decorative illustration

High-speed alloy creation might revolutionize hydrogen’s future

September 21, 2021 8:27 am Published by

A Sandia National Laboratories team of materials scientists and computer scientists, with some international collaborators, have spent more than a year creating 12 new alloys — and modeling hundreds more — that demonstrate how machine learning can help accelerate the future of hydrogen energy by making it easier to create hydrogen infrastructure for consumers.

Vitalie Stavila, Mark Allendorf, Matthew Witman and Sapan Agarwal are part of the Sandia team that published a paper detailing its approach in conjunction with researchers from Ångström Laboratory in Sweden and Nottingham University in the United Kingdom.

“There is a rich history in hydrogen storage research and a database of thermodynamic values describing hydrogen interactions with different materials,” Witman said. “With that existing database, an assortment of machine-learning and other computational tools, and state-of-the art experimental capabilities, we assembled an international collaboration group to join forces on this effort. We demonstrated that machine learning techniques could indeed model the physics and chemistry of complex phenomena which occur when hydrogen interacts with metals.”

Having a data-driven modeling capability to predict thermodynamic properties can rapidly increase the speed of research. In fact, once constructed and trained, such machine learning models only take seconds to execute and can therefore rapidly screen new chemical spaces: in this case 600 materials that show promise for hydrogen storage and transmission.

“This was accomplished in only 18 months,” Allendorf said. “Without the machine learning it could have taken several years. That’s big when you consider that historically it takes something like 20 years to take a material from lab discovery to commercialization.”

Read more in the complete news release.

Learn more about Sandia’s hydrogen and fuel cells research and expertise.