Overview
Established in 2013, the Nevada Regional Test Center (RTC) is located at the Southern Nevada Water Authority’s (SNWA) River Mountains Water Treatment Facility in Henderson, less than 20 miles from downtown Las Vegas.

The site brings a unique climate to the RTC portfolio, one defined by high irradiance, high heat and limited precipitation. These climatic characteristics provide a valuable test bed for emerging solar technologies, including heat-resistant solar cells, shade-resistant modules and anti-reflective and anti-soiling module coatings. The site also favors concentrated photovoltaic (CPV) systems, which benefit from high irradiance.

Site Management
The Nevada RTC reflects a three-way partnership between Sandia National Laboratories (Sandia), the SNWA, and the University of Nevada, Las Vegas (UNLV):

• Sandia provides technical and administrative leadership for the NV and other RTCs, ensuring technical consistency and accuracy across the multi-site program. Sandia also works closely with SNWA and UNLV on the design and execution of new partner studies at the NV RTC.
• SNWA manages new installations, providing on-site technical and electrical support.
• UNLV provides technical oversight for the Nevada site, ensuring data quality and reliability and overseeing on-site student research and education.

Technical Capabilities
Like the other RTC sites, the Nevada RTC has:

• Grid-tied 480V, 3-phase electrical network that can support the installation of prototype technologies (non-UL-listed equipment can be accommodated).
• Grid-tied open racking to facilitate the rapid installation of new PV systems (plug and play approach)
• Mono-crystalline PV reference array against which the performance of new technologies can be compared
• Reference soiling station to measure surface contamination
• Meteorological station that collects the following data at a frequency of ≤ 5 secs, averaged per minute and synchronized with PV performance data:
 • Global horizontal irradiance (GHI)
 • Diffuse horizontal irradiance (DHI)
 • Direct normal irradiance (DNI)
 • Spectral irradiance composition
 • Precipitation
 • Ambient air temperature
 • Wind speed and direction
 • Relative humidity
 • Atmospheric pressure
 • Customized high-accuracy string-level DC voltage and current monitoring

Special Features

• Isotype cell sensor for solar spectral measurements
• Technical support provided by the Center for Energy Research at UNLV
• Installation labor, and other technical assistance, provided by SNWA
• Onsite office for student education and research
• NV RTC "Operations Manual" serves as how-to guide for work-study students
• High-security site (guards on duty 24/7)
• Technologies represented to date at the RTC include: concentrated photovoltaics, mono-crystalline silicon (both n- and p-type), bifacial- and shingled-cell modules, anti-reflective coatings, and sensor adhesives, with more technological diversity on the way.
• Research site for concentrated photovoltaic (CPV) systems

The RTC Program
The RTC Program directly supports the DOE Solar Energy Technology Office’s mission to further the affordability, reliability, and performance of PV technologies to meet US electric demand. This network of multi-climate field laboratories is accessible to US companies in the PV industry, allowing them to validate the performance and reliability of their products across the full range of harsh conditions in which they might operate. For more information see: energy.sandia.gov

CONTACT:
Laurie Burnham
Photovoltaics and Materials Technologies
Sandia National Laboratories
lburnha@sandia.gov
(505) 284-2500