

Wind Turbine Flap Technology Development

- from laboratory to full scale

H Aa Madsen

hama@dtu.dk

In cooperation with

DTU Wind EnergyDepartment of Wind Energy

Flap or morphing airfoil

Morphing trailing edge counteract disturbances from turbulent inflow

Flaps add a third control option to the traditional rotor speed and pitch control

Wind Turbine control

- □ Rotor speed
 - o aero loading $f_{rs}(r) \approx (r \Omega)^2$
- ☐ Pitch
 - o aero loading $f_p(r) \approx k p_{ang}$
- ☐ Flap
 - o aero loading $f_{fl}(r) \approx k_{fl} fl_{ang}(r)$

2

Ideally flap control can be very efficient and counteract most of the inflow disturbances

Measure relative velocity and inflow angle (unsteady)

Normal force loading: $F_N = \frac{1}{2} \rho V_r^2 C_N(\alpha) c$

$$f_c = K_{\alpha} \left(\alpha - \overline{\alpha} \right) + \left(\frac{V_r^2 - \overline{V_r^2}}{V_r^2} \right) K_{V_r}$$

where $\overline{\alpha}$ $\overline{V_r}$ are exclude band filtered from 0.1 to 1Hz and f_c is the control signal

 K_{lpha} and $K_{V_{lpha}}$ are constants determined in order to maximize load reduction

Inflow data from a five hole pitot tube

NORMAL FORCE AT RADIUS 50m -- CONTROL 0.1-1.0Hz 100 MAX. ALLEVIATION | IDEAL CONTROL alfa | IDEAL CONTROL alfa+vrel | FLAP CONTROL | FLAP CONTROL | 0 0 5 10 15 20 25 TURBULENCE INTENSITY [%]

But limitations in the real world

- □ bandwidth of the flap actuation
- amplitude limits
- non-optimal control inputs
- cost of the technology
- □ robustness

Example of a flap system used in a steady position

The negative flap deflection decreases most extreme loads and reduces blade tip deflection - SWT-4.0-130 turbine

Extreme loads									
Channel	DLC	Rel. diff. positive flap deflection [%]	DLC	Rel. diff. negative flap deflection [%]					
Tower bottom bending fore-aft	DLC13_	4.2	DLC13_	-3.1					
Tower bottom bending side-to-side	DLC62_	0.6	DLC62_	0.0					
Tower top bending fore-aft	DLC24_	-2.5	DLC24_	-0.2					
Tower top bending side-to-side	DLC24_	3.1	DLC24_	0.4					
Shaft torsion	DLC13_	1.2	DLC13_	-0.5					
Shaft thrust	DLC13_	3.2	DLC13_	-3.1					
Hub Bending	DLC13_	2.4	DLC13_	-3.1					
Blade root flap (min)	DLC13_	2.9	DLC13_	-2.7					
Blade root flap (max)	DLC62_	-1.3	DLC62_	-0.1					
Blade root edge (min)	DLC13_	-0.2	DLC24_	-1.0					
Blade root edge (max)	DLC13_	-0.2	DLC13_	-2.0					
Blade tip deflection	DLC13_	4.7	DLC13_	-6.1					

Table 1: Relative load comparison between a flap with positive and negative deflection with respect to a flap with neutral deflection

Ref. Alejandro 2018

Example of a flap system used in a dynamic control

Case:

- DTU 10MW rotor stretched 5% in radius
- Increase in AEP of 3.4%
- Flap system included to reduce the increase in loads
- 30% of the blade length, starting from the tip, with 10% chordwise length, flap angles range between -15/+15 degrees.

Ref. Barlas 2016

The flap technology

Use flap technology from aircraft?

Strong requirements from the wind turbine industry to the technology

- ☐ robust and reliable (25 years lifetime)
- no metal parts
- no electronics
- no mechanical parts
- ☐ scalable to large blade sizes (+100m)

piezzo electric actuators in

wind tunnel exp. 2007

FIGURE C.2 THE TEST SECTION WITH THE TEST STAND AND THE WAKE RAKE DOWNSTREAM OF THE

Basic flap design that full-fills these requirements

- □a flap in an elastic material
- pneumatically activated
- □ two main concepts

separate hose add/on flap

internal voids full morphing TE

The development stages

CAD version ☐ FFM simulations Design iterations – FSI based optimization □ Lab model – simplified manufacturing ☐ Lab testing – performance - fatigue ☐ Wind tunnel tests (typical leading to new design iteration) Lightning testing □ Final prototype manufacturing – co-extrusion ☐ Testing functionality and performance on an outdoor rotating test rig in atmospheric flow ☐ Full scale testing

FEM - FSI optimization

- Design variables: voids position/size
- Response: Cl, Cd, safety factor
- Optimization with Multi-Objective Genetic Algorithm (max(Cl), min(Cd), SF≥1.5

1	DX [mm]	DW [mm]	DH [mm]	delta [deg]	SF [-]	δCl [-]	δ(Cl/Cd) [%]	
FEM	7	3	9	7.9	2.9	-	- /	
FSI	6.94	2.72	8.98	6.9	3.1	0.22	-12%	

DTU

Lab models - simplified testing

Wind tunnel tests – CFD computations

Final prototype manufacturing - co-extrusion

- □ Allows designs with optimal combination of soft and stiff material
- □ Solve gluing problems with Santoprene as the surface can be covered with a layer suited for gluing

One flap system tested for lightning damage

The Santoprene flap material showed a higher withstand voltage in tracking tests than GFRP

Sketch of the rotating test rig

- Intended to close the gap between wind tunnel and full scale testing

Blade section for rotating test rig

2x1 m blade section + end caps

Blade section mounted on the 10m long boom in the workshop - instrumentation

Pressure taps in chordwise and spanwise direction

Flap testing on the rotating rig

Example of measured flap performance on the rotating rig

Flap design from the Innwind.EU project

0

ΔC _L @ 8°							
Case	+∆C _L	-ΔC _L					
CFD	+0.21	-0.25					
Wind tunnel*	+0.18	-0.24					
Rotating rig	+0.18	-0.20					

Poul La Cour wind

tunnel - DTU (!)

aoa [deg]

10

15

20

-0.5

Full-scale tests

- Testing on a multi-MW turbine in Denmark since Dec 2017
- Test and validation under real weather conditions
- Testing planned until end of 2018
- For further information: <u>http://www.induflap.dk/</u>

Conclusions

- a complete development line for flap technology from prototype to full scale has been developed in cooperation with two industrial partners
- A considerable amount of testing in wind tunnels and on a rotating rig has been conducted
- Full scale testing of first prototypes initiated and will contribute with new important information about a possible commercialization of the technology

Thank you for your attention