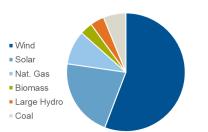
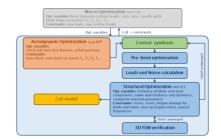
Latest Advancements in the Integrated Design of Wind Turbines

Pietro Bortolotti (#) Luca Sartori^(*), Carlo R. Sucameli^(*) and Alessandro Croce^(*) Helena Canet (+) and Carlo L. Bottasso (+) (#) National Renewable Energy Lab, CO (*) Politecnico di Milano, Italy (+) Technische Universität München, Germany 2018 Sandia Blade Workshop Overton Hotel, Lubbock, Texas, 28–30 August 2018

echnische Universität München nstitute J زلالا


My Bio

- 2007 2010 B.Sc. Energy Engineering Politecnico di Milano
- 2010 2012 M.Sc. Sustainable Energy Technology Wind Energy Track TU Delft-WMC. Thesis: "Hybrid C-GFRP for WT blades"
 - 2012 2013 Research employee at the Lightweight Structures Group DTU
- 2013 2018 Ph.D. at the Wind Energy Chair TUM
- 2018 today Postdoctoral researcher at NREL NWTC

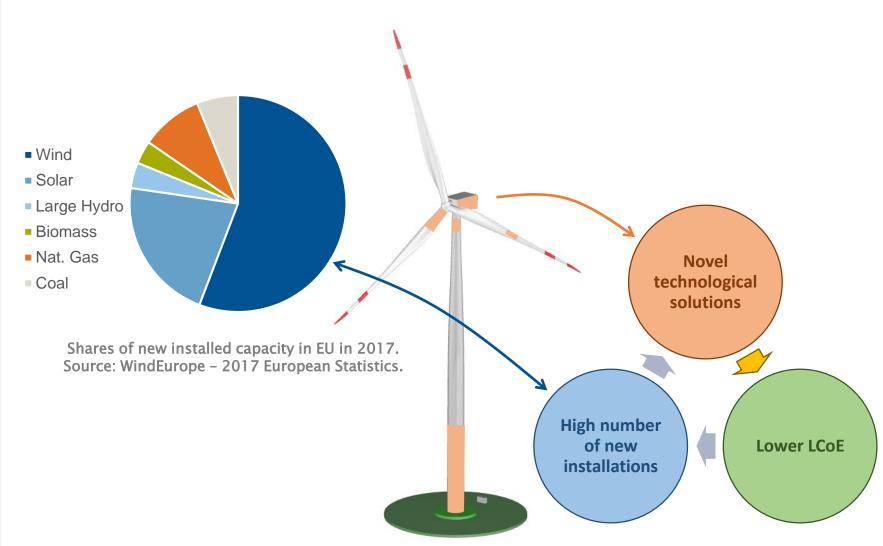

۲

Agenda

Background and motivation

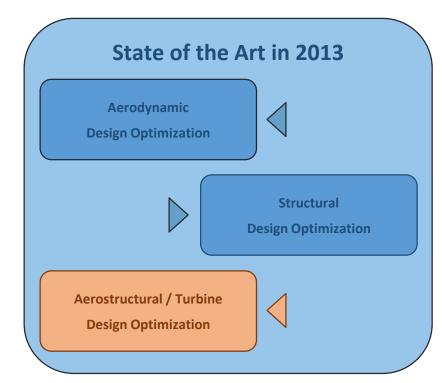
Nested multi-level optimization framework

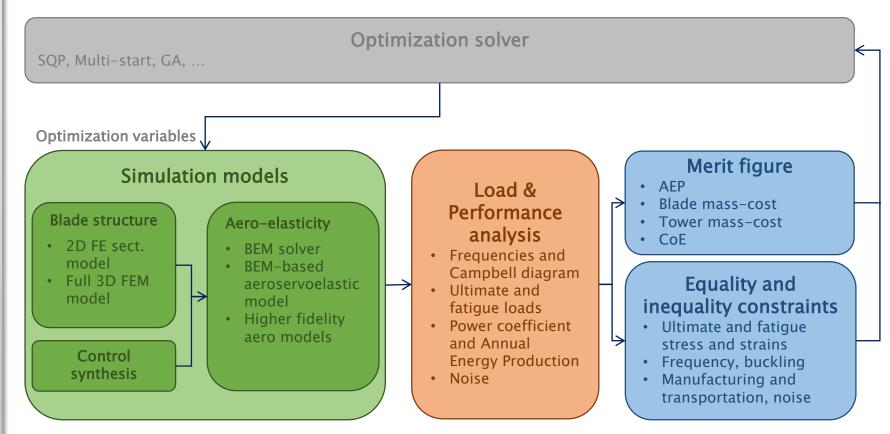
HP, CIGEP, BURDSOLL, Wind Turbines, etg. Sci., 2016;1:1–18. doi: 10.5194/wes-1-1-2016 2 CL, Bortolotti P, Croce A, Gualdoni F. Commission of Wind Turbine Rot


Applications

Other projects

Conclusions and bibliography

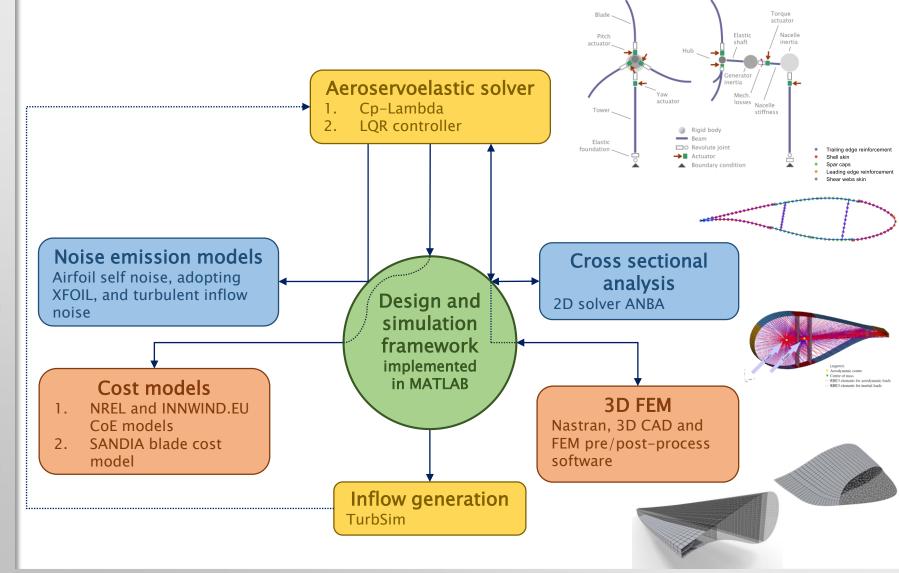

Motivation


Importance of Integrated WT Design

Wind turbines are complex systems where multiple disciplines are cross coupled

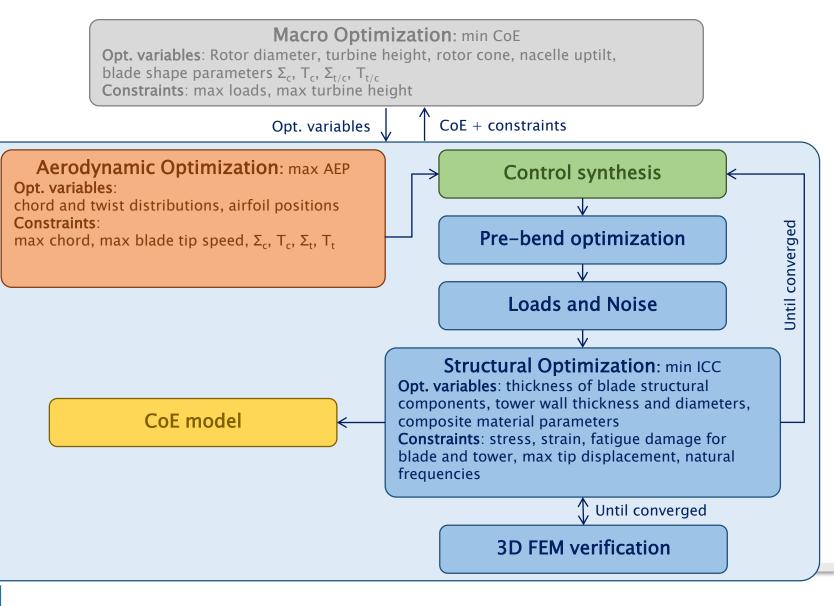
There is a need for **holistic design tools** to assess the impact of each new technological solution

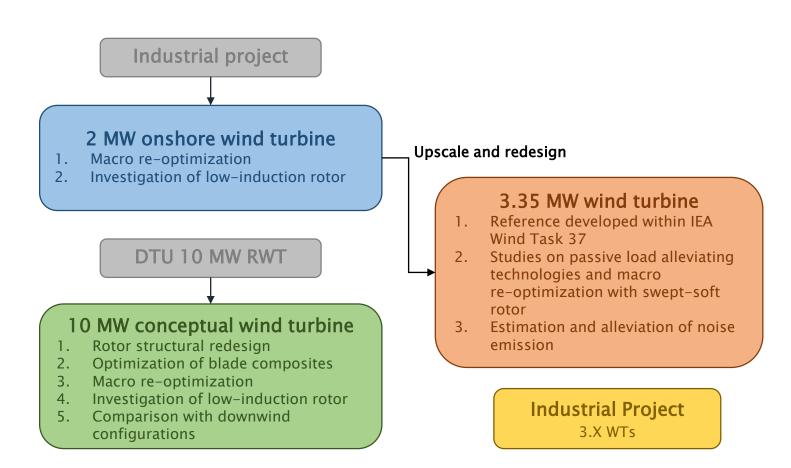
Algorithmic Approaches – Monolithic



Algorithmic Approaches – Monolithic

Accurate loads and performance estimation	 Ultimate loads, fatigue loads and displacements AEP under turbulent wind conditions Standards prescribe to run a multitude of DLCs 	
Adequate fidelity level of the simulation models	 BEM-based aeroservoelastic solvers to run DLCs 2D cross sectional solvers for blade design 3D FEM and CFD models to be integrated within a design procedure 	
III-posedness of the optimization problem	 CoE is often the merit figure to be minimized (maybe not in the next future?) CoE response surface is often flat wrt several design parameters 	


Simulation Models


Wir

Integrated Design of Wind Turbines

A Nested Multi-Level Architecture

Applications

Wind Energy Institute

Applications I - 2.0 MW

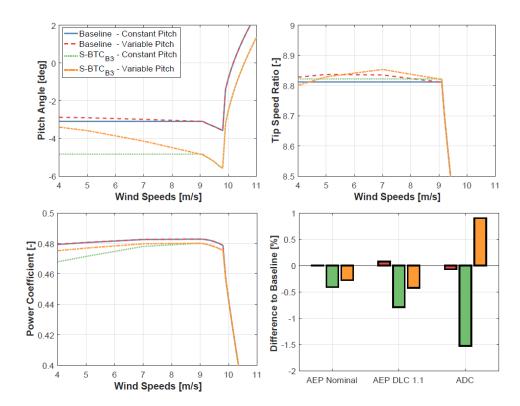
2.0 MW - 3A	Industry WT	Cp-Max Opt	Difference
Rated Power	2.0 MW	2.0 MW	
Rotor Diameter	92.4 m	106.6 m	+15.4 %
Hub Height	80 m	97.6 m	+22.0 %
AEP	8.30 GWh	9.95 GWh	+19.9 %
тсс	1.41 M\$	1.69 M\$	+19.9 %
СоЕ	41.98 \$/MWh	40.56 \$/MWh	-3.1 %
→ WT upscale			

Low induction rotor also investigated, but higher CoE



Applications II - 3.4 MW

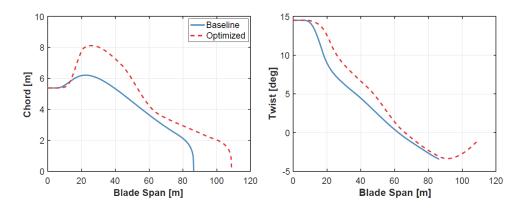
3.35 MW - 3A	Standard	BTC-Soft	Difference
Rated Power	3.35 MW	3.35 MW	
Rotor Diameter	130 m	136 m	+4.6 %
Hub Height	110 m	110 m	
Rotor Cone	3 deg	8 deg	+166.7 %
Nacelle Uptilt	5 deg	6 deg	+20 %
Blade Cost	127.9 k\$	126.2 k\$	-1.3 %
Tower Cost	548.5 k\$	438.2 k\$	-20.1 %
AEP	13.96 GWh	14.32 GWh	+2.6 %
ICC	3,885.2 k\$	3,850.9 k\$	-0.9 %
СоЕ	41.98 \$/MWh	40.82 \$/MWh	-2.8 %



Applications II - 3.4 MW

Novel regulation trajectory to minimize AEP losses

Variable pitch and TSR in region II to compensate the BTC of the blade

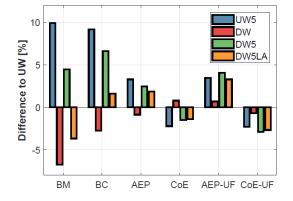


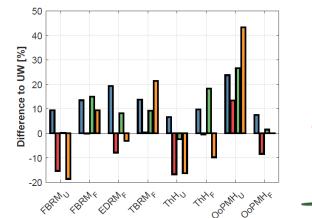
Applications III - 10.0 MW

Rotor aerostructural optimization of the DTU 10 MW

10.0 MW - 1A	Baseline	Cp-Max Opt	Difference
Rated Power	10.0 MW	10.0 MW	
Rotor Diameter	178.3 m	223.2 m	+25.2 %
Hub Height	119.0 m	138.3 m	+16.2 %

$\Delta CoE (INNWIND.EU) = -7.0\%$


Applications III - 10.0 MW


Preliminary study on various alternative configurations:

- UW INNWIND 10 MW upwind configuration
- DW downwind rotor
- UW5 upwind redesign with 5% larger rotor
- DW5 downwind rotor with 5% larger rotor
- DW5LA downwind rotor with variable coning actively controlled and 5% larger rotor

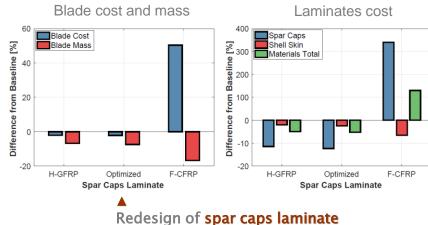
Conclusions:

- Hard to obtain effective load alignment during turbulent wind
- DW5LA has a relevant added complexity
- Standard downwind looks more promising

Composite Optimization

Idea:

- Define a parametric composite material model (mechanical properties vs. cost)
- Identify the best material for each component within the model


Result:

- Wind turbine designer: pick closest existing material within market products
- Material designer: design new material with optimal properties

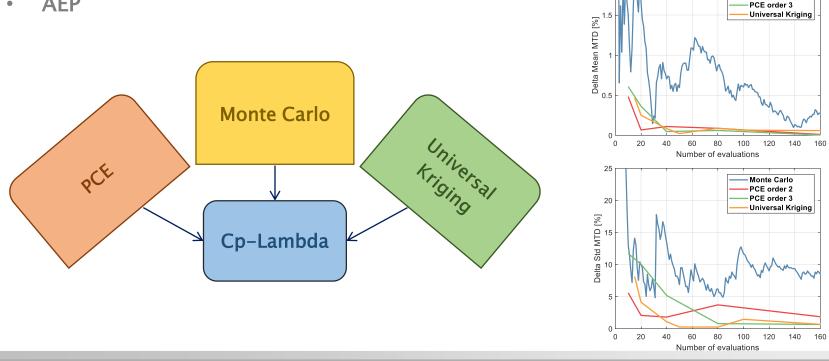
Combined optimum:

Blade mass -9.3%

Blade cost -2.9%

Optimum is between H-GFRP and CFRP

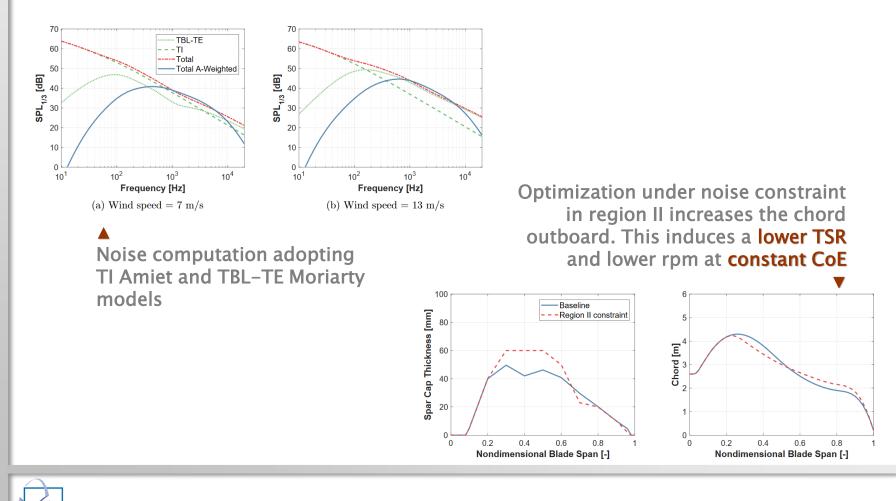
Redesign of the shell skin laminate Optimum is between Bx-GFRP and Tx-GFRP Blade Cost Spar Caps Difference from Baseline [%] Baseline [%] Shell Skin Blade Mass Materials Total 2 from | 0 Difference -2 -2 -6 **Bx-GFRP** Optimized Bx-GFRP Optimized **Outer Shell Skin Laminate Outer Shell Skin Laminate**


Publication: Bortolotti et al., TORQUE 2016

Uncertainty Quantification

Aleatory **uncertainties** in wind and airfoil characteristics Propagation through the aeroelastic models of the 2 MW and the 10 MW AVATAR WTs

Reconstruction of the statistics of outputs of interest:

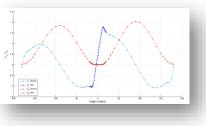

- Ultimate and fatigue loads
- AEP

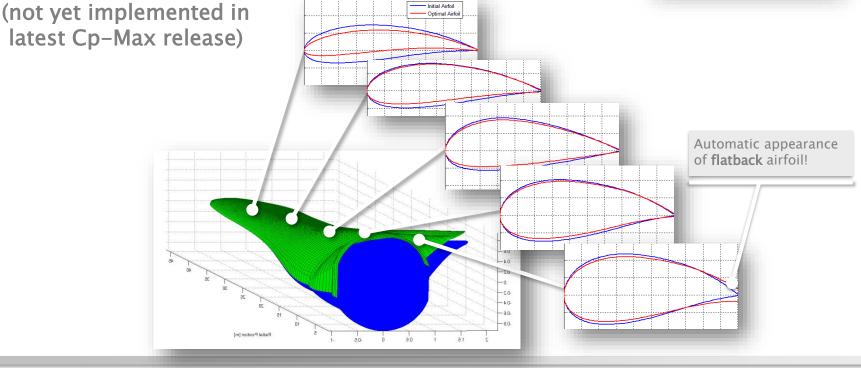
Monte Carlo PCE order 2

Noise within Design

Wind Energy Institute

Publication: Bortolotti et al., TORQUE 2018


Free-Form Optimization


0.2 0.3 0.4 0.5 0.6

Design airfoils together with blade:

- Bezier airfoil parameterization
- Airfoil aerodynamics by Xfoil + Viterna extrapolation

Additional constraints: C_L max (margin to stall), geometry

Publications: Bottasso et al., TORQUE 2014 Bottasso et al., SciTech 2015

Ongoing Projects – WINSENT

German national project for a new test field with two small-size wind turbines located close to Stuttgart

TUM activities:

- Development of the BEM-based wind turbine numerical models
- Definition with Uni Stuttgart of an openly available controller
- Calculation of the various design margins to guarantee safe operation in future research activities
- Design of gravo-elastically scaled wind turbine blades

Ongoing Projects – TremAc

German national project to characterize the vibrations and the noise emission of onshore wind turbines

TUM activities:

- Implementation of an aeroacoustic emission tool for both audible and infrasound spectra coupled to Cp-Lambda
- **Design** of a **generic wind turbine** model resembling the ENERCON E82
- Validation of the noise emission models

IEA Wind Task 37

International cooperation coordinate by Katherine Dykes (NREL), Frederik Zahle (DTU), Pierre-Elouan Réthoré (DTU) and Karl Merz (Sintef)

TUM contributions:

- WP1: Definition of turbine ontology and data exchange formats
- WP2: Active participation in the development of the reference onshore wind turbine and contribution to the development of the offshore one
- WP3: Contribution to the aerodynamic only optimization case and definition and analysis of the structural only optimization case

Conclusions

Main conclusions:

- Multi-level approach to marry high fidelity and computational effort
- Nested iterated sub-optimizations of original monolithic problem to improve well-posedness, efficiency and robustness

Open issues/outlook:

- CoE: solutions are highly sensitive to cost model, need detailed reliable models that truly account for all significant effects, problem partially alleviated by Pareto solutions
- Include/improve physics-based sub-system models
- Uncertainties everywhere (aero, structure, wind, ...), move towards robust design

Some Recent References

2018:

Bortolotti P, Bottasso CL, Croce A, Sartori L. Integration of multiple passive load mitigation technologies by automated design optimization – The case study of a medium-size onshore wind turbine. Wind Energy, 2018. doi: 10.1002/we.2270

Bortolotti P, Sucameli C, Croce A, Bottasso CL. *Integrated design optimization of wind turbines with noise emission constraints*. J. Phys.: Conf. Ser., 2018;1037. doi: 10.1088/1742-6596/1037/4/042005

Canet H, Bortolotti P, Bottasso CL. *Gravo-aeroelastic scaling of very large wind turbines to wind tunnel size*. J. Phys.: Conf. Ser., 2018;1037. doi: 10.1088/1742-6596/1037/4/042006

2017:

Matthäus D, Bortolotti P, Loganathan J, Bottasso CL. *Propagation of Uncertainties Through Wind Turbine Models for Robust Design Optimization*. AIAA SciTech Forum, 2017. doi: 10.2514/6.2017-1849

2016:

Bortolotti P, Croce A, Bottasso CL. *Combined preliminary-detailed design of wind turbines*. Wind Energ. Sci., 2016;1:1–18. doi: 10.5194/wes-1-1-2016

Bottasso CL, Bortolotti P, Croce A, Gualdoni F. Integrated Aero-Structural Optimization of Wind Turbine Rotors. Multibody Syst. Dyn., 2016;38(4):317–344. doi: 10.1007/s11044-015-9488-1

Bortolotti P, Adolphs G, Bottasso CL. *A methodology to guide the selection of composite materials in a wind turbine rotor blade design process.* J. Phys.: Conf. Ser., 2016;753. doi: 10.1088/1742-6596/753/6/062001

