
Loss	≥ 30% lower than SOTA		

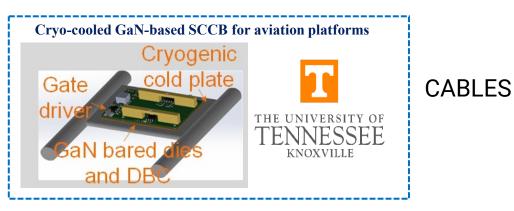


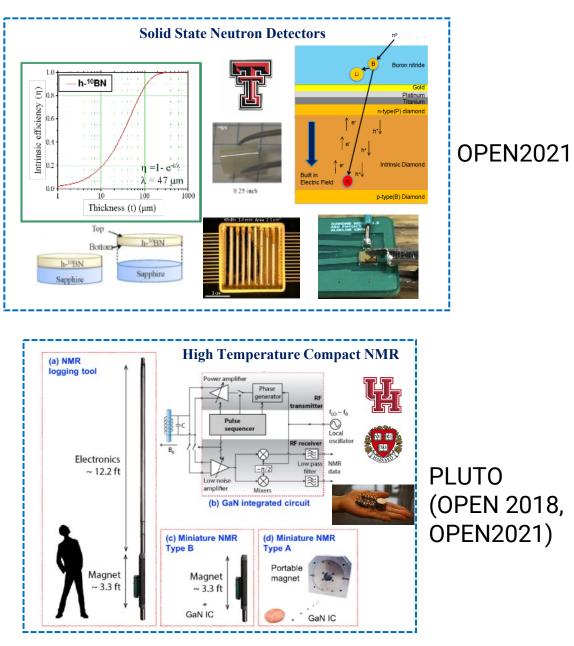
- EMI mitigation for improved stacking, reliability
- Faster actuation improved protection, better control, lower losses, better SWAP
- Supporting enabling technology sensing, passives, packaging, gate drive technology


UWBG Advantage in Power Electronics Devices and Systems

UWBG semiconductors enable even *smaller, lighter, higher temperature, more efficient, reliable, and lower* cost power electronic systems

Photoconductive Semiconductor Switch (PCSS)

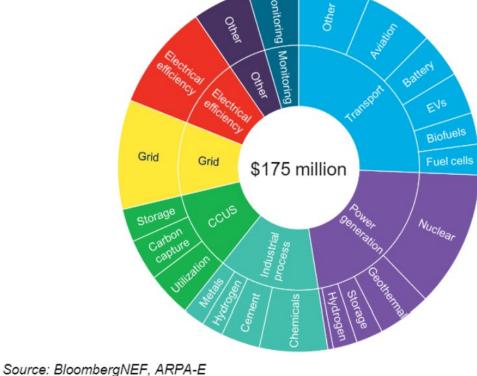



CHANGING WHAT'S POSSIBLE

LTT – like, latching mode

Applications of Power Electronics

- In aviation (ASCEND, CABLES) MV (>10kV) power distribution for electric aviation
- In subsurface technologies (OPEN2021)
- In harsh environment sensing (OPEN2018,2021)



What Could be Next for ARPA-e and Power Electronics

- OPEN 21(\$175M/68 Projects in Negotiation)
- SCALEUP 2023 for ARPA-e Alumni Projects
 - CIRCUITS
 - BREAKERS
 - SWITCHES and OPEN18
- ULTRAFAST
- OPEN 24
- Novel Power Electronics Circuits
- Magnetic Materials Development
- AIGaN, ScAIN, BAIN, BN based Devices
- Light Triggered WBG/UWBG Devices
- Bi-Directional and Super-Junction Switches and Circuits
- More Applications (Grid, MVDC, Aviation, Fusion, Nuclear Detect/Store, EGS)
- Baseline Process Flow in Foundry for GaN development

Overarching Goals in Power Electronics

- Transforming Energy Technologies: Efficiency with Deep De-carbonization
- Compact, Efficient, and Reliable Power Electronics
- Electrification of Transportation and Aviation (includes Land Infrastructure)
- Variable Frequency Drives
- Integration of Renewables/Storage and Grid Resiliency
 - Catalyze MVDC Distribution Market
 - Develop Enabling Technologies
 - MV, Novel Devices, and Power ICs
- Leverage Power Electronics in Generation (EGS, Nuclear Fusion, Oil/Gas, Pulsed Power Drilling)

Dr. Olga Spahn Program Director Advanced Research Projects Agency – Energy (ARPA-E) U.S. Department of Energy olga.spahn@hq.doe.gov

www.arpa-e.energy.gov

