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1. INTRODUCTION 
Automated vehicles (AV) hold great promise for improving safety, as well as reducing congestion 
and emissions. In order to make automated vehicles commercially viable, a reliable and high-
performance vehicle-based computing platform that meets ever-increasing computational 
demands will be key. Given the state of existing digital computing technology, designers will face 
significant challenges in meeting the needs of highly automated vehicles without exceeding 
thermal constraints or consuming a large portion of the energy available on vehicles, thus 
reducing range between charges or refills. The accompanying increases in energy for AV use will 
place increased demand on energy production and distribution infrastructure, which also 
motivates increasing computational energy efficiency.  

To meet both energy efficiency and computational performance goals, targeted research and 
development (R&D) is needed in those technical areas that most impact computation and energy 
efficiency in the context of the size, weight, power, and thermal constraints of a vehicle. Our 
approach to this goal was to assemble a “Roadmap Team,” with representatives from national 
lab, academia, and industry (microelectronics and automotive), in order to develop a “Roadmap 
Outline” for the advancement of energy efficient computing for automated vehicles (EECAV). The 
purpose of the Roadmap Outline is to identify the R&D challenges that must be overcome for the 
realization of highly automated driving in retail vehicles with low power consumption and high 
computational performance. The retail-vehicle focus ensures that the AV R&D problems are 
considered in the context of the most complicated ownership, service, and support scenario, 
identifying technical problems while being cognizant of additional economic and regulatory 
constraints.  In addition, we focused on long-term R&D problems that would typically be the 
target of public or private investment, and hopefully complementary to ongoing industry 
investments. Above all, we aimed to provide a neutral technical assessment, without bias or 
favoritism to a particular technology, ensuring technically sound input for an eventual long-term 
EECAV roadmap that can guide R&D investment. The Roadmap Outline is purposefully high-level 
and intended to serve as the starting point of a more comprehensive energy efficient computing 
roadmap that will include broader partners in a next phase.  

As the automation level of vehicles increases and the operation design domain (ODD) expands, 
the required computation will increase significantly on AVs in order to perform dynamic driving 
tasks reliably and safely. Conventional complementary metal-oxide semiconductor (CMOS) 
digital computing technology is approaching the end of Moore's Law scaling, as illustrated in 
Figure 1. The energy/power performance ratios of computer chips faces the difficulty of breaking 
the CMOS bottleneck around picojoule/(multiply-accumulate) operation and has shown an 
indication of hitting an inflection point. The projected computing performance as shown will not 
be able to meet the demand of highly automated AV functions alone. A new co-design paradigm 
shift is needed where the research activity into computer chips, architecture, algorithms, and 
sensors are highly integrated to advance the energy efficiency of AV computing. 
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Figure 1. Energy per Operation (OP) plotted versus Year.  A new co-design paradigm will be needed to meet the 
energy efficient computing requirements of highly automated driving. 

 
AVs will rely on sophisticated inference systems that make hard decisions based on complex, 
multi-modal sensed data. Communication among vehicles, and with infrastructure, could provide 
many benefits. However, wireless communication may experience intermittent outages due to 
interference and obstructions. Therefore, time- and safety-critical decisions must be possible on-
vehicle, not dependent on the cloud. This requires local computation. Unfortunately, existing 
automated commercial AV computer vision prototypes require an order of magnitude more 
power than will be practical to cool in future commodity vehicles. 

An energy expenditure of 300 Wh/mile is typical for modern non-automated electric vehicles.1  
For a vehicle speed of 60 mph, this corresponds to a power expenditure of 18 kW for electric 
vehicle locomotion.  Highly automated vehicles currently being tested by leading developers 
generally expend about 2.5 - 4 kW of power on the sensing and computation necessary for 

 
1 Kane, M., “Electric Car Energy Consumption (EPA) Compared,” April 1, 2019, https://insideevs.com/ 

https://insideevs.com/
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inference with similar numbers noted for more recent systems. 2 , 3 , 4 , 5  This level of power 
consumption for automated driving represents a burdensome fraction of the available onboard 
power. It is difficult to narrow this 2.5 - 4 kW range further for the current AV prototypes, as 
existing systems will trade off safety and functionality against energy efficiency, but we will use 
an estimate of 3 kW for discussion purposes.  We anticipate that a 300 W “all-in” target for on-
board AV computation and associated support equipment will be required to meet thermal 
constraints in economically viable vehicles.  Even if the thermal problem could be resolved, there 
would likely be significant resistance to consuming much over 10% of locomotion power for 
onboard computing, which can otherwise be used for the travel range of the AVs.      

It is instructive to compare the 3 kW of current developmental platform vehicles to the 300 W 
power target in order to identify potential sources for the required improvement.   The 
possibilities for transitioning from the current 3 kW to 300 W are depicted in Figure 2.  
 

 

Figure 2. Different technology development paths to the energy efficiency improvements required for automated 
driving.  
 

 
2 Stewart, J., Self-Driving Cars Use Crazy Amounts of Power, and It's Becoming a Problem, Wired, Feb. 2018. 
https://www.wired.com/story/self-driving-cars-power-consumption-nvidia-chip/. 
3 Pant, Y.V., Abbas, H., Nischal, K.N., Kelkar, P., Kumar, D., Devietti, J., Mangharam, R., “Power-efficient Algorithms 
for Autonomous Navigation,” Proc. International Conference on Complex Systems Engineering (ICCSE), Nov. 
2015. 
4 Hamza, K., Willard J., Chu, K. and Laberteaux, K.P., Modeling the Effect of Power Consumption in Automated 
Driving Systems on Vehicle Energy Efficiency for Real-World Driving in California. 
Transportation Research Record 2673 (4): 339–47. https://doi.org/10.1177/0361198119835508.  
5 National Academies of Sciences, Engineering, and Medicine 2021. Assessment of 
Technologies for Improving Light-Duty Vehicle Fuel Economy 2025-2035. 
Washington, DC: The National Academies Press. https://doi.org/10.17226/26092. 
 

https://www.wired.com/story/self-driving-cars-power-consumption-nvidia-chip/
https://doi.org/10.1177/0361198119835508
https://doi.org/10.17226/26092
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Extrapolating based on projections from the International Roadmap for Devices and Systems 
(IRDS),6 we estimate that the energy efficiency of CMOS/FinFET technology (Process Scaling) will 
improve by 2.5X between 2020 and 2040. Additionally, with a 1.5X improvement in energy 
efficiency due to  device, architecture, or algorithm innovation, the estimated power reduction 
improves to 4X by 2040, but is still insufficient. A breakthrough beyond-CMOS device innovation 
could conceivably, by itself, achieve the 300 W power target. However, building on advances in 
Process Scaling, Devices, Architecture, and Algorithms to reach the required 10X power 
reduction, as shown in Figure 2, has a higher probability of success than focusing on only one 
level of the design process.   

Figure 2’s depiction of the required 10X improvement to AV computational energy efficiency is 
semi-quantitative because there are several factors which are not considered for simplicity. For 
example, there are likely to be regulatory burdens (security, safety and privacy) on the sensor 
array and associated computation which will affect the power budget.   Also, the (3 kW) power 
burden varies somewhat amongst the current prototype vehicles. Improvements exceeding 10X 
are valuable and can be traded off for improvements in reliability and functionality. 

The remainder of this Roadmap Outline describes the R&D problems that must be overcome for 
highly automated driving with 300 W power consumption for computing in retail vehicles. 

2. BACKGROUND 
In the early phases of the roadmapping activity, a survey was conducted of published technical 
literature to assess if there had been prior attempts to evaluate the state of R&D with regard to 
AV computation, in general, and AV computational energy efficiency, specifically. The purpose 
was to be aware of prior work in order to avoid duplication and have relevant prior literature 
inform our efforts. Although the AV technical field is quite broad, our review of the literature was 
limited to the topic of AV computational energy efficiency and the technical issues that directly 
affect it. The papers were discovered by searching the technical literature (i.e., using Google 
Scholar) using search terms such as “automated vehicle computation” and “AV computer energy 
efficiency.”  

Overall, this literature search found few previously published articles or reviews discussing the 
computational requirements needed for AV operation. Essentially, all prior literature assessing 
future AV activity assumes the computational capability will be there. A few articles provided 
discussion of the demand side of the problem, namely the sensor/camera data input that must 
be processed. No discussion is provided in the prior literature on energy efficiency associated 
with computation for AV, except for a 2019 Sandia National Laboratories (SNL) workshop report7 
which documents a progenitor activity to the current roadmapping activity. Thus, there has been 
no prior roadmapping activity on the EECAV topic. 

This literature review lent confidence that our R&D AV roadmapping activity is providing new 
investigation of the computational needs for AV operation and the required energy efficiency 

 
6 International Roadmap of Devices and Systems 2020 Update: More Moore, 2020. 
7 Mailhiot, C., Severa, W.M., Moen, C.D., Jones, T.B., “Workshop on Advanced Computing for Connected and 
Automated Vehicles,” Nov. 2019, SAND2019-14117. 
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with which that computation must be conducted. A summary of the literature review is available 
upon request.  
Draft technical content for the Roadmap Outline was presented at an online EECAV workshop 
held with the AV and related technical communities on May 11 and May 12, 2021 to present the 
work of the Roadmap Team, discuss the general AV challenges from a “required R&D” 
perspective, and receive feedback on the draft Roadmap Outline and the R&D problem areas. 
The Agenda for the EECAV Workshop, copies of the workshop presentations and a summary of 
workshop are available on the Sandia website8 or upon request.  

3. ROADMAP SCOPE AND TIMELINES 

3.1. Scope 
The Roadmap Team developed a couple of “boundary conditions” for the roadmapping activity. 
The first of these is the location of the computational capacity. There are several technical 
scenarios within which AVs may operate. At one end of the spectrum, the guidance and control 
of AV operation relies heavily on intelligent infrastructure through the “vehicle to X” or “V2X” 
communication. A majority of the computation task on the vehicle in this case can be shifted to 
off-board through low latency and high bandwidth communication network as part of the 
infrastructure.  At the other end, all computation and sensing hardware reside on-board the AV 
and are self-sufficient to support the dynamic driving tasks within the operation design domain.  
The team decided that the latter scenario, in which all of the computational capacity resides on 
the vehicle, established a boundary condition for this work. This choice was made because input 
from the Original Equipment Manufacturers (OEMs) indicated commercial retail AVs would have 
to be “self-sufficient” for entry into the automotive market, particularly since any intelligent 
infrastructure, if developed, would initially be sparse and therefore often unavailable. Moreover, 
communication with external infrastructure would rely on wireless communication that is often 
subject to intermittent outages due to interference, obstruction, and distance. Identification and 
adoption of the “compute on vehicle” boundary condition places extreme importance on the 
electrical energy efficiency with which computation is performed. It also opens up for R&D 
consideration all technical issues associated with hosting computational capacity on the vehicle, 
including the energy, space, and weight it takes to do so. Having said that, it should be noted that 
in a mature AV technology scenario, there may be a compromise between the two scenarios, 
where a substantial amount of “compute on vehicle” is supplemented with opportunistic “V2X” 
to save local power, compute more efficiently, or enable multi-vehicle cooperative driving. In 
other words, a mature AV technology could involve a composite of vehicular and infrastructure 
sensing and computation. For simplicity and to conceptually bound our R&D scope, we assume 
almost all the computation resides on the vehicle. 
The second boundary condition considered is computational power.  Given that the 
computational capacity resides on the vehicle, the team examined the likely constraint on 
electrical power that will be consumed for computation on commercially viable AV systems. The 
group settled on a constraint of 300 W for the electrical power consumed by the on-board 
computers, sensors, and any supporting peripherals to enable the automated driving functions.  

 
8 https://eecav.sandia.gov 

https://eecav.sandia.gov/
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3.2. Timelines 

With the boundary conditions of self-sufficiency and power worked out, the Roadmap Team then 
discussed the timeline associated with the AV enterprise. It became clear in the initial discussions 
that each team member had their own timeline in mind. The representatives from the chip 
makers typically had the “chip commercialization” timeline in mind, which is the timeline for 
establishing commercial-ready (for mass consumption) chips needed for widespread AV 
application. The automotive OEMs had their “OEM Implementation” timeline, which specifies 
the timing of the OEM implementation of commercial-ready chips in vehicles. The researchers 
on the team were focused on when R&D needed to be performed (i.e., the R&D Timeline). Thus, 
in specifying the Roadmap Outline, it was important to develop three separate but mutually 
consistent timelines for R&D, chip commercialization, and OEM implementation. As shown in 
Figure 3, the roadmap was developed using these three conceptually distinct timelines: 

1. The timeline for R&D that enables AV systems. 

2. The timeline for establishing a commercially ready compute system for AV computation.  

3. The timeline for OEM implementation of those systems in future mass-produced AV. 
 

 
Figure 3. Specification of the R&D Timeline, Chip Commercialization Timeline, and OEM Implementation Timeline 
needed for widespread adoption of mass-produced retail AV. The solid double-headed arrows indicate the time 

considered for each activity in the EECAV Roadmap Outline.  

The three timelines are related as follows: each timeline considers a 10-year period of activity 
with the end goal being widespread implementation of AV in the retail vehicle market. The team 
considered the typical lead time by which R&D must precede commercial implementation of 
technology. While a longer period could be argued for, it was decided five years was the lead 
time for R&D to be commercially implemented. Thus, if we assume the R&D Timeline started in 
2025, the R&D for EECAV would extend from 2025 to 2035, targeting an ever-increasing level of 
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vehicle automation. With commercialization pushed out in time five years from R&D initiation, 
Figure 3 shows that the Chip Commercialization Timeline would therefore extend from 2030 to 
2040, again with increasing computational capacity supporting increasing automation in the 
vehicle. It would be safe to assume that even if chips were being sold in quantity (i.e., not a 
prototype technology), it would take five years for the OEMs to incorporate them in mass-
produced retail AVs. Thus, the OEM Implementation Timeline extends from 2035 to 2045, pushed 
out in time from the Chip Commercialization Timeline by five years, with increasing levels of 
vehicle automation during that time. 

3.3. Technical Areas for Research and Development 

Energy efficient computing is required not only for AV, but for nearly all industries, making the 
identified R&D problems for AV of interest to many industries such as the Internet-of-Things (IoT), 
mobile systems, edge computing and data center computers. However, unlike these applications, 
the AV challenge presents a unique nexus of characteristics, namely, safety critical, small 
footprint, wide temperature range, low weight, high impact on society, and long-term 
deployment (~15 years) in a car.  The long-term nature of AV technology is an especially 
distinguishing characteristic, placing high importance on upgradeability. 

AVs will need sophisticated inference systems that make hard decisions based on complex, multi-
model sensed data. Time- and safety-critical decisions are needed on-vehicle, which require high-
performance local computation on the vehicle. As shown in Figure 2, current partially 
autonomous (but supervised) commercial AV prototypes require about 3 kW, more power than 
will be practical to thermally manage in future retail AVs. Moreover, this accounts for ~20 % of 
the total energy consumption of the current prototype passenger vehicles, including the energy 
for locomotion. To make thermal management in mass-market AVs practical and support long-
range highly automated driving, it will be necessary to reduce the average "all-in" AV power 
consumption to 300 W, 10X lower than currently required. The exact improvement required to 
reach a level where cooling is economical and requires no major advances depends on the 
particular existing AV used as a baseline, but we can say with some confidence that an order of 
magnitude improvement in energy efficiency will be needed. This requires improving full-system 
energy efficiency, including improving the efficiency of hardware so it can do the same 
calculations using less energy as well as improving the efficiency of algorithms so they can 
produce the same results with less computation.  

The Roadmap Team has considered both approaches and identified R&D problems in four general 
technical areas (TAs). These TAs encompass essential technical disciplines that impact 
computational energy efficiency, along with the technical problems in these areas that motivate 
targeted and impactful R&D investment for realizing EECAV.  

The four technical areas are: 

I. Chips: Materials, Devices, and Circuits. 

II. Chips: Architecture, Safety, and Security. 

III. Algorithms and Data Management. 

IV. Sensors Data Interface. 
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Four teams were formed – one for each TA, and each team worked to identify R&D gaps within 
their TAs.  The team leaders were cognizant of the partial overlaps among the TAs (e.g., the 
interactions between chips and architectures, and between architectures and algorithms) and 
considered them when formulating R&D recommendations. These topical R&D areas are listed 
in each of the TA sections to follow. 

4. TECHNICAL AREAS FOR RESEARCH AND DEVELOPMENT 

4.1. Technical Area I. Chips: Materials, Devices, and Circuits 

Technical Area I (TA-I) focuses on the materials, devices, and circuits that are the building blocks 
of computer chips operating in the demanding automotive environment, and within the power 
budget allotted for computation. The ultimate computational “supply” such a chip must provide 
is determined by the computational “demand” of the perception, planning, routing, navigation, 
compliance and other essential functions of AV. These “demand” aspects are considered in the 
other technical areas, while TA-I strives to provide more capable and more energy efficient 
technology at the fundamental chip level.  

R&D within TA-I is critically needed today, as CMOS scaling is approaching its physical limits. Thus, 
there is interest in new materials, devices, and circuits as the industry simultaneously pursues 
three “thrusts” for chip development:  

1. Chip Thrust 1: Improved CMOS approaches, with continued transistor scaling, while 
addressing the associated problems such as increasing dynamic power and sub-threshold 
leakage currents.   

2. Chip Thrust 2: CMOS-like approaches to explore alternative device/materials technologies 
such as field-effect transistors (FETs), tunnel field-effect transistors (TFETs), negative 
capacitance FETs (NC-FETs), 2-dimensional transistors, and 2-terminal memories, etc., which 
offer transistor-like functions with enhancements and better efficiencies. 

3. Chip Thrust 3: Physical computing devices, which seek not merely enhanced transistor-like 
functions, but physics-driven complex behaviors that cannot be expressed by CMOS-like 
technologies. Examples include devices and computing based on ionic, quantum, and 
photonic processes. 

These three chip technology thrusts need to be pursued simultaneously, although they will 
probably commercially mature and be deployed at different times. All these technical approaches 
need to be pursued by the AV sector to address a common set of key issues facing AVs.  

Harsh environment: AVs will find themselves in almost every environment conceivable with 
extremes of cold, hot, dry, and wet, combined with the shock/vibration challenge of the 
automotive environment. Given the harsh environments faced by AV computers compared to 
stationary data centers or consumer electronics, computing in AV has specific demands. 
Availability is clearly one of the highest priorities, where availability means the percentage of time 
the AV functionality is operating to ensure safety. Availability includes serviceability, system 
tolerance to computational failures, the stability/reliability of the hardware to extremes of 
temperature in AV, mechanical stress, resilience to moisture and corroding chemicals, and even 
cosmic ray (or radiation) impact, particularly in high altitude regions. Some of these issues are 
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present in data-center-level computing systems, laptops, wearable electronics, remote sensing 
electronics, etc., but the different environmental issues are critical to different extents in these 
other applications.  

Size, Weight, and Power (SWaP):  An AV will have SWaP physical constraints within which large 
amounts of data and computing have to be packed, which imposes design constraints on the 
circuits and supports the use of three-dimensional (3D) circuit technologies (e.g., 3D NAND Flash 
memories). These constraints could possibly encourage the strategic use of off-vehicle storage 
(e.g., within data centers) for non-critical or latency-tolerant tasks. For example, object 
recognition libraries must be stored on-vehicle since they are of critical and urgent safety 
importance (e.g., recognizing a human on the road), whereas route mapping libraries might be 
stored off-vehicle since real-time rerouting is less time-sensitive. 

Latency: Lives are on the line with AV technology. Rapid response is required to navigate safely 
and confidently in complicated traffic and situational environments. Data centers and consumer 
electronics generally do not require critical low-latency hardware for the computation tasks. 
However, in AVs, the entire data lifecycle, from acquisition/aggregation to analysis to action, 
needs to be less than the ~150 milliseconds typical of human reaction times.  Nearly all the sensor 
data must be processed with extremely low latency because there is a possibility that any sensor 
input could correspond to a critical situation (e.g., a human on the road). 

Reconfigurability: Automobiles are typically on the road for ~15 years, but cell phones and 
laptops typically have much shorter lifespans. This introduces an unusual requirement for 
reconfigurability: the ability of technology to be upgraded while still resident on the vehicle. 
Artificial intelligence (AI) and machine learning (ML) algorithms are the key enablers for vision, 
classification, learning, and prediction tasks. However, the field of algorithms research is highly 
dynamic: algorithms change frequently. This poses a significant challenge to hardware and chip 
designs. High performance and energy efficiency are typically achieved with special-purpose 
application-specific integrated circuits (ASICs). However, a new algorithm may not run efficiently 
on an ASIC that was optimized for a previous algorithm; a new ASIC design may be needed, which 
in turn leads to a high cost of ownership. Since vehicles are owned by consumers for many years, 
the technology must be easily upgradable with the existing computing system in-vehicle. At the 
same time, reconfigurability can preserve data easily in-vehicle and mitigate other safety and 
security risks associated with computing hardware service during the lifecycle of a vehicle.  

Low Volumes: The relatively modest volume for early AV market introduction may pose another 
challenge for the cost-effective chip manufacturing process. A high priority for any R&D in 
materials, devices, and circuits is to remain compatible with current semiconductor foundry 
processes to leverage the existing semiconductor manufacturing infrastructure. This nonetheless 
leaves room for innovation. Technology development to enable compatibility with prevailing 
manufacturing technologies will be especially important for Thrusts 2 and 3. 

Safety and Predictable Degradation: Safety is the number one filter any AV technology must pass 
through to find its way onto an AV. Safety encompasses functional safety, availability, reliability, 
performance, and predictable degradation, and thus overlaps with some of the other issues 
outlined above. While R&D has to focus on improving reliability in harsh environments, it is 
equally important to understand chip lifetime, and when performance and reliability will begin to 



 

18 
 

falter. Especially in AV applications, such a prediction becomes important because a potentially 
failing hardware being deployed on the roads could pose a public danger. In addition, software 
quality engineering and the system resilience to software faults will be an important R&D area. 

Privacy: AVs are likely to eventually be immersed in a matrix of highly interconnected computing 
nodes, which may include neighboring AVs, data centers, live traffic monitoring stations, weather 
stations, logistics and fleet control, etc. In such a highly interconnected environment, there will 
be significant sharing of data, which makes privacy of prime importance. Computing chips 
designed for AV applications will need to incorporate hardware or circuits that are dedicated to 
maintaining data integrity, for instance, via encryption.  

Taking into consideration the above issues, some of the identified TA-I (Chips: Materials, Device, 
and Circuits) R&D challenges are: 

1. Discovering new, or improved, materials and processing techniques for increased 
thermal/mechanical/radiation robustness for automotive environments for the life of 
a vehicle (~15 years). 

2. Developing low latency and low power (< 300 W) on-board computing circuits, such as 
“in-memory” computing hardware, where memory and logic/computing are integrated. 

3. Creating computing devices and circuits that offer reconfigurability (e.g., in response to 
a new algorithm or learning from road conditions). 

4. Integration of novel materials, devices, and circuits into existing manufacturing 
technologies and tools. 

 New or Improved Materials and Processing for Increased Thermal/ 
Mechanical/Radiation Robustness  

With computation needing to be placed on the AV itself, there arise significant challenges in the 
robustness needed for the chip technology. This includes chip survivability in thermally cycling 
conditions (constantly changing hot and cold environments), shock resistance, and stability under 
cosmic ray bombardment during high-altitude driving. These are all challenging environmental 
concerns needing to be solved in the near-term if AVs are to enjoy widespread deployment.  
Although there are already many semiconductor components in current vehicles, what is novel 
in the AV application is having to meet more severe SWaP constraints while also operating safely 
in the harshest terrestrial conditions in mass-produced retail vehicles.   

Potential research in this area includes failure points and interconnects. Failure points typically 
are found at interfaces, so increased robustness is required to thermal/mechanical/radiation 
stress. This could be addressed through new treatments and materials, particularly those 
compatible with existing processes. For interconnects, new and/or augmented interconnects are 
needed for the automotive environment (e.g., integrated circuit (IC) wiring, packaging 
interposers, and heterogeneous integration technologies). 

 Low Latency and Low Power Devices and Circuits  

Potential research areas within this R&D Challenge area include enabling non-von Neumann 
architectures (removing the separation between data storage and compute), which can lead to 
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significant energy and latency savings by minimizing on-chip data movement that dominates 
these metrics. It is also important to develop memory technologies (Flash, ferroelectric-based, 
resistive-based etc.) that are especially automotive-compatible (e.g., ability to withstand harsh 
temperature swings and weather). Development of low power/energy circuits must also consider 
the harsh environmental changes mentioned above, which lead to issues with drift, instabilities, 
variabilities and drops in precision. Analog circuits and asynchronous event-driven circuits 
deserve special attention owing to their promise of low power and latency. 

 New Computing Circuits and Devices for Reconfigurability and High Performance  

In the immediate future, development of low-cost, high-speed Field Programmable Gate Arrays 
(FPGAs) is necessary to enable reconfigurability. Material-, device-, and circuit-level research to 
achieve such high-performance FPGAs are worth the investment. Furthermore, devices and 
circuits for Coarse-Grained Reconfigurable Architectures (CGRA) deserve attention since CGRAs 
hold promise for supporting a variety of autonomous driving applications. Hardware 
reconfigurability is important, as the hardware needs to be compatible with advanced and 
developing algorithms (e.g., computer vision) and efficient computing models (e.g., cellular 
networks) that can enable software-level generality while maintaining the best possible 
performance of the underlying hardware. Hardware compatibility with brain-inspired or 
neuromorphic computing approaches will help promote reconfigurability, quick learning and low 
computational energy.  

 Integration of Novel Materials, Devices, and Circuits into Existing Manufacturing 
Technologies and Tools. 

Improving energy-efficiency in computing is of interest across all industries, and longer-term R&D 
is needed as efficiency improvements through scaling down transistors are decreasingly 
effective. Thus, there is interest in new materials, devices, and circuits for “beyond Moore” and 
“beyond CMOS” technologies.  Such approaches explore alternative technologies such as Tunnel 
FETs (TFETs), negative capacitance FETs (NC-FETs) or carbon-based alternatives, for example. 
Also promising are new materials, devices, and circuits that enable more efficient architectures 
beyond the von Neumann layout.  This includes the development of non-volatile memory 
technologies that can increase memory densities. Examples include Resistive Random Access 
Memory (ReRAM), Ferroelectric RAM (FeRAM), Phase-change memory (PCM) and related 
technologies.  Importantly, such novel devices allow the coupling of stored data with compute 
operations, enabling in-memory or near-memory computing circuits and architectures to be 
developed.  These architectures can address many of the specific machine vision, signal 
processing, and real-time decision-making compute challenges in autonomous vehicles.  

Figure 4 lists the TA-I R&D problems in a simplified 2-axis format to convey the timing (near-term, 
long-term) associated with solving these R&D problems, and likely impact (high impact, very high 
impact) of the solutions on realizing widespread highly automated AVs.  This format is admittedly 
simplistic in that is does not capture all the dimensions of the AV problem, such as investment 
costs, impact on other industries and risk, just to name several. For these 2-axis plots, “Near 
Term” investment means in the timeframe 2025 – 2030; “Longer Term” investment means in the 
timeframe 2030 – 2035.  The impact scale is somewhat subjective.  “High Impact” conveys very 
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important R&D that is needed for AV development.  “Very High Impact” conveys R&D that can 
substantially change the direction of AV technical development.  

 
Figure 4.  R&D Challenges for TA-I - Chips: Materials, Devices, and Circuits. 

4.2. Technical Area II: Chips: Architecture, Safety, and Security 

TA-II focuses on the computer architecture for energy-efficient AV computation, with emphasis 
on safety and security while limiting total power to 300 W. The computational throughput needed 
for highly automated driving and the technology needed to compute with high energy efficiency 
begins with the chip. However, the chips that enable AV are the physical instantiation of a system 
based around an architecture that provides not only a structure but also an anchor point for 
software and for communication within and outside the system itself. In addition, this 
architecture needs to meet energy consumption, performance, and in-vehicle footprint/weight 
constraints while also supporting safety and security. 

We assume that the vast majority (and all safety-critical) of the required computational 
technology resides on the vehicle and consider in TA-II the many aspects of the computer 
architecture that touch on AV operation, including data throughput, memory and the security of 
the computational activity during vehicle operation. A key computing problem is handling the 
tasks of “computer vision” and “machine learning,” which despite the terminology is a different 
way of “seeing” from human vision.  
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Passenger and pedestrian safety are paramount, and computation for AV requires a high degree 
of certainty on calculational results, an area known as functional safety for digital logic. Societal 
safety is also involved in a broad way, and questions of system security naturally arise.  

The R&D challenges identified in TA-II follow. 

1. Exploring the optimized use of distributed, heterogeneous multiprocessor systems (such 
as CPUs, GPUs, and neural accelerators) to support the algorithms needed for EECAV. 

2. Determining the type of on-board network/interconnect strategies that optimizes 
computational energy efficiency. 

3. Developing improved memory (addressable and storage) and bandwidth in support of 
AV and determining where these are located within the system.  

4. Identifying when (and if) computational “demand” starts to require consideration of 
“off-vehicle” computation. 

 Distributed, Heterogenous Multiprocessor System Architectures to Support 
EECAV Algorithms  

Future AVs will require distributed computing systems consisting of smart sensors that process 
incoming data locally as well as centralized vehicle computers which perform data fusion, 
perception and navigation. These systems will be needed to support advanced autonomy 
algorithms for AVs, and will connect a range of different computing processors, including CPUs, 
GPUs, NPUs, and other special purpose accelerators. Research is needed to better define, 
develop, and optimize these heterogeneous system architectures, while meeting all of the AV 
system constraints. The key constraints that must be considered follow. 

1. Chip-level functional safety cannot be compromised or downgraded.  

2. High performance and throughput must be obtained while meeting the computing 
system power ceiling of about 300W, which creates a requirement for high energy 
efficiency.  

3. The computing system must meet automotive reliability, robustness, resilience, and fault 
tolerance requirements. Furthermore, due to the complexity of these computing systems, 
the security implications and possible new vulnerabilities must be understood and, where 
possible, mitigated. 

4. Reprogrammability, upgradeability, reusability across multiple vehicles is desired.  

These constraints are important not just for the processing system, but also for communication 
networks and memory systems, as discussed below. 

 Network and Interconnectivity Architecture for Energy-Efficient AVs  

As described in Section 4.2.1, new architectures will be defined to connect heterogenous 
processors. As such, it will be necessary to define the networks that will connect these chips. 
Research is needed to understand the bandwidth and latency requirements both at the chip-to-
chip level and from the car to the infrastructure, as well as protocols that might meet those 
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requirements. We must understand both where existing protocols can be leveraged, and where 
there are gaps that will require new communication protocols to be implemented.  

The communication network must satisfy automotive constraints. First, functional safety of the 
system cannot be compromised by the interconnection network. In defining new connectivity, 
we must understand the possible failure modes, and consider when the system must fail safe 
versus fail operationally. Furthermore, the communications cannot weaken the reliability or fault 
tolerance of the entire system. Finally, new communication protocols and network architectures 
may introduce new security concerns. These must be identified and paths to mitigation should 
be found.  

 Defining Memory and Storage Needs for AVs 

With the new heterogeneous computing multiprocessor architectures discussed above, memory 
needs will change and bandwidth and latency both need to improve to support new processing 
requirements. More memory and storage will certainly be needed to support new algorithms 
such as deep neural networks, but exactly where in the system the memory will physically reside 
needs to be investigated. Furthermore, questions such as the requirement of coherence across 
parts of the system should be understood, as these decisions directly affect computing and 
network architectures, and require these three elements to be defined holistically.  

New, higher performance memory technologies may be required to meet these new memory 
and latency requirements, such as High Bandwidth Memory and emerging Storage Class Memory 
solutions. Approaches such as compute in- or near-memory and non-Von Neumann approaches 
are also promising methods to achieve high efficiency computing by greatly reducing data 
movement. These techniques should be considered and their fit in the overall heterogeneous 
architecture should be explored. Again, as with the previous two research areas, functional 
safety, reliability, and security implications of these new memory technologies must be 
considered.  

 Identifying When (and if) Computational “Demand” Starts to Require Consideration 
of “Off-vehicle” Computation 

As described previously in Scope (Section 3.1), the Roadmap Team decided that having all of the 
computational capacity residing on the vehicle established a boundary condition for this work.  
However, it would be important to understand when significant “off-vehicle” computation would 
be necessary.  Other transportation systems (e.g., air and rail) operate with centralized control 
points rather than as a collection of independent autonomous objects. These centralized systems 
require significantly less compute than decentralized systems but come with a corresponding loss 
of autonomy – airplanes only take off when air traffic control says they can, while cars are free 
to travel unless told they can’t, by a stoplight for example. In addition to the existing cultural and 
infrastructure expectations of individual vehicle autonomy, an autonomous vehicle that requires 
connection to the outside world to operate has functional and security failure points that a 
vehicle with optional connectivity does not have, and likely would not be compatible with human-
driven cars. As a result, mandated connectivity and centralized control are unlikely in the first 
generations of autonomous vehicles. However, autonomous driving is known to have “long tail” 
properties, which may make offloading some rare and challenging operations better than 
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attempting to perform them on-vehicle, especially if other vehicles can supply their data about 
the same situation (“is that a tire on a dark road, or a bump in the pavement?"). Some complex 
situations (e.g., intersections of high-volume high-speed routes) or safety challenges (dense fog 
on a freeway) may have more efficient solutions where local infrastructure and information from 
other vehicles contributes to the decision-making process. Identifying such situations and 
determining the likelihood that they will result in a significant amount of off-vehicle computation, 
along with an expected timeline, is an important research consideration.  

Figure 5 lists these TA-II R&D problems to convey the required timing and likely impact of solving 
these technical problems.  

 
Figure 5. R&D challenges for TA-II - Architecture, Safety, and Security.  

4.3. Technical Area III: Algorithms and Data Management 

Technical Area III (TA-III) identifies algorithmic and software challenges that, if solved, would lead 
to reduced computational demand and greater functionality via more optimal analysis of data 
from cameras, light-detection and ranging (LiDAR) systems, as well as other sensor data sources. 
Energy-efficient computation is supported by appropriate chips and architectures. However, 
improved algorithms and data management can reduce computational demand and provide new 
functionality, often without reducing decision quality, thus improving energy consumption, 
inference accuracy, throughput, reliability, and security. 

From the perspective of algorithms, highly automated vehicles operate by iterative processes in 
which data are sensed, transformed using signal processing, possibly compressed, and ultimately 
used for inference to support navigational and other decisions, enacted via actuation and logged 
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for compliance. The types of algorithms and data management approaches used impact all stages 
of these processes. Moreover, algorithms impose requirements on other technical areas, e.g., 
computer architecture and the types of sensors used. They also determine the functionality and 
performance levels possible.  

We seek to determine which algorithm and data management R&D areas are most important to 
enable safe, secure, and economically successful deployment of highly automated vehicles. The 
interplay of software and hardware requires co-design because estimating chip performance 
(e.g., multiply-accumulate (MAC) throughput and energy consumption) requires knowledge of 
algorithms and, vice versa, estimating algorithm performance (e.g., latency, inference 
throughput and accuracy) requires knowledge of chip hardware.  

The R&D challenges for TA-III follow.  

1. Efficiency Optimization: for example, sparse sampling/processing of only important 
data, which may benefit from sensor fusion and near-sensor signal processing or by 
improving the algorithms for tasks on latency and energy consumption critical paths, 
such as dynamic object detection. 

 
2. Co-Optimizing Algorithms and Implementation Platforms: this includes developing 

fault-tolerant machine learning techniques. 
 

3. Data and Training: for example, methods to determine accuracy, such as testing with 
carefully selected validation data, potentially during on-line learning. 

 
4. Managing Data Retention and Locations:  design decisions will be subject to 

performance, memory, communication, privacy, and legal constraints.   

 Efficiency Optimization 

Many of the successes of recent deep learning approaches result from using grossly over-
parameterized systems to support generalization by learning the properties of large datasets. 
This approach is generally computationally intensive, with the training and inference costs of 
state-of-the-art networks increasing over time. There has been some attention paid to efficiency 
as a first-order design concern in recent years, with work generally focusing on reducing the 
number of parameters or MAC operations. However, even efficient ML techniques often remain 
computationally intensive or sacrifice accuracy. We believe that substantial efficiency 
improvements remain to be realized via algorithmic improvements including carefully 
determined spatial and temporal sampling distributions, improvements in network design going 
beyond adjustments in layer and neuron counts and better understanding of the relationships 
between specific training samples and their influence on learned parameters. 

Efficiency enhancements can be applied at several stages of the design process, including initial 
design, post-hoc modifications, and deployment mappings. Automated Machine Learning 
(AutoML) and Neural Architecture Search (NAS) use ML techniques to define new algorithms. 
These methods represent a new and growing sub-field with the promise of finding new, efficient 
neural network approaches, but models will need to be optimized with awareness of 
architectural constraints. Distillation (teaching an efficient algorithm to mimic a more resource-
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intensive algorithm) and pruning/compression (removing or reducing the sizes of parameters or 
activations in a network) work to reduce computational demand without undermining accuracy. 
Lastly, as algorithms are mapped onto a particular hardware target, appropriate bit-precision and 
effective floating-point-to-fixed-point mappings can help to achieve compact, high-performance 
designs. 

The ML techniques for perception, data-fusion, planning and control have shown great promise 
in achieving intelligent behavior. However, due to their “black-box” nature, they often have to 
go through a safety verification process. This process can be computationally expensive (as it 
needs to search over possible risks) but must be performed under strict latency constraints. 

In a V2X framework, there are additional, unique challenges. Decentralized learning and 
federated learning will require improvements both in algorithmic performance and energy 
efficiency.  Current methods for maintaining privacy, like Fully Homomorphic Encryption (FHE), 
are computationally expensive and would require considerable improvement for widespread 
adoption in AV applications. 
We believe that the above methods warrant further R&D and are likely candidates for producing 
lean AI algorithms. However, other potentially promising directions have been omitted for 
brevity. The field is moving quickly; many of the efficiency enhancing ideas used for AV in the 
coming decade have yet to be discovered. 

 Co-Optimizing Algorithms and Implementation Platforms  

AVs will require advances in both algorithms and the computational substrates supporting them. 
The majority of the computational load may be handled by Deep Learning AI algorithms, including 
convolutional neural networks, recurrent neural networks, multi-layer perceptrons, and their 
derivatives. These algorithms are well-suited for video, RADAR, and LiDAR processing necessary 
for vehicle perception. Advancements in convolutional neural networks such as capsule networks 
and attention-based approaches (e.g., transformers and squeeze-and-excitation networks) will 
likely foster necessary developments in capability, and recent advances in multi-layer 
perceptrons render them competitive, especially when efficiency is of primary importance. 

Demands on computational substrates and advances in devices and circuits may require 
architectural changes. Both classical and convolutional neural networks and many other classes 
of ML techniques require numerous matrix-vector multiplies and thus MAC operations. However, 
newer methods are benefiting from other operations as well, such as matrix-matrix multiplication 
and table lookups. Additionally, Hidden Markov Models will also be important as these are often 
used for downstream processing, such as dynamic object detection and modeling.   

Given the diversity of workloads and the need to accommodate future, currently unknown, 
workloads, counting MAC operations does not adequately determine architectural requirements. 
Memory access and communication properties are important, and caching may not solve 
memory latency problems. A key problem for many ML techniques is the need to rapidly access 
a very wide range of often unpredictable memory locations. AV systems should be evaluated 
based on their first-order optimization objectives: inference or learning latency, not best-case 
MAC throughput; average system power consumption for realistic workloads considering the use 
of power management states, not peak processor power consumption (except for power delivery 
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network design); and accuracy properly defined to account for the consequences of errors. The 
co-design of algorithms with hardware will be critical for success. 

 Data and Training  

The character of training data is critical for AI systems. However, AV training faces special 
requirements for safety and trust. It is impractical (likely impossible) to capture all real-world 
traffic dynamics in a static dataset or simulator. Furthermore, environmental effects, wear, and 
age may affect deployed sensors and processors. Understanding the role and implications of 
training approaches and training data selection and augmentation are critical for successful AVs.   

We will need methods for quantifying uncertainty in vehicle perception and estimating the 
completeness of training data. Bayesian methods, including stochastic or Bayesian neural 
networks, may help estimate epistemic uncertainty. Additionally, advances in computational 
learning theory may help inform when algorithms need to be retrained or updated, e.g., due to 
a training dataset distribution that no longer matches the current data distribution. Data will 
often not be independent and identically distributed. Online learning methods may help alleviate 
an initial data requirement by being able to learn “on the fly.” However, online learning methods 
introduce greater challenges for safety, assuredness, and validation. It is currently unknown how 
to measure lost performance due to neglecting on-line/continuous learning. Computational 
learning theory may also be able to address this concern. 

AVs may be able to capture data useful for updating AI models, particularly if the AV encounters 
unlikely “edge cases.” However, in such scenarios, data privacy must be considered, and both 
technical and legal challenges exist. Given the challenges of obtaining representative datasets, 
simulation will play a role in training AV AI systems. Additionally, methods such as surrogate tasks 
and contrastive learning may help improve generalization, both from dataset to deployment and 
from simulation to the real-world. 

 Managing Data Retention and Locations Distributed Algorithms and Data  

Near-sensor signal processing to transform and compress data may be needed and will influence 
algorithm design. It may be possible to eliminate standard signal processing stages and hardware 
components, feeding raw data into ML algorithms. Covariance shift (mismatches between ML 
testing and training data) resulting from changes to a signal processing pipeline may reduce 
accuracy in these cases. While some methods exist to address this challenge, it is not fully solved, 
particularly for the assured or trusted operation needed in CAVs. Sensor fusion will help to 
identify unimportant data. Data compression and compressive sensing (and variants in which 
inference accuracy, not reconstruction accuracy is optimized) will also be valuable. However, 
near-sensor signal processing and inference must avoid undermining system-level sensor fusion 
techniques. 

When data and computational resources are distributed (as in the case of distributed algorithms), 
this introduces research challenges, especially in the case of AV tasks with hard real-time 
deadlines.  It is very likely that algorithms earlier in the processing chain will be deep learning 
based (such as vehicle perception) whereas later algorithms may be rule-based, or at least 
amenable to analyzing and understanding the decision-making logic. This delineation is partly 
due to computational cost and task complexity and partly due to explainability requirements. 
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This chain of processes complicates meeting real-time requirements. For example, dynamic 
object detection is computationally intensive and generally starts after the perception stage is 
finished. Many of today’s tools for estimating worst-case latencies are pessimistic and would 
benefit from optimization.   

Determining which data should be retained, in what form, and where will be a research challenge, 
as there will be conflicting objectives including efficiency, latency, accuracy, privacy, storage cost, 
and security. 

The R&D challenges for TA-III are shown in Figure 6 with their impact and timing indicated. 

 
Figure 6. R&D Challenges for TA-III - Algorithm and Data Management  

4.4. Technical Area IV: Sensors Data Interface 

Technical Area IV (TA-IV) is concerned with the links from the external physical world to AV 
computers, and among physically distributed computers in a vehicle. The computational 
requirements are intimately connected to the nature of the sensors and their interfaces. 

The data networks and computers used for automated driving are generally adapted from data 
centers where best-effort performance and uniform bandwidth support an ever-changing 
workload. However, AV workloads bear little resemblance to a data center workload due to fail-
operational requirements and real-time requirements. The 15+ year service life of AVs means 
diagnostic tools and replacement parts must have a high degree of backward compatibility. 

Sensor data dominates the workload in an AV system, and the data may be processed locally 
inside the sensor as well as duplicated to several destinations to distribute the processing work. 
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Sensors themselves receive very little data, so those interconnects can be asymmetric. Indeed, a 
case can be made for several kinds of interconnects in-vehicle: controller area network (CAN) for 
low bandwidth latency sensitive sensors and actuators (e.g., wheel rotation sensor or brake 
actuator), Ethernet or Peripheral Component Interconnect express (PCIe) for mixed criticality 
systems, and point-to-point serializer/deserializer (SerDes) for asymmetric high bandwidth 
sensors (e.g., cameras). 

Topics that were examined included how “smart” sensors influence interconnects, fragmentation 
of the programming model, and generally how sensors and computers may be connected in-
vehicle. 

The R&D challenges for TA-IV follow. 

1. Evaluating tradeoffs between smart sensors and central computing.  

2. Data versus task migration for dynamic power management. 

3. Exploiting asymmetric bandwidth utilization of networks to improve energy efficiency. 

4. Determining the R&D needed to anticipate advances in sensors and computers over a 
long (~15 year) vehicle lifespan to maintain forward and backward capability. 

 Tradeoffs Between Smart Sensors and Central Computing: How Smart Should a 
Sensor Be? 

The decreasing cost of computational capabilities means sensors that historically included only a 
detector now often include some amount of computing capability as well. The tradeoffs and long-
term implications of in-sensor processing are multi-dimensional and not constrained to the 
sensor. For example, data bottlenecks arising from insufficient network bandwidth can be 
remedied by performing data reduction in the sensor, but the in-sensor data reduction might 
limit what algorithms can be applied. Distributed processing may add overhead, component cost, 
or complexity not present with central processing, but it may facilitate functional safety by 
replicating data and computations for fail-operational resiliency. Thus, the additional costs are 
offset by the savings of not implementing functional safety separately. 

This is a high priority for research funding support. Making sensors "smarter" implies moving 
computation close to the sensor, with many implications for the required computational and 
energy efficiency. For example, if data processing at the sensor produces a reduction of the data 
(e.g., converting an 8 MB image to a 400 B object list), significant energy and cost benefits may 
be had by replacing a high bandwidth interconnect between the sensor and processor with 
reduced-bandwidth, inexpensive, energy-efficient interconnect. Examining how to do this could 
have a big impact on energy demands and the needed energy efficiency. 

In addition, current approaches to functional safety require redundancy. The distributed nature 
of smart sensors may help support functional safety requirements more efficiently than fully 
redundant modules. The extent to which this is possible needs research. 

 Data versus Task Migration for Dynamic Power Management  

Distributed and heterogeneous systems offer choices about where computation is performed 
and data are stored: data can be moved from storage to where a process is executing, or the 
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process can move to execute near to where the data are stored. Tradeoffs include the processor 
types, energy and time costs for moving data and tasks, bandwidth consumed, types and amount 
of memory, etc. 

Dynamic task migration capabilities can also be used to implement functional safety, such as 
moving work and/or data from a failed unit to another device.  Potential synergies may blur the 
line between load balancing and fail-operational safety without adding complexity. 

 Exploiting Asymmetric Bandwidth Utilization of Networks to Improve Energy 
Efficiency  

Network technologies typically provide symmetric transmit and receive bandwidth, a reasonable 
design when the use case for the network is not known in advance or the topology changes over 
time.  However, in-vehicle computing systems have the benefit of changing slowly, if ever, and 
have well-defined use cases that change little over time. Specifically, high resolution cameras 
primarily send data and only need to receive control commands – bandwidth utilization may 
differ by six orders of magnitude or more between transmit and receive, creating the opportunity 
for significant savings by making the network asymmetric. Likewise, a wheel rotation sensor 
produces data but does not consume it, meaning it is over-provisioned with respect to received 
bandwidth. 

Possible approaches may include physically distinct transmit and receive interfaces operating at 
different speeds or building upon existing low-power mode when there is no activity, dynamically 
shutting down an idle link as opposed to provisioning a smaller network. 

 Advancements in Sensors and Computers over a Long (~15 year) Vehicle Lifespan 
to Maintain Forward and Backward Compatibility 

Despite best efforts to maintain compatibility of software and hardware over time, the rapid rate 
of innovation means compatibility is often broken before the device itself breaks. Over the 15+ 
year lifespan of a vehicle, technology will evolve so that replacement components may be much 
more capable and different in nature than the devices they replace, changing the economics of 
dynamic load balancing.  Research is needed to develop best practices for future-proofing 
sensors, computers, and their interconnects. 

Security concerns which are difficult to predict may also limit backward compatibility or prevent 
upgrades.   

The R&D challenges for TA-IV are shown in Figure 7 with their impact and timing indicated. 



 

30 
 

 
Figure 7. R&D Challenges for TA-IV - Sensors Data Interface   

5. DIFFICULTIES IN QUANTIFYING COMPUTING PERFORMANCE 
IMPROVEMENT FOR FUTURE AV 

While R&D problems are identified in the four technical areas, we have not specified 
quantitatively how much improvement is needed in any given technical area. Although we have 
set a limit for the total power budget of 300 W for onboard computing, we have not stated what 
the computational capacity target would be within this power budget to enable AV operation in 
2035-2045 timeline, nor have we stated the needed computational energy efficiency 
improvement over the current commercial silicon CMOS technology.  The Roadmap Team spent 
considerable time pondering this difficulty of specifying even in a semi-quantitative sense the 
needed levels of improvement across the four Technical Areas.  The sources of the difficulty are 
at least two-fold.  First, it is hard to define “what the AV is doing”, and hence difficult to specify 
the amount of computation ultimately needed to support the AV capability. Second, there is 
uncertainty about how to best characterize (or measure) AV computational capacity and energy 
efficiency, and as a result, it is difficult to quantify the performance target.   

Regarding the first problem, “what the AV is doing”, meaningful definition of AV operational 
capability presents a significant challenge. The Society of Automotive Engineers (SAE) has defined 
Levels of Automation on a scale of 0 to 5, where Level 0 is a traditional, unautomated vehicle, 
and Level 5 represents ideal (full) automation, operating without human driver intervention in all 
situations.9 While these Levels provide a useful high-level description of the types of AVs that 

 
9 https://www.sae.org/blog/sae-j3016-update 
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could exist, it fails to define the specific tasks or what exactly the AVs will be doing at different 
levels, which clearly will drive the needed computational capacity and power requirements. 
There needs to be developed a method for stating in a technically sound way what the targeted 
AV operational level is and what the assumptions are for the prevailing ODD in order to connect 
computational capacity and efficiency to “what the AV is doing.” 

The second problem involves the key performance metrics with regard to on board computing 
performance and energy efficiency. In order to be able to quantify the computing performance 
for future AVs that is associated with a (hopefully understood)  AV capability, we will need to 
define commonly acceptable metrics to measure energy efficiency for different computing 
techniques. The computing hardware community typically benchmarks the energy efficiency of 
a processor, such as a CPU, GPU, FGPA, or special purpose accelerator using operations per 
second per watt (OPS/W, often in tera operation per second per watt, or TOPS/W). The 
numerator, operations per second, is a computing performance metric and OPS/W specifies the 
performance possible with a given power. While this is a useful benchmark, the result varies 
significantly for different tasks that the processor is being used for. Hence, in order for TOPS/W 
to be useful, a comparison must be made across hardware running the same algorithm, at the 
same fidelity, accomplishing the same task. Factors which affect TOPS/W include the algorithm, 
architecture, and precision of the operation.   

In the case of comparing more diverse hardware, which can use different fundamental 
operations, it is possible to use a higher-level metric, such as inferences per second per watt. 
Rather than the lower level mathematical operation, we are now comparing the energy to 
complete an entire task (such as recognizing an image), regardless of the algorithm and 
architecture. This enables us to evaluate the efficiency of different approaches such as spiking 
and non-spiking neural systems that are designed to accomplish the same task.  

Performance per watt is another possible method to benchmark various individual processors of 
an AV computing sub-system. However, the overall power required by the AV’s computer is going 
to be the sum from each processor performing its own disparate tasks. It is perhaps possible that 
an efficiency can be given as an average performance per watt for this collective. However, given 
the range of processor hardware systems within an AV, it is not clear that the performance per 
watt average is a truly meaningful metric. Rather, it perhaps is most relevant to benchmark the 
power required for the AV to achieve a certain level of automation.   

Perhaps a more specific, relevant metric is the number of miles per “disengagement” or collision 
of an AV.  A disengagement is a situation where the human driver must take control of the vehicle 
for various reasons which range in severity, up to the point of avoiding an accident. SAE Level 5 
implies that the AV never disengages or needs human intervention (i.e., there is no steering 
wheel in the AV) in any ODD, which may be difficult to ever fully achieve or verify. Perhaps a more 
achievable scenario might be that the AV can navigate surface streets, freeways, driveways, and 
parking in a metro area in a range of weathers, with 10-100 million miles between required 
disengagements. Miles per reportable disengagement have been improving for major 
manufacturers each year.10 A reportable disengagement meeting specified conditions requires 

 
10 https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/disengagement-reports/ 
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reporting to the California Department of Motor Vehicles, which maintains a record of these 
occurrences. While miles per disengagement may be a reasonable metric to track progress in the 
AV capabilities, it is challenging to model the miles per disengagement as a function of computing 
capability or efficiency. In order to better understand the relationship between miles per 
disengagement and computing power performance, both components will need to be broken 
down into fine granularity to create detailed models. Such models would improve understanding 
how the computing resources, algorithms, and environmental factors influence the 
disengagements.  

In summary, more work is needed in order to specify the needed R&D progress in the four 
technical areas on more a quantitative scale. 

6. SUMMARY 
We report here a Roadmap Outline that identifies in a technically unbiased way the R&D 
challenges that must be overcome for the realization of highly automated driving in retail vehicles 
with low power consumption and high computational performance. The purposes of the high-
level Roadmap Outline are twofold: to provide guidance on future public and private funding in 
this arena, and to stimulate a more detailed R&D Roadmap as an important next step in 
developing safe and reliable AV systems. 

The identified R&D problems were developed under the assumption that the computational 
capacity for all latency- and safety-critical tasks resides on the vehicle, and that the “all-in” total 
electrical power devoted to computation would be 300 W for a commercially viable vehicle. We 
developed and considered three inter-related 10-year timelines for the AV problem: an R&D 
Timeline extending from 2025-2035, a Chip Commercialization Timeline from 2030-2040, and an 
OEM Implementation Timeline from 2035-2045. Within this AV technology development 
landscape, four technical areas (TAs) were identified for R&D investment:  I. Chips: Materials, 
Device and Circuits; II. Chips: Architecture, Safety and Security; III. Algorithms and Data 
Management and IV. Sensors Data Interface.  

Specific R&D problems were identified within each technical area, with assessments given for 
their timing, impact and how the problems relate to each other. In TA-I (Chips: Materials, Device 
and Circuits), it was found that discovery in new chip materials is needed to meet the very 
demanding thermal and mechanical environment of vehicle, with the materials processes capable 
of being integrated into the existing manufacturing technologies. The AV application demands 
significant reductions in chip latency and power consumption, with the long vehicle life 
demanding reconfigurability of the computing circuits. In TA-II (Chips: Architecture, Safety and 
Security), R&D is needed to explore the optimized use of distributed, heterogeneous 
multiprocessor systems to support AV algorithms, and to determine the types of on-board 
network/interconnect strategies that optimize computational energy efficiency. Furthermore, 
improving on-board memory and bandwidth will be critical for AV, and identifying when (if) 
computational “demand” will require moving some of the computation “off-vehicle.” Safety 
needs to be developed in all systems early in the R&D development. For TA-III (Algorithms and 
Data Management), the R&D opportunities centered on improving the algorithmic efficiency 
“writ-large,” for example, determining compact subsets of important data enabling efficient and 
accurate decision making, co-optimizing algorithms and implementation platforms to improve 
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fault tolerance performance, understanding how the algorithms can be trained to improve 
inference accuracy, and producing algorithms that optimize data motion and retention. Finally, in 
TA-IV R&D topics were identified to answer key questions such as how computation needs to be 
distributed among smart sensors and a central computer, along with R&D that improves the 
lifespan, composability and functional safety of the computer-sensors system. It is important that 
R&D be conducted on how the sensor-computer system can be made forward and backward 
compatible for the long (~15 years) life of the vehicle. 

Unlike the computing requirements for personal computers, data centers, and high performance 
computer applications, computing for the AV application poses the following unique challenges: 
a demanding operating environment, safety and security criticality, and a large impact on society 
and long-term deployment (~15 years) in a retail vehicle. Since many of these AV issues are inter-
related, the R&D activities within these four technical areas need to be co-designed and 
conducted in a holistic way to successfully meet the stiff technical challenge of developing energy 
efficiency computing that enables highly automated vehicles. To put computing performance 
improvement on a quantitative scale, more work is needed to better define “what the AV is 
doing”, understand quantitatively how improvements in all four technical areas affect one 
another, and converge on a commonly acceptable metrics to benchmark the AV computational 
capacity and energy efficiency. Overall, there is urgency to develop the full roadmap of advanced 
computing for automated vehicles if the timelines set forth in this Roadmap Outline are to be 
realized. 
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