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Executive summary

The idea of acausality for control of a wave energy converter (WEC) is a concept that has been
popular since the birth of modern wave energy research in the 1970s. This concept has led to con-
siderable research into wave prediction and feedforward WEC control algorithms. However, the
findings in this report mostly negate the need for wave prediction to improve WEC energy absorp-
tion, and favor instead feedback driven control strategies. Feedback control is shown to provide
performance that rivals a prediction-based controller, which has been unrealistically assumed to
have perfect prediction.

It is well known in classical control engineering that perfect knowledge of past and future
events will always lead to higher performing systems. However, it is also well known that the
underlying system must be well-designed; control cannot fix a bad design. Additionally, one
must consider the practical application of a control design, which relies on measurements and
actuation systems. There are major implications to cost and reliability when relying on remote
sensors requiring real-time data-streaming (e.g., remote wave buoys). This report shows that for a
well-designed WEC, in which closed loop dynamics is considered since early stages of design, a
suboptimal controller using no prediction can achieve more than 90% of the theoretical maximum.

As shown in Figure 1, a predictionless feedback resonating (FBR) controller performs within
0.1% percent of a controller with perfect future knowledge (something which is not practically
attainable). Given the major challenges with accurate and robust wave prediction, this result pro-
vides a major argument and incentive for utilizing feedback for WEC control. Implementation of
these feedback strategies is readily attainable, while the strategy requiring perfect wave prediction
will demand an unknown number of additional years to research and develop, all in the service of
a marginal 1% benefit.

P (baseline) 

PI (suboptimal) 

FBR (predictionless) 

MPC (perfect prediction) 

0 10 20 30 60 70 80 90 40 50 

Average power [W] 

Figure 1: Summary of study results showing average power across model-scale sea states. A more
detailed version of these results is presented in Table 2.1.
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Chapter 1

Background

The idea of acausality for control of a wave energy converter (WEC) is concept that has been
popular since the birth of modern wave energy research in the 1970s. This concept has two com-
ponents: (A) that the excitation caused on a WEC by ocean waves is described by an acausal
process (i.e., one must know the wave elevation at some time in the future to know the exci-
tation force at the present time) and (B) that this acausality, in turn, requires that some predic-
tion/forecasting/feedforward control be utilized for efficient WEC control. These concepts have
led to considerable research into wave prediction and feedforward WEC control algorithms.

(A) The acausality of wave excitation
Taking first the idea of wave excitation as an acausal process, we can generally find quick agree-
ment that Newtonian physics is always causal. Acausality is simply a matter of how you define
(and therefore measure) the system. The common way of taking the wave elevation as input to a
system which results in the exciting force is somewhat backwards. The excitation reaction on a
floating body is due to the pressure on its hull which is a result of the fluid velocity. Thus, looking
at the wave elevation as the input to the system is somehow similar to measuring a person’s tem-
perature with the impression that the temperature is the cause of their ailment, where it is in fact a
symptom. In fact, if looking at the direct cause of the the excitation force on the buoy, which is the
pressure, it is possible to see that the transfer function between pressure and force is causal [2].

(B) The acausality of WEC control
The optimal WEC control problem has been well-framed and well-studied. By abstracting the
WEC in the same structure as an electrical circuit (this can be done for any resonant device),
Jacobi’s maximum power transfer law gives a straightforward means of optimizing WEC power
absorption. This is the so-called complex conjugate control, where a control law can be written
explicitly as the complex conjugate of the WEC’s intrinsic impedance. The only issue with this
otherwise straightforward result is that the complex conjugate of the impedance is acausal. This,
in fact, is quite true. However, when we consider the problem with an engineering perspective,
and note that the energy in ocean waves almost entirely lies within a relatively narrow frequency
band (periods of 5 < T < 15 s), the situation improves. By considering the complex conjugate
control problem over a finite bandwidth (which neglects only the small amounts of energy in
surface ripples and tsunami waves at high and low frequencies, respectively), a causal controller
can be defined such that it follows the frequency response of the complex conjugate controller as
closely as possible. The only input to the controller is the device velocity. The most simplest
causal controller may be a proportional-integral (PI) controller represented by a first-order transfer

13



Zi(ω)
Intrinsic impedance

Z∗
i (ω)

Complex conjugate control

Re {Z∗
i (ω)} Im {Z∗

i (ω)}S(ω)
Sea state spectrum

PI
KP (ω) = Re {Zi(ω)}
KI(ω) = −ωIm {Zi(ω)}

FBR MPC-FBRMPC-PI

Figure 1.1: Hierarchy for WEC control design.

function. However, it matches the complex conjugate only locally, so using fitting techniques, such
as system identification, a more optimal causal controller with higher order called the feedback
resonating (FBR) controller is developed.

1.1 Introduction

Figure 1.1 shows a hierarchy of WEC control. The common starting point is the intrinsic impedance
of the WEC, which can be obtained numerically or experimentally [2] (see Section 1.3 for further
discussion). From the intrinsic impedance, we can formulate the so-called complex conjugate con-
trol, which is the optimal power transfer for a WEC (Section 1.3). PI and FBR controllers can be
developed (Sections 1.4.1 and 1.4.2, respectively) as causal realizations of the complex conjugate
control. The controllers can in turn be utilized by a model predictive controller (MPC) to allow
for constraints (Section 1.5.2). Note that the MPC shown in Figure 1.1 is different from that typ-
ically considered for WEC control, in that it utilizes the knowledge of the intrinsic impedance to
avoid the need for extended wave prediction. The more “classical” version of MPC, which requires
prediction of incoming waves, is discussed in Section 1.5.1.

This report provides an in-depth explanation of each of these control strategies (Sections 1.3-
1.5). Each of these controllers’ performance is compared for a series of sea states (Chapter 2).
For the “classical” MPC, various means of prediction, including a “perfect prediction” model are
considered.

14



PTO

R = 0.35m
R = 0.88m

0.53m

0.16m

0.20m

Float

Figure 1.2: Study device diagram.

Table 1.1: Model-scale WEC physical parameters.

Parameter Value

Rigid-body mass (float & slider), M [kg] 858
Displaced volume, ∀ [m3] 0.858

Float radius, r [m] 0.88
Float draft, T [m] 0.53

Water density, ρ [kg/m3] 1000
Water depth, h [m] 6.1

Linear hydrostatic stiffness, S [kN/m] 23.9
Infinite-frequency added mass, m∞ [kg] 782

Max vertical travel, |zmax| [m] 0.6

1.2 Study device and sea states

A single degree of freedom heaving point absorber was selected for the case study discussed herein.
This device has been studied previously for numerical control design [3, 4] and experimental test-
ing [2, 5, 6]. Figure 1.2 and Table 1.1 show a diagram of the WEC device and its relevant physical
parameters.

In this report, the incoming waves include ten different sea states, all of which are of JONSWAP
type spectra and are summarized in Table 1.2. To assess performance, each controller has been
analyzed numerically in these ten sea states.

15



Table 1.2: List of sea states inserted into the plant (WEC device).

Test
Case Peak period, Tp [s] Significant wave

height, Hs [in]
Peak enhancement

factor, γ [-]
1 1.58 5 1
2 1.58 5 3.3
3 2.5 5 1
4 2.5 5 3.3
5 2.5 10 1
6 2.5 10 3.3
7 3.5 5 1
8 3.5 5 3.3
9 3.5 10 1

10 3.5 10 3.3

1.3 Complex conjugate control

The general structure (loss free) for energy transfer for the WEC device is that the incoming waves
produce a force on the body, denoted as Fe, while the body radiates a wave back into the environ-
ment, denoted as Frad . This formulation is based on linear potential flow theory (see, e.g., [7, 8]).
The force on the WEC is then transferred onto the power take off (PTO), denoted as Fpto. In
general, the equations of motion are defined as

[iω(M+m(ω))+Bv +R(ω)+
S

iω
]v(ω) = Fe(ω)+Fpto(ω). (1.1)

where ω is the angular velocity, M is the mass matrix of the device, m(ω) is the added mass, Bv is
the damping, R(ω) is the radiation damping, S is the hydro-static restoring coefficient matrix, and
v(ω) is the velocity of the buoy.

Now we will define the power absorption as

Wpto =−
1

2π

∫
∞

0
[Fpto(ω)v∗(ω)+F∗pto(ω)v(ω)]dω, (1.2)

where the asterisk (*) denotes the complex conjugate of a quantity. From the equation of motion
defined in (1.1), the intrinsic impedance of the system is defined as

Zi(ω) = iω(M+m(ω))+Bv +R(ω)+
S

iω
. (1.3)

From (1.3), we see that when the PTO force satisfies

Fpto(ω) =−Z∗i (ω)v(ω), (1.4)

using (1.4) and determining the responses for v∗(ω), then (1.2) becomes

Wpto,MAX =
1

2π

∫
∞

0

|Fe(ω)|2
2Ri(ω)

dω, (1.5)

16



Yi

Z∗
i

FPTO

+

−

v
WEC

Fe

Figure 1.3: Controller model for reactive control for a WEC.

where Ri(ω) is the intrinsic resistance of the device which is equal to the real part of the intrinsic
impedance (Re{Zi(ω)}).

From this we can see that the optimal velocity corresponding to the maximum energy is v(ω) =
Fe(ω)
2Ri(ω) . From (1.4) we can see where the term complex conjugate control or impedance matching
comes from. This basic feedback controller model can be shown in Figure 1.3, where Yi is the
intrinsic admittance of the device which is the inverse of the intrinsic impedance, i.e., Yi = 1/Zi.
Maximum power absorption is achieved when the PTO impedance matches the complex conjugate
of the mechanical impedance of the device, or when the reactance of the PTO cancels the reactance
of the device. To see that the complex conjugate (CC) controller has a noncausal response we will
look at the impulse response of the controller:

hi(t) =W (t)+Bv
√

2πδ (t)−M
√

2πδ̇ (t)−S

√
π

2
sgn(t). (1.6)

Here, W (t) is the causal impulse response of the radiation impedance, δ (t) and δ̇ (t) are the Dirac
delta function and its time derivative respectively, and sgn(t) is the sign function. We can see that

the last term in (1.6) is the noncausal term where hi(t) = S
√

π

2 for t < 0. Due to this noncausal
response for the complex conjugate controller, the controller requires some future knowledge to be
implemented. Hence, we will now explore methods that will have a causal realization of this con-
troller, with the feedback control trying to closely match the complex conjugate of the mechanical
impedance.

1.4 Causal realization

To determine a causal implementation of the complex conjugate feedback controller, we will use
two general strategies, a PI controller and system identification (SID). For the PI controller, we
determine the optimal P and I gains to be implemented for each individual wave spectrum. As can

17
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Figure 1.4: Bode diagram comparing the complex conjugate controller response (Z∗i ) with stable
causal realizations for PI ( fp = 0.6667 Hz) and FBR controllers.

be seen in Figure 1.4 the PI controller will only match the complex conjugate at one point for the
phase and magnitude response. In general the strategy is to match the PI controller as close to the
complex conjugate as possible while still maintaining stability. As for the SID method, we will be
using SID techniques to determine the best feedback controller response that matches the response
of the complex conjugate, which lays the basis of the FBR controller. Again shown in Figure 1.4,
we can see that the FBR, which is the SID matching for a second order system, better matches the
complex conjugate response of the system.

1.4.1 PI control

The use of a PI controller allows to model the complex conjugate function as a first order system.
In general we can model the feedback controller to have the following first order form,

U(s) =
(KPs+KI)

s
V (s), (1.7)

where U(s) and V (s) are the Laplace transform of the control force u(t) and the velocity of the
buoy v(t), respectively. Using (1.3), we can rewrite this equation to model that of a PI controller:

Zi(s) =
KPs+KI

s
. (1.8)
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Table 1.3: Optimal I and P gains for each test case.

Test Case KI KP
1 -3221.91 2412.66
2 -1636.30 2255.87
3 -13748.70 2016.61
4 -13097.50 1946.55
5 -13786.30 2008.89
6 -13150.59 1939.29
7 -18510.49 1389.55
8 -18042.90 1345.76
9 -18566.14 1420.61
10 -18058.70 1340.85

With (1.8) and (1.3) we can determine the constant gains for the PI controller:

KP(ω) = Re{Zi(ω)}= Bv +R(ω) (1.9)

and
KI(ω) =−ω Im{Zi(ω)}=−ω

2(M+m(ω))+S. (1.10)

As we can see determining (1.9) and (1.10) these values can only be determined at an individual
frequency. As the frequency varies, the values of these gains will vary as well.

Due to this, it is expected for the PI controller to only be able to match the complex conjugate
response in a small frequency band. As we have seen from the response in Figure 1.4 the PI con-
troller matches the complex conjugate locally (around the designated frequency fp = 0.6667 Hz)
but the response error will grow larger outside of the frequency band. The optimal I and P gains
that maximize the mean of mechanical power capture are specified in Table 1.3 for each test case
listed in Table 1.2.

In this report, a simpler proportional (P) control is also considered for reference, which is often
called the damping control. The damping control is pure P control with no I gain, i.e., KI = 0
and this type of control has been frequently applied in the WEC control design, but is in general
expected to have poorer performance than PI control. The optimal P gains are summarized in
Table 1.4.

In order to improve the results of the power capture, SID techniques need to be used to deter-
mine more optimal higher order models to approximate a stable and causal response of the complex
conjugate controller.

1.4.2 Feedback resonator

For a feedback resonator (FBR) controller, a causal implementation of the complex conjugate
needs to be determined. The goal is to determine a feedback transfer function that can have a
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Table 1.4: Optimal P gains for P (damping) control.

Test Case KP
1 2498.70
2 2267.88
3 4876.61
4 5022.55
5 4881.24
6 5030.47
7 8926.72
8 9342.90
9 8927.85
10 9347.21

stable causal response along with matching the magnitude and phase response of the complex
conjugate, and SID techniques are needed to optimize this transfer function. For the purpose of
this controller, the error in the phase for the SID model needs to be more minimized than the error
in the magnitude.

SID methods are used in various engineering fields to produce models of various dynamic sys-
tems from measured data. SID techniques rely upon characterizing a system based on how the
systems output responds to various inputs. Input signals are important as they effect the quality
of output response, in other words if the dynamics of the system are not fully explored the SID
model will not properly model the system. As such, the experiments used for the system identifica-
tion have various advantages and disadvantages, such as signal bandwidth, improvement of model
quality, cost of the experiment, and increased noise sensitivity.

SID techniques have been used to characterize WEC devices using various models and ap-
proaches [9]. The various model approaches can be characterized as white box (with model for-
mulation), grey box (basic physical understanding of the system), and black box (no knowledge of
the system). Typically for wave energy there is some knowledge of the system so SID techniques
use grey box modeling.

With the built-in System Identification Toolbox in MATLAB, a greybox model can be used to
determine the WEC’s intrinsic impedance along with determining the complex conjugate model
of the system. Since the complex conjugate is noncausal, the complex conjugate transfer function
needs to be further modeled to determine a similar causal transfer function. To limit the model
errors and increase likelihood of finding a causal model the SID needs to be applied over a specific
frequency band. With a causal and stable model of the complex conjugate of the system a reactive
controller can be built and implemented.

In Figure 1.4 the frequency band that we are specifically looking at is 0.1− 1.0 Hz. Using
the built in SID methods within the MATLAB System Identification Toolbox we determine a new
FBR model for each specific frequency band. Based on the similar magnitude and phase response

20



Table 1.5: FBR coefficients for each test case.

Test
Case a1 a0 b2 b1 b0

1 85.05 0 -76.52 91.29 -1213
2 47.66 0 -40.56 53.64 -653.7
3 22.81 6.766 -17.73 26.26 -285.5
4 28.68 8.652 -22.44 34.6 -355.4
5 22.81 6.766 -17.73 26.26 -285.5
6 28.68 8.652 -22.44 34.6 -355.4
7 42.7 5.577 -36.27 46.43 -570.6
8 184.5 20.79 -162.1 214.9 -2471
9 42.7 5.577 -36.27 46.43 -570.6

10 184.5 20.79 -162.1 214.9 -2471

of the FBR to the complex conjugate response we expect to see the FBR controller to outperform
the PI controller for all wave spectra.

In this report, the FBR controllers are obtained as transfer functions with two poles and two
zeros in order to best match the complex conjugate. More specifically, every FBR transfer function
is of the following form:

U(s) =
b2s2 +b1s+b0

s2 +a1s+a0
V (s). (1.11)

The optimal coefficients in (1.11) for each test case are calculated such that the phase difference in
the Bode diagram between the resulting FBR transfer function and the complex conjugate curve is
minimized, which are listed in Table 1.5.
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Figure 1.5: Basic feedforward (FF) + feedback (FB) controller structure [1].
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Figure 1.6: Basic structure for “receding horizon.”

1.5 Model predictive control (MPC)

With an accurate WEC modeling via SID techniques, model predictive control (MPC) has many
advantages over linear control strategies (i.e., PI or FBR) such as the capability to handle con-
straints and the optimization of a given cost function. However, it generally requires heavier com-
putational loads due to prediction and optimization over a horizon and also it is more difficult to
analyze the stability, robustness, and frequency-domain properties in the MPC design. In addition,
the performance of an MPC can potentially depend upon the choice of a prediction method. Hence,
in this section classical MPC is first introduced with the assumption of perfect prediction of a wave
profile (Section 1.5.1). Next, a new MPC algorithm with a short prediction horizon (one time-step)
is developed that is tuned via either a PI or an FBR feedback controller (Subsection 1.5.2). This
new MPC will behave exactly as the predesigned PI or FBR controller when constraints are inac-
tive that requires no prediction to bypass the acausality issue. It will also inherit “good” properties
of linear control design and simultaneously be able to handle the constraints in an optimal manner
when they are active. In the next section (Section 1.6), the classical MPC is again applied but with
three different prediction methods since we do not have perfect knowledge of incoming wave pro-
files in real-life applications, and will be compared with the MPC with perfect prediction derived
in Section 1.5.1.
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1.5.1 Classical model predictive control

The general model predictive control (MPC) model is an optimization-based control strategy that
is derived from attempting to solve a quadratic program (QP) in a receding horizon fashion (Fig-
ure 1.6). In this model, the inner feedback loop has not been considered, therefore the transfer
function of the feedback block is HFB(s) = 0 and the controller is CFB(s) = 1, however as shown
in Figure 1.6 the output, where y is the velocity of the buoy, of the system is passed to the opti-
mization block directly. The signal r is the excitation force and the prediction block predicts the
value of the excitation force over the prediction horizon, which is used by the optimizer to calculate
the optimal motion and the corresponding force maximizing the absorbed power. The procedure
is repeated periodically to compensate for disturbance and imperfect modeling by updating the
current state of the system every time the optimization is carried out. For the “classical model” it
is assumed in this section that perfect foreknowledge of the excitation is available. In general the
wave model needs to be updated constantly, and in the next section (Section 1.6) the wave model
is predicted via three different methods to construct MPC.

The derivation of the MPC control law begins with the specification of the WEC model used
for control (controller model), which is the continuous-time state-space model [10]:

ẋxxc(t) = Acxxxc(t)+Bc(uc(t)+ vc(t)),
yyyc(t) = Ccxxxc(t),

(1.12)

where uc(t) is the PTO force per unit mass and vc(t) is the excitation force per unit mass. Here,
the state vector xxxc and the output vector yyyc are defined, respectively, as

xxxc =

 z
ż
xxxr

 ∈ R2+n, yyyc =

[
z
ż

]
∈ R2, (1.13)

where n is the order of the radiation subsystem model. The vertical position of the buoy is denoted
by z and xxxr ∈ Rn is the state vector of radiation dynamics. The matrices Ac, Bc and Cc are

Ac =

 0 1 0
−S

M+m∞

−Bv
M+m∞

−1
M+m∞

Cr

0 Br Ar

 ∈ R(n+2)×(n+2), (1.14)

Bc =

0
1
0

 ∈ R(n+2)×1, Cc =

[
1 0 0
0 1 0

]
∈ R2×(n+2), (1.15)

where S is the hydrostatic restoring coefficient, Bv is a linear damping term describing the viscous
effects of the fluid (and/or any other linear friction terms), M is the mass of the buoy and m∞ is
the asymptotic value of the added mass. In this report, the values S = 23981.45 N/m, Bv = 380
kg/s, and M+m∞ = 1640.02 kg are employed. The matrices Ar, Br and Cr, as usual, describe the
dynamics of the radiation force ( fr):

ẋxxr(t) = Arxxxr(t)+Br ż(t),
fr(t) = Crxxxr,

(1.16)
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where

Ar =

[
−3.9913 −2.6621

4 0

]
,Br =

[
64
0

]
,Cr =

[
104.4457 0

]
. (1.17)

The MPC algorithm requires the dynamic model to be formulated in discrete time: following
[10], the discretization of the model in (1.12) is carried out by means of a first order-hold, which
results in continuous and piecewise linear profile for the optimal force. The benefit of this type of
discretization is to allow for a longer update interval compared to a zero-hold discretization, which
provides only a discontinuous, piecewise constant profile for the optimal control force. The state
space model resulting from the discretization is:

xxx(k+1) = Axxx(k)+B∆u(k+1)+F∆v(k+1), (1.18)
yyy(k) = Cxxx(k), (1.19)

where ∆u(k+ 1) = ud(k+ 1)− ud(k) and ∆v(k+ 1) = vd(k+ 1)− vd(k). Here, ud and vd denote
the sampled versions of uc and vc, respectively, and

A =

φφφ(h) ΓΓΓ ΓΓΓ

0 1 0
0 0 1

 ∈ R(n+4)×(n+4), B =

ΛΛΛ

1
0

 ∈ R(n+4)×1, (1.20)

F =

ΛΛΛ

0
1

 ∈ R(n+4)×1, C =

1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0

 ∈ R3×(n+4). (1.21)

Here, φφφ(h) = eAc h, where h is the update interval and

ΓΓΓ = A−1
c (φφφ(h)− I) Bc ∈ R(n+2)×1, (1.22)

ΛΛΛ =
1
h

A−1
c (ΓΓΓ−hBc) ∈ R(n+2)×1. (1.23)

Let N denote the number of prediction steps, then the predicted output of the system can be written
as a function of the current state and future input increments:

yyy(k) = Pxxx(k)+Tu∆uuu(k)+Tv∆vvv(k), (1.24)

where P , Tu and Tv are

P =


CA
CA2

...
CAN

 ∈ R3N×(n+4), (1.25)

Tu =


CB 0 0 . . .

CAB CB 0 . . .
CA2 B CAB CB . . .

...
...

...
...

CAN−1 B CAN−2 B CAN−3 B . . .

 ∈ R3N×N , (1.26)
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Tv =


CF 0 0 . . .

CAF CF 0 . . .
CA2 F CAF CF . . .

...
...

...
...

CAN−1 F CAN−2 F CAN−3 F . . .

 ∈ R3N×N . (1.27)

The quantity to be maximized is the mechanical work done by the device over the prediction
horizon T , expressed as:

Et,t+T =−(M+m∞)
∫ t+T

t
u(τ)ż(τ)dτ. (1.28)

By means of the discretization, this quantity can be written in matrix form as the quadratic cost
function J, defined as

J =
1
2

∆uuu′T ′
u QTu∆uuu + ∆uuu′T ′

u Q(Pxxx+Tv∆vvv) , (1.29)

where Q is:

Q =


M

. . .
M

1
2M

 , M =

0 0 0
0 0 1
0 1 0

 . (1.30)

Constraints on the maximum force and maximum displacement can be included in the formulation
of the optimization problem using the linear inequalities[

Mz
−Mz

]
Tu∆uuu ≤

[
−Mz
Mz

]
(Pxxx+Tv∆vvv)+ zmax, (1.31)[

M f
−M f

]
Tu∆uuu ≤

[
−M f
M f

]
(Pxxx+Tv∆vvv)+ fmax, (1.32)

where Mz and M f are

Mz =


Cz

. . .
Cz

Cz

 ∈ RN×3N , Cz = [1 0 0], (1.33)

M f =


C f

. . .
C f

C f

 ∈ RN×3N , C f = [0 0 1]. (1.34)
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1.5.2 MPC that behaves as a PI or FBR controller

In this section, a new tuning method for MPC weight matrices using a feedback controller (either
PI or FBR) is introduced. It is shown that any linear controller in a state feedback or a proper ratio-
nal transfer function form can be realized via MPC with specially tuned weight matrices. Since a
PI or an FBR controller developed in the previous section 1.4 is a simple example of state feedback
control, we can easily apply this method to obtain MPC that exactly behaves as the predesigned
PI or FBR controller “with no prediction” when constraints are not active, thereby avoiding the
acausality problem. Of course, the MPC can still optimally deal with active constraints, which
clearly distinguishes the PI or the FBR controller. In this section, the MPC is created for uncon-
strained cases; constrained cases are investigated in Appendix A where the control input saturation
is considered as the constraint.

The MPC signals are computed by the Model Predictive Control Toolbox of MATLAB in this
section, while in the previous Section 1.5.1, they were obtained by the algorithms proposed in [10]
based on the custom cost function (1.29) for a WEC system. At every control cycle k = 0,1, ..., the
MPC Toolbox solves the following finite-horizon optimal control problem:

V (xxx(k),uuu(k)) = min
UUU(k)

xxx′(N|k)Pxxx(N|k)+
N−1

∑
i=0

xxx′(i|k)Qxxx(i|k)+uuu′(i|k)Ruuu(i|k) (1.35)

s.t.
xxx(i+1|k) = Axxx(i|k)+Buuu(i|k), i = 0, ...,N−1, (1.36)

xmin ≤ ‖xxx(i|k)‖ ≤ xmax, i = 0, ...,N, (1.37)

umin ≤ ‖uuu(i|k)‖ ≤ umax, i = 0, ...,N−1, (1.38)

xxx(0|k) = xxx(k), (1.39)

where (1.36) is the discrete-time state space equation of the plant model, xxx ∈Rn is the state vector,
uuu ∈ Rm is the control input vector, N is the prediction horizon, UUU(k) = [uuu′(0|k) ... uuu′(N− 1|k)] ∈
RNm is the vector to be optimized, and V :Rn→R0+ is the value function. The matrices P∈Rn×n,
Q ∈ Rn×n, and R ∈ Rm×m are the weight matrices that shall be tuned shortly.

Assuming that the current state xxx(k) is given, the finite horizon optimal control problem (1.35)
can be reformulated to the following QP with respect to UUU(k)

min
UUU(k)

UUU ′(k)HUUU(k)+2xxx′(k)FUUU(k) (1.40)

s.t.
GUUU(k)≤ λλλ +ΛΛΛxxx(k), (1.41)

where G ∈ Rq×Nm, λλλ ∈ Rq, and ΛΛΛ ∈ Rq×n are the problem constraints. Also, the following new
matrices are defined in (1.40)

H = R+S ′QS , F = T ′QS , (1.42)
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where S is the N-steps state reachability matrix, T is the N-steps free evolution matrix

S =


B 0 . . . 0

AB B . . . 0
...

... . . . ...
AN−1B AN−2B . . . B

 , T =


A
A2

...
AN ,

 , (1.43)

and Q ∈ RNn×Nn, R ∈ RNm×Nm are block-diagonal matrices

Q =


Q 0 0 . . . 0
0 Q 0 . . . 0
...

... . . . ...
...

0 0 . . . Q 0
0 0 . . . 0 P

 , R =


R 0 . . . 0
0 R . . . 0
...

... . . . ...
0 . . . 0 R

 . (1.44)

When constraints are not active, the QP (1.40) has the unconstrained optimal solution UUU∗(k) which
is given by

UUU∗(k) =

 uuu∗(0|k)
...

uuu∗(N−1|k)

=−H−1F′xxx(k). (1.45)

The MPC command at step k then picks up only the first move such that

uuuMPC(xxx(k)) = uuu∗(0|k) =−ΓΓΓH−1F′xxx(k), (1.46)

where ΓΓΓ = [Im 0 . . . 0].

Now, we consider a predesigned linear controller in a state feedback form

uuuLN(k) = Kxxx(k), K ∈ Rm×n. (1.47)

Then, the objective is to find weight matrices P, Q, and R in (1.35) such that

−ΓΓΓH−1F′ = K, (1.48)

where K is given.

In brief, once the weight matrices P, Q, and R are found that satisfy (1.48) given K, then
the MPC with the cost function (1.35) behaves as the linear controller of the form (1.47), when
the constraints are not active. Di Cairano and Bemporad [11] presented approximate solutions
for the weight matrices Q, R, and P by recasting (1.48) as a convex optimization problem with
linear matrix inequalities constraints. In most cases these solutions provide pretty accurate results,
however, they necessitate a numerical optimization solver and the performance can potentially
deteriorate due to the intentionally added constraints to make the problem convex. Hence, we
now propose new analytical solutions that immediately calculate Q, R, and P by directly solving
(1.48). We consider here the case N = 2 because shorter horizon requires less computational loads
and the control performance is independent of N in an unconstrained application. On the other
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hand, when constraints are active, a short horizon might degrade the control performance due to
inaccurate prediction. However, in this report, even for constrained cases, the prediction horizon
N = 2 is applied because good performance is still observed as shown in Appendix A. Use of
longer prediction horizon will be handled in future work.

When N = 2, the matrices S , T , Q, and R in (1.43) and (1.44) are simplified as

S =

[
B 0

AB B

]
, T =

[
A
A2

]
, Q =

[
Q 0
0 P

]
, R =

[
R 0
0 R

]
. (1.49)

Here, R is a scalar if a single control input (i.e., m = 1) is considered. Accordingly, the matrices H
and F′ in (1.42) become

H =

[
R+B′QB+B′A′PAB B′A′PB

B′PAB R+B′PB

]
, F′ =

[
B′QA+B′A′PA2

B′PA2

]
. (1.50)

Then, the inverse of the 2 by 2 matrix H is directly calculated as

H−1 =
1
D

[
R+B′PB −B′A′PB
−B′PAB R+B′QB+B′A′PAB

]
, (1.51)

where the determinant D is given by

D = (R+B′QB+B′A′PAB)(R+B′PB)−B′A′PBB′PAB. (1.52)

When m = 1, we have ΓΓΓ = [1 0] in (1.46) and should find the matrices Q, R, and P for given A,
B, and K that satisfy the following equation:

−ΓΓΓH−1F′ =− 1
D
[(R+B′PB)(B′QA+B′A′PA2)−B′A′PBB′PA2] = K. (1.53)

As shall be shown later, an FBR controller can be thought of as a variation of a Proportional, Inte-
gral, Derivative (PID) controller and a PI controller is of course a special case of a PID controller.
Hence, consider the following 1 by 3 gain matrix K:

K = [KI KP KD]. (1.54)

Then, since any matrices Q, R, and P satisfying (1.53) can be solutions, let us first simplify (1.53)
by choosing P such that B′P = 0. General solutions to B′P = 0 are given by

P = (I− (B′)+B′)ΞΞΞ, (1.55)

where (B′)+ is the Moore-Penrose generalized inverse of B′ and ΞΞΞ is an arbitrary 3 by 3 matrix.
However, for the use of MPC formulation, P must be positive definite to allow its Cholesky de-
composition (see the User’s Guide Manual of the MPC Toolbox for more details) so we select the
matrix ΞΞΞ as ΞΞΞ = ζ (I− (B′)+B′) with a positive constant ζ such that

P = ζ (I− (B′)+B′)2. (1.56)
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Although (1.56) provides an exact solution to B′P = 0, the matrix (I− (B′)+B′) is always rank
deficient and P in (1.56) is always positive semi-definite, not positive definite. It is this reason that
one additional term is added to (1.56):

P = ζ (I− (B′)+B′)2 +ρI, (1.57)

where ρ is a small positive number such that B′P is sufficiently close to the zero matrix.

Once the matrix P is obtained by (1.57), B′P = 0 (approximately) holds and the determinant D
becomes

D = R(R+B′QB+B′A′PAB). (1.58)

Then, the main equation (1.53) to be solved for Q and R is simplified as

RK+B′QΦΦΦ+ΨΨΨ = 0, (1.59)

where ΦΦΦ := A+BK and ΨΨΨ := B′A′PA(A+BK). For the sake of simplicity, let us assume Q to be
diagonal and decompose each matrix as

Q=

Q1 0 0
0 Q2 0
0 0 Q3

 , K= [KI KP KD], B=

B1
B2
B3

 , ΦΦΦ=

Φ11 Φ12 Φ13
Φ21 Φ22 Φ23
Φ31 Φ32 Φ33

 , ΨΨΨ= [Ψ1 Ψ2 Ψ3],

(1.60)
and R is a scalar because only one control input is considered in this report. Substituting (1.60)
into (1.59) yields the following equation:

KI B1Φ11 B2Φ21 B3Φ31
KP B1Φ12 B2Φ22 B3Φ32
KD B1Φ13 B2Φ23 B3Φ33




R
Q1
Q2
Q3

=−

Ψ1
Ψ2
Ψ3

 . (1.61)

There are four unknowns (R, Q1, Q2, Q3) and three equations, and hence, there exist infinite num-
ber of solutions. For brevity, let us assume Q3 = ηQ2 with some constant η and (1.61) becomesKI B1Φ11 B2Φ21 +ηB3Φ31

KP B1Φ12 B2Φ22 +ηB3Φ32
KD B1Φ13 B2Φ23 +ηB3Φ33

 R
Q1
Q2

=−

Ψ1
Ψ2
Ψ3

 . (1.62)

Then, the solution to (1.62) is easily found as R
Q1
Q2

=−

KI B1Φ11 B2Φ21 +ηB3Φ31
KP B1Φ12 B2Φ22 +ηB3Φ32
KD B1Φ13 B2Φ23 +ηB3Φ33

−1Ψ1
Ψ2
Ψ3

 , (1.63)

where it is assumed that the inverse matrix in (1.63) exists with a proper selection of η , and
Q3 = ηQ2. Hence, we have obtained the explicit solutions for P, Q, and R that are given in (1.57)
and (1.63), respectively.
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Figure 1.7: Block diagram of the controlled system.

Following the same procedure, we can derive the explicit solutions for a PI control case where
K = [KI KP]: [

R
Q1

]
=−

[
KI B1Φ11 +ηB2Φ21
KP B1Φ12 +ηB2Φ22

]−1[
Ψ1
Ψ2

]
, (1.64)

where Q2 = ηQ1 and the matrix P is again given by (1.57). In this case, R is a scalar and Q and P
are 2 by 2 matrices.

The block diagram describing the controlled system is displayed in Figure 1.7. The control
force signal is generated by the MPC and inserted into the WEC plant that is also disturbed by the
wave force. Then, the plant outputs four signals (see the Cretel’s model (1.12)), and among them
the controller uses z and v (vertical position and velocity of the buoy, respectively) to calculate its
control signal that is applied to the plant. The goal is to maximize the mechanical power capture
which is the product of the control force and the velocity of the buoy.

Let us first design the MPC that behaves as a PI controller, so-called the MPC-PI, when con-
straints are inactive. Since only two state variables (z and v) are used for the MPC, a simplified
plant model of a second order is employed in this report that is obtained by the MATLAB com-
mand tfest, instead of the fourth-order Cretel’s model (1.12). In the simplified model, the input
is the control signal and the outputs are z and v. The state-space representation in a controllable
canonical form is given by

ẋxx(t) = Acxxx(t)+Bcuuu(t),
yyy(t) = Ccxxx(t)+Dcuuu(t),

(1.65)
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where xxx(t) = [z(t) v(t)]′ is the state vector and uuu(t) is the control vector. The matrices in (1.65) are
obtained by

Ac =

[
0 1

−15.66 −1.369

]
, Bc =

[
1.201
−1.645

]
, Cc =

[
1 0
0 1

]
, Dc =

[
0
0

]
. (1.66)

Since an MPC needs a difference equation model, (1.65) must be transformed to a discrete-time
representation:

xxx(k+1) = Axxx(k)+Buuu(k),
yyy(k) = Cxxx(k)+Duuu(k),

(1.67)

where ·(k) is a quantity at the time step k and xxx(k) = [z(k) v(k)]′. Assuming the sampling interval
Ts = 0.005 s, the matrices in (1.67) are given by

A =

[
0.9998 0.004983
−0.07804 0.993

]
, B =

[
0.005986
−0.008431

]
, C =

[
1 0
0 1

]
, D =

[
0
0

]
. (1.68)

In discretizing (1.65), the zero-order hold method was employed to realize D = [0 0]′ in (1.68)
because the MPC Toolbox prohibits direct feedthrough from an input (i.e., manipulated variable)
to an output.

Figure 1.8 shows the Bode diagram from the input u(t) (control signal) to the output v(t) ob-
tained by the simplified model (1.65) and the original model (1.12) which has four state variables.
From the Figure 1.8, it is found that the simplified model matches well the original one for the
frequency range of interest ( f ∈ [0.1 1.0]).

Then, a PI controller is easily designed in a form of (1.47) such that

uuuPI(t) = Kxxx(t), (1.69)

where K = [KI KP] and KI and KP are the I and P gains respectively, shown in Table 1.3. Next,
given the gain matrix K, the weight matrices P, Q, and R used in the cost function of MPC are
explicitly obtained by (1.57) and (1.64). In this report, the prediction horizon N = 2 is employed
and the control horizon is set as the same as the prediction horizon N. The obtained control results
such as the control forces, velocities of the buoy, and the mean power capture will be shown in
Chapter 2.

Next, let us consider the MPC that behaves as an FBR controller (MPC-FBR), which can be
developed in a similar manner. However, the FBR controllers are in a transfer function form, so
we have to transform them to the state feedback form (1.47). In the time domain, (1.11) transforms
to the following integro-differential equation:

u̇+a1u+a0

∫
udt = b2v̇+b1v+b0z, (1.70)

where zero initial conditions are assumed. Upon defining the left hand side of (1.70) as Uc(t),
(1.70) is rewritten as

Uc = [b0 b1 b2]

z
v
v̇

 . (1.71)
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Figure 1.8: Bode diagram of the simplified (second order) and original (fourth order) models.

If the term v̇ can be accurately evaluated via a numerical differentiator, (1.71) is exactly of the
form of (1.47). Then, the actual control force u(t) is retrieved by solving the integro-differential
equation (1.70). Since (1.71) is exactly in the form of PID controllers, b0, b1, and b2 correspond
to KI , KP, and KD, respectively. Once these gains are given as in Table 1.5, the weight matrices P,
Q, and R for MPC are explicitly obtained by (1.57) and (1.63).

The obtained MPC-FBR results such as the control forces, velocities of the buoy, and the mean
power capture are given in the next chapter (Chapter 2).

It is noted that since (1.70) has three state variables (z,v,v̇), we should again employ a simplified
plant model, but now of a third order. In the simplified model, the input is the control signal and
the outputs are z, v, and v̇. The state-space representation in a controllable canonical form is given
by (1.65) with the state vector xxx(t) = [z(t) v(t) v̇(t)]′. The matrices in (1.65) are obtained by

Ac =

 0 1 0
0 0 1

−721.6 −78.64 −46.03

 , Bc =

 0
55.38
−2549

 , Cc =

1 0 0
0 1 0
0 0 1

 , Dc =

0
0
0

 . (1.72)
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Figure 1.9: Bode diagram of the simplified (third order) and original (fourth order) models.

Its discrete-time representation is given by (1.67) with

A =

 1 0.004998 1.159×10−5

−0.008365 0.9991 0.004465
−3.222 −0.3595 0.7936

 , B =

0.000642
0.2473
−11.43

 , C =

1 0 0
0 1 0
0 0 1

 , D =

0
0
0

 .
(1.73)

Figure 1.9 shows the Bode diagram from the input u(t) (control signal) to the output v(t) obtained
by the simplified model (1.72) and the original model (1.12) which has four state variables. From
the figure, it is found that the simplified model matches well the original one for the frequency
range of interest ( f ∈ [0.1 1.0]).
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1.6 Prediction

In the case of the “classical model” or perfect prediction the entire wave history is known ahead of
time. In a realistic environment the exact wave profile acting on a WEC device will not be known.
Hence, to combat the stochastic nature of the wave spectra, a few signal processing techniques will
be used to estimate a model to use for the prediction. Using a given amount of current wave data
each prediction method will determine its own prediction model for the wave data to run an MPC
model.

1.6.1 Autoregressive (AR) model

A signal is said to be autoregressive (AR) of order p if its kth sample linearly depends on its p
previous samples as well as an additive white noise. An AR signal is interpreted as the output of a
infinite impulse response filter (IIR) to a white Gaussian noise input. The recursive relationship of
an AR model is

ŷk =
p

∑
i=1

aiyk−i +σuk, (1.74)

where σ2 is the variance of the white Gaussian noise. This relationship can also be written as

ŷk = aaa′yyyk−1 +σuk, (1.75)

where

yyyk−1 = [yk−1, . . . ,yk−p]
′, (1.76)

aaa = [a1, . . . ,ap]
′. (1.77)

Note that aaa is a vector with the p coefficients that define the AR model. The optimal estimation
of these coefficients can be performed through different methods such as least-squares or using the
Yule-Walker equations [12]. These methods require a number of samples of the signal y as

yyy = [ym, . . . ,ym−Nd+1], (1.78)

where Nd is the number of samples of the signal y available. In the implementation of the AR
model in this work, the aaa coefficients are recalculated every time a new signal sample became
available. However, the number of samples used for this recalculation remains the same to Nd
which means that the oldest sample is removed from the calculation once a new sample arrives.
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Relation (1.74) can be interpreted as the one step prediction of the signal y. The prediction of
the signal two samples into the future can be writen as

ŷk+1 = a1ŷk +a2yk−1 +a3yk−2 + . . .+apyk+1−p, (1.79)

where ŷk is obtained from the one step prediction in (1.74). Equation (1.79) can be written in terms
of only the data available as

ŷk+1 = a1

p

∑
i=1

aiyk−i +
p

∑
i=2

aiyk+1−i. (1.80)

The prediction h-steps into the future can be expressed as

ŷk+h =
p

∑
i=1

aiỹk+h−i, (1.81)

where

ỹk+h−i =

{
ŷk+h−i, if k+h− i≥ 0,
yk+h−i, if k+h− i < 0.

(1.82)

1.6.2 Autoregressive-moving-average (ARMA) model

To define an autoregressive-moving-average (ARMA) model it is important to first define the
moving-average (MA) part. A signal is said to be represented by a MA model if it can be de-
scribed by

ŷk =
q

∑
j=0

b juk− j, (1.83)

where q is the order of the MA model and uk− j are realizations of a white noise process. A MA
signal simply is a white Gaussian noise filtered by a finite impulse response (FIR) filter.

The combination of the AR model in (1.74) with the MA model in (1.83) yields the autoregressive-
moving-average (ARMA) model which can be expressed as

ŷk =
p

∑
i=1

aiyk−i +
q

∑
j=0

b juk− j. (1.84)
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This relationship can also be written as

ŷk = aaa′yyyk−1 +bbb′uuuk, (1.85)

where

yyyk−1 = [yk−1, . . . ,yk−p]
′, (1.86)

aaa = [a1, . . . ,ap]
′, (1.87)

uuuk = [uk, . . . ,uk−q]
′, (1.88)

bbb = [b0, . . . ,bq]
′. (1.89)

Note that aaa is a vector of p coefficients and bbb is a vector of q coefficients which together define
the ARMA model. An ARMA model with p coefficients for its AR part and q coefficients for its
MA part is denoted ARMA(p,q). Note that if q = 0 it corresponds to the regular AR model of
Section 1.6.1. There are multiple approaches to compute both types of coefficients one of which
consists in computing the AR part as described in Section 1.6.1 and then computing those of the
MA part [12]. Just like in the previous section the methods to compute the coefficients need a
number of samples of the signal y as

yyy = [ym, . . . ,ym−Nd+1], (1.90)

where Nd is the number of samples of the signal y available. In the implementation of the AR
model in this work, the aaa coefficients are recalculated every time a new signal sample became
available. However, the number of samples used for this recalculation remains the same to Nd
which means that the oldest sample is removed from the calculation once a new sample arrives.

1.6.3 Autoregressive (AR-FF) model with forgetting factor

The autoregressive (AR-FF) model with forgetting factor has the same form as the AR model as
follows

ŷk = aaa′kyyyk−1 +σuk, (1.91)

where aaak ∈ Rp is the vector with the p coefficients that describe the AR model. The estimation
of these coefficients is what differentiates AR model with forgetting factor with the one described
in Section 1.6.1. The generic method for this estimation is the Recursive Least Squares (RLS)
algorithm with exponential forgetting factor [13]

âaak = âaak−1 +Pkyyyk−1(yk− yyy′k−1âaak−1) (1.92)
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with

P−1
t = λP−1

t−1 + yyyk−1yyy′k−1, (1.93)

and where λ ∈ (0,1] is the forgetting factor and the initial values are

P0 > 0, (1.94)
âaa0 = aaa0. (1.95)

Note that the forgetting factor λ is introduced to take into account the time-varying nature of
aaak and is a parameter that usually takes values λ ∼ 0.95 to 0.995. Note also that if λ = 1 the
formulation above results in the standard recursive formulation of the Least Squares estimator.
The prediction using this model occurs in the same way as explained in relations (1.81) and (1.82).
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Chapter 2

Results

To compare all of the previous methods discussed, each method was tested against ten different
wave cases with varying peak period and wave height. These results and the specific wave profiles
are shown in Table 2.1. Since the complex conjugate (CC) is the analytical maximum power
capture for the particular WEC device for each wave profile, each method will compare its power
capture with the theoretical maximum.

Table 2.1: Power capture comparison (power shown in Watts).

# Tp
[s]

Hs
[m] γ CC P PP PI FBR MPC-PI MPC-FBR AR ARMA AR-FF

1 1.58 0.127 1 3.6 2.9 3.4 2.9 3.5 2.9 3.5 3.3 3.3 3.3
2 3.3 4.0 3.4 3.8 3.4 3.8 3.4 3.8 3.7 3.7 3.6

3

2.5
0.127 1 18.4 8.3 17.4 15.4 17.4 15.4 17.4 15.5 15.5 15.5

4 3.3 20.5 9.4 19.4 17.9 19.4 17.9 19.4 17.3 17.4 17.4

5 0.254 1 73.6 33.1 69.5 62.0 70.0 61.8 70.0 62.0 62.2 62.0
6 3.3 81.9 37.9 77.5 72.0 78.0 71.8 78.2 69.6 69.5 69.6

7

3.5
0.127 1 71.0 13.9 66.4 57.1 65.8 56.7 65.8 63.3 65.3 63.1

8 3.3 77.7 15.3 72.8 65.3 72.3 64.9 72.0 70.4 71.7 69.5

9 0.254 1 284.2 55.6 265.9 225.4 259.5 223.9 259.5 252.7 260.8 252.4
10 3.3 310.7 61.2 290.5 262.0 290.4 260.3 289.3 280.0 284.9 275.1

We can see from the table that the standard MPC method with perfect prediction (PP) will
always outperform other prediction based MPC methods. As explained earlier, with perfect pre-
diction the entire wave history is known. The other methods, AR, ARMA, and AR-FF, will always
under perform compared to perfect prediction as we can also see from Figure 2.1.

In the case of the PI controller, using a single order estimation of the complex conjugate returns
similar results with the other prediction methods. The benefit to this is that the PI controller
requires no prediction, so there is no computation strain to run the PI controller in application. We
see that the MPC-PI controller performs as well as the PI controller. For example, let us measure
the performance by FIT (%) - the mean square error between the MPC-PI and PI control signals:

FIT = (1−NRMSE)×100, (2.1)
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where the term NRMSE is defined as

NRMSE =
‖uPI−uMPC‖2

‖uPI− ūPI‖2
, (2.2)

where uPI is the control signal created by the PI controller, ūPI is the mean value of uPI, and uMPC
is the control signal calculated by the MPC-PI controller. For example, the FIT is calculated as
99.64% for test case #10, which verifies that the obtained MPC-PI behaves as the PI controller
pretty well.

As for the FBR method, we can see that this higher order model improves the complex con-
jugate estimation and has the best power captures of all the methods. This implies that using an
FBR feedback controller will outperform any realizable MPC controllers as only a few cases of
the perfect prediction perform better. For these specific cases, fp = 0.2857 Hz, the peak period of
the wave is far away enough from the devices resonant frequency fr = 0.6667 Hz. Due to this, any
frequency band that does not expand out to the resonant frequency will not properly capture the
device dynamics. To accommodate for this the frequency band needs to cover a larger frequency
band and as such the overall performance of the FBR will start to suffer. Even with this issue, the
FBR performed less than a percent of the MPC perfect prediction model. Also, it is seen that the
designed MPC-FBR controller exactly behaves as the FBR controller. More specifically, the FIT
of the MPC-FBR control signal is calculated as 99.35% compared with that of the FBR controller
for test case #10.

Figure 2.2 - Figure 2.7 display the power spectral density obtained by the CC, PI, FBR, and P
(damping) controllers for test cases #1, #2, #5, #6, #9, and #10, respectively. The wave forces are
also presented and the average power capture for each controller is specified in the legend for ref-
erence. As seen from the figures, all the controllers make a similar shape with the wave profile; the
power is absorbed the most at the frequency at which the wave force has its peak. Also, the power
captured by the CC lies in a broader range of frequencies than the other controllers, especially in
low frequencies . The FBR shares a similar shape with the CC and the PI captures a little less
power than the CC or the FBR. The P controller absorbs the least amount of power. As expected,
the waves with smaller γ have a broader range of frequencies, and hence, the corresponding con-
trollers absorb power from this broad frequency band. For example, compare Figure 2.4 (γ = 1)
with Figure 2.5 (γ = 3.3).

In order to clearly see that the FBR controller covers a broader range of frequencies than
the PI or the P controllers, Figure 2.2 - Figure 2.7 are reused to plot the power ratio; the power
captured by the PI, FBR, and P controllers is divided by the power captured by the CC controller
(theoretical maximum) for each frequency. The results are presented in Figure 2.8 - Figure 2.13,
clearly showing that the FBR captures almost as much power as the CC, from a broader range of
frequencies than the PI or the P controllers. The efficiency of the PI controller is high only in a
narrow frequency band and the P controller absorbs the least power among the three.

Figure 2.14 shows the time history of the control signals for test case #10 created by the MPC
with perfect prediction (PP), PI, and FBR controllers, and Figure 2.15 is a zoomed-in figure for
the time range [300,400] for a clear view. It is seen that the three control signals are in phase on
the whole. More specifically, the MPC with PP and the FBR controller share a similar profile and
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Figure 2.1: Power Capture comparison with each control method.

Figure 2.2: Power spectral density obtained by CC, PI, FBR, and P controllers for test case #1.
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Figure 2.3: Power spectral density obtained by CC, PI, FBR, and P controllers for test case #2.

Figure 2.4: Power spectral density obtained by CC, PI, FBR, and P controllers for test case #5.
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Figure 2.5: Power spectral density obtained by CC, PI, FBR, and P controllers for test case #6.

Figure 2.6: Power spectral density obtained by CC, PI, FBR, and P controllers for test case #9.
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Figure 2.7: Power spectral density obtained by CC, PI, FBR, and P controllers for test case #10.

Figure 2.8: Power ratio divided by the power captured by CC for test case #1.

Figure 2.9: Power ratio divided by the power captured by CC for test case #2.
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Figure 2.10: Power ratio divided by the power captured by CC for test case #5.

Figure 2.11: Power ratio divided by the power captured by CC for test case #6.

Figure 2.12: Power ratio divided by the power captured by CC for test case #9.

Figure 2.13: Power ratio divided by the power captured by CC for test case #10.
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Figure 2.14: Control forces obtained by the MPC with PP, PI, and FBR controllers for test case
#10.

have a little larger amplitudes, compared with the PI controller. In Figure 2.16 the time history
of the velocities of the buoy for test case #10 obtained by the MPC with PP, PI, and FBR con-
trollers is depicted, and Figure 2.17 is a zoomed-in figure for the time range [300,400]. Again,
the MPC with PP and FBR controller have a similar velocity profile compared with the PI con-
troller. Figure 2.18 displays the time history of the mechanical power for test case #10 captured
by using the MPC with PP, PI, and FBR controllers, and Figure 2.19 is a zoomed-in figure for
the time range [300,400]. Again, the MPC with PP and FBR controller share a similar power
capture profile together, supporting the finding that the average power captured by the MPC with
PP is commensurate with that captured by the FBR controller (see Table 2.1). The MPC-PI and
MPC-FBR controllers yield almost the same results with the PI and FBR controllers, respectively,
so their results are not shown here for brevity. The MPC-PI and MPC-FBR controllers with the
constraint (control input saturation) will be designed in Appendix A and their performance will
also be investigated.

Another useful metric to compare each method is the capture width, or absorption width. The
capture width is defined as the ratio of the power captured to the wave-energy transport. The
maximum absorption width is also related as the width equal to the wavelength of the wave divided
by 2π .

As shown in Table 2.2 and Figure 2.20, the perfect prediction method and the FBR have a
similar capture width as the max capture width, i.e., the complex conjugate capture width. Inter-
estingly, we can see that the max capture width for this particular WEC device is at larger peak
frequencies. As the peak frequency for the wave spectra increases, the WEC device has a better
capture width for the incoming waves.

In conclusion, as we can see from comparing the causal realization methods to the standard
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Figure 2.15: Control forces obtained by the MPC with PP, PI, and FBR controllers (zoomed in).

MPC methods, the causal realization methods perform better if not the same as the standard MPC.
The major benefit to using these causal realization methods is that there is no prediction involved
with determining these controllers. Due to the removal of the prediction strain, there is less depen-
dence and the computational strain of estimating and optimizing over a particle wave history to a
device.

Figure 2.16: Velocities obtained by the MPC with PP, PI, and FBR controllers for test case #10.

47



Figure 2.17: Velocities obtained by the MPC with PP, PI, and FBR controllers (zoomed in).

Figure 2.18: Mechanical power captured by using the MPC with PP, PI, and FBR controllers for
test case #10.
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Figure 2.19: Mechanical power captured by using the MPC with PP, PI, and FBR controllers
(zoomed in).

Table 2.2: Capture width comparison.

# Tp
[s]

Hs
[m] γ CC PP P PI FBR MPC-PI MPC-FBR AR ARMA AR-FF

1 1.58 0.127 1 0.087 0.083 0.068 0.070 0.083 0.070 0.083 0.080 0.079 0.080
2 3.3 0.091 0.086 0.076 0.077 0.087 0.077 0.087 0.084 0.083 0.082

3

2.5
0.127 1 0.279 0.263 0.124 0.234 0.264 0.233 0.264 0.235 0.235 0.235

4 3.3 0.294 0.278 0.135 0.257 0.279 0.257 0.279 0.249 0.249 0.249

5 0.254 1 0.279 0.263 0.124 0.235 0.265 0.234 0.265 0.235 0.235 0.235
6 3.3 0.294 0.278 0.135 0.259 0.280 0.258 0.281 0.250 0.250 0.250

7

3.5
0.127 1 0.768 0.718 0.150 0.617 0.712 0.613 0.712 0.684 0.707 0.683

8 3.3 0.797 0.746 0.156 0.670 0.742 0.666 0.739 0.722 0.735 0.713

9 0.254 1 0.768 0.719 0.149 0.610 0.702 0.606 0.702 0.683 0.705 0.682
10 3.3 0.797 0.745 0.156 0.672 0.745 0.667 0.742 0.718 0.731 0.706
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Figure 2.20: Comparison of capture width of various methods.
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Chapter 3

Conclusions

This report studies a key question in wave energy control research: the need for and benefit of
wave prediction/forecasting. While the study utilizes a single specific device to perform a quanti-
tative comparison, the results will likely be similar in all resonant WEC devices. In summary, the
results of this study show a very limited benefit to implementing wave prediction; feedback based
controllers are capable of providing nearly the same performance without the added complication.

Additionally, it is important to note that while the prediction algorithms studied here performed
relatively well, this scenario studied was highly simplified. The details of real-world implementa-
tion for such a system, including sensor selection, wave spreading, and noncollocation, are much
more complicated and likely to cause a degradation in performance. Thus, the results shown here
for control strategies requiring prediction (PP, AR, ARMA, and AR-FF) represent something of a
best-case-scenario.

Given this consideration, the performance of the feedback-only controllers (PI, FBR, MPC-
PI, and MPC-FBR) is even more attractive. These controllers require only signals/sensors which
are readily available (position/velocity). Additionally, by incorporating the PI and FBR control
designs within MPC frameworks, the ability to incorporate constraints is maintained as shown in
Appendix A.
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Appendix A

Constrained MPC

In real-life applications, there must be various kinds of constraints on the control input and/or
system output, and one strength of using MPC strategies is their capability to handle constraints.
Hence, the MPC-PI and the MPC-FBR controllers with the saturation constraint on the control
force (we call it MPC-PI-CON and MPC-FBR-CON respectively) are designed and their perfor-
mance is provided in this appendix. It is shown that the power captured by the MPC-PI-CON and
the MPC-FBR-CON is poor only by a small amount when compared with the unconstrained MPC-
PI and MPC-FBR even though a short horizon N = 2 is employed. For both controllers (MPC-PI-
CON and MPC-FBR-CON), the control force signal is saturated within the range [-10000 10000]
(N).

First, to compare unconstrained/constrained MPC-PI, Figure A.1 shows the time history of the
control signals generated by the PI, MPC-PI, and MPC-PI-CON controllers for test case #10, and
Figure A.2 is a zoomed-in figures for the time range [350,410] for a clear view. It is seen from
the figures that the constraint is well satisfied and the three curves almost overlap with each other
when the constraint is not active. In Figure A.3 and Figure A.4, the time history of the velocities of
the buoy obtained by the PI, MPC-PI, and MPC-PI-CON controllers is depicted. Since the control
signal of the MPC-PI mimics the PI control signal pretty well, their resulting velocities are also
quite similar. Also, we can see that the MPC-PI-CON yields a smaller velocity than the others
when the control signal is saturated. Figure A.5 and Figure A.6 display the time history of the
mechanical power captured by using the PI, MPC-PI, and MPC-PI-CON controllers. As expected,
when the constraint is active, the power is less captured than when the constraint is inactive. More
specifically, the power captured by each controller is 261.99 W (PI), 260.26 W (MPC-PI), and
241.37 W (MPC-PI-CON), indicating that the performance of the MPC-PI-CON is reduced by
7.26% when compared with the unconstrained MPC-PI.

Likewise, the performance of the FBR, MPC-FBR, and MPC-FBR-CON is compared for test
case #10, and the control signal is again saturated within the range [-10000 10000] (N). It is seen
from Figure A.7 that the constraint is well satisfied and the three curves overlap with each other
when the constraint is inactive. Figure A.8 is a zoomed-in figure for the time range [350,410] for
a clear view. In Figure A.9 and Figure A.10, the time history of the velocities of the buoy obtained
by the FBR, MPC-FBR, and MPC-FBR-CON controllers is depicted. It is again found that the
MPC-FBR-CON yields a smaller velocity when the control signal is saturated. Figure A.11 and
Figure A.12 display the time history of the mechanical power captured by using the FBR, MPC-
FBR, and MPC-FBR-CON controllers. As expected, less power is captured when the constraint
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Figure A.1: Control forces obtained by the PI, MPC-PI, and MPC-PI-CON controllers.

Figure A.2: Control forces obtained by the PI, MPC-PI, and MPC-PI-CON controllers (zoomed
in).
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Figure A.3: Velocities obtained by the PI, MPC-PI, and MPC-PI-CON controllers.

Figure A.4: Velocities obtained by the PI, MPC-PI, and MPC-PI-CON controllers (zoomed in).
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Figure A.5: Mechanical power captured by using the PI, MPC-PI, and MPC-PI-CON controllers.

Figure A.6: Mechanical power captured by using the PI, MPC-PI, and MPC-PI-CON controllers
(zoomed in).
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Figure A.7: Control forces obtained by the FBR, MPC-FBR, and MPC-FBR-CON controllers.

is active. More specifically, the power captured by each controller is 290.39 W (FBR), 289.32 W
(MPC-FBR), and 269.25 W (MPC-FBR-CON), indicating that the performance of the MPC-FBR-
CON is reduced by 7.09% when compared with the MPC-FBR.

In conclusion, the MPC-PI-CON and MPC-FBR-CON controllers with “no prediction/forecasting”
could successfully handle the constraint and still maintain good power capture compared with the
unconstrained cases (MPC-PI and MPC-FBR).
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Figure A.8: Control forces obtained by the FBR, MPC-FBR, and MPC-FBR-CON controllers
(zoomed in).

Figure A.9: Velocities obtained by the FBR, MPC-FBR, and MPC-FBR-CON controllers.
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Figure A.10: Velocities obtained by the FBR, MPC-FBR, and MPC-FBR-CON controllers
(zoomed in).

Figure A.11: Mechanical power captured by using the FBR, MPC-FBR, and MPC-FBR-CON
controllers.

61



Figure A.12: Mechanical power captured by using the FBR, MPC-FBR, and MPC-FBR-CON
controllers (zoomed in).
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Appendix B

Prediction Sensitivity

In order to determine the optimal values necessary for the methods discussed in Section 1.6, the
wave spectra were limited to peak periods away from the device’s resonance and at the largest wave
height. As such, the analysis will cover the wave profiles of #5, #6, #9, and #10 from Table 2.1.
The sensitivity analysis will look at the response of the three prediction methods: Autoregressive,
Autoregressive Moving-Average, and Autoregressive with a forgetting factor. We will be compar-
ing the prediction results directly to MPC with perfect prediction results shown in Table 2.1.

(a) Wave #10 (b) Wave #9

(c) Wave #6 (d) Wave #5

Figure B.1: Autoregressive Responses
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B.1 Autoregressive

For the Autoregressive (AR) case we are going to look at the response of the autoregressive method
by solely varying the model’s order. Shown in Figure B.1, we can see the overall response of the
autoregressive to be around 93%−95% compared to the perfect prediction power output.

We can see that for all four sea states the lower orders around 5-15 have the more optimal
responses. We can also see that at the lower orders the AR method has a significant power drop
off. Overall at higher orders greater than fifteen the power captured starts to stabilize and does not
improve at all.

Due to the fact that computational complexity increases significantly with the model’s order,
lower model orders are preferred in general. Due to this the range of search for an optimal model
order should ideally be between 5-15. At lower orders the quality of response is too low due to the
order not being large enough to model enough of the wave profile for the prediction.

B.2 Autoregressive Moving-Average

For the Autoregressive Moving-Average (ARMA) method we will look at both the prediction op-
tion and the forecast option separately. Again we will be comparing the power output with the
perfect prediction power output as a reference.

B.2.1 Prediction

For the prediction results, shown in Figure B.2, we see that the overall average for the prediction
method is below eighty percent. We can see that the prediction output overall performs the worst
of all of the methods. However, we can see that varying the moving average order tends to increase
the power output overall. We do see that there is a bit of a consistent trend for the output to improve
slightly with increasing the moving average order, although the trade off can be noticed at moving
average orders around 6 for various model order cases.

B.2.2 Forecast

For the forecasting results, shown in Figure B.3, we see some more consistent responses. In both
ARMA methods we see the highest responses from orders 21-25 but an immediate drop off to
the worst response with the lower orders performing more consistent. On average the forecast
method is performing around 94%−95%. We see that this performance is slightly better than the
autoregressive but at different order levels.
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(a) Wave #10 (b) Wave #9

(c) Wave#6 (d) Wave #5

Figure B.2: Autoregressive ARMA Prediction

The optimal values for the ARMA case using the forecasting prediction seem to be around
model order of 25 and using a moving average of 5 for the prediction. For determining the optimal
ARMA case we plan on using only forecasting as it outperforms the prediction case in all model
orders and moving average orders.

B.3 Autoregressive with Forgetting Factor

As for the autoregressive with forgetting factor (AR-FF) method, shown in Figure B.4, we can see
that the power output average is around 0.92. We can also see that as the forgetting factor slowly
increases the power output slightly increases. There are however, some noticeable orders where
the forgetting factor tends to lose power capture. Similar to the responses for the AR method, the
lowest orders below five have terrible power captures and some are even losing power. Also similar
are the orders and shift in overall response of the orders with respect to optimal power capture.

Overall we can observe that the order trends from the AR method translate well over to the
recursive method. As for choosing the forgetting factor, on average just using the largest forgetting
factor normally improves power capture but there are some noticeable cases where this trend is
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(a) Wave #10 (b) Wave #9

(c) Wave #6 (d) Wave #5

Figure B.3: Autoregressive ARMA Forecast

not followed. The major drawback of increasing the forgetting factor is again the computational
complexity coupled with the model’s order. As the overall increase in power output is not enough
to justify the larger computational load on the prediction, using the forgetting factor of 0.99 is
sufficient.
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(a) Wave #10 (b) Wave #9

(c) Wave #6 (d) Wave #5

Figure B.4: Autoregressive with Forgetting Factor
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