Particle-to-sCO2 Heat Exchanger Designs for Concentrating Solar Power

DOE SuNLaMP Project 1507, Contacts: Cliff Ho, Matt Carlson, Kevin Albrecht, Sandia National Laboratories

Problem Statement

- Conventional molten-salt central receiver systems are limited to temperatures <600 °C
- Advanced power cycles (combined air Brayton, supercritical CO₂ Brayton) require higher temperatures (>700 °C)
- Particle receivers are being investigated to achieve these higher temperatures, but particle heat exchangers operating at necessary temperatures and pressures (>20 MPa) do not exist

Particle/sCO₂ Heat Exchanger Design Options

Design Options	Pros	Cons	Risk Mitigation
B&W Fluidized Bed HX Direction of Bulk Air Flow Particle Food Air Plant Monitor Particle Bulk Air Plant Ai	High heat transfer coefficient, low heat transfer area Vast industry experience	Parasitic power requirements and heat loss from fluidizing gas	Minimization of fluidization velocity to reduce power requirements and heat loss through CFD modeling
Solex – Shell-and-Tube Moving Packed Bed HX	Gravity-driven flow Tubes can handle high-pressure sCO ₂ Lower pressure drop of sCO2 in tubes relative to plates	Particle flow stagnation area on top of tube and shadow area beneath tube may impede heat transfer	Improve particle/tube heat transfer via staggered tube arrangement with optimized spacing and/or extended surfaces
VPE/Solex – Shell-and-Plate Moving Packed Bed HX	Gravity-driven flow High potential surface area for particle contact Higher heat transfer coefficient than shell- and-tube due to narrow channels and large surface area	Thermal gradients and warping of plates, numerous nozzles, potential for non-uniform particle flow	Use of multiple plate banks to minimize thermal gradient, proper spacing of plates, and adequate thermal insulation around nozzles

Solarized Supercritical CO₂ (sCO2) Flow System

Objectives

- Design, develop, and test the world's first particle/sCO₂ heat exchanger to enable solarized sCO2 Brayton cycles operating at >50% efficiency
 - Particle temperature ≥ 720 °C
 - sCO₂ temperature ≥ 700 °C
 - sCO₂ pressure up to 20 MPa
 - Overall heat transfer coefficient ≥ 100 W/m²-K
 - Total cost of power-block components ≤ \$900/kW_a

Approach

- Work with industry to design and develop particle-sCO₂ heat exchanger that meets cost/performance requirements
- Evaluate alternative designs including fluidized-bed and moving packed-bed (shell-and-tube, shell-and-plate) heat exchangers
- Integrate heat exchanger with high-temperature falling particle receiver and modular sCO₂ flow loop

Integrated System

Particle receiver testing at the National Solar Thermal Test Facility at Sandia National Laboratories, Albuquerque, NM

High-Temperature Particle Receiver

Solex/VPE particle/sCO2 shell-and-plate heat exchanger

- Heat duty = 100 kW
- $T_{particle,in} = 775 \, ^{\circ}C$
- T_{particle,out} = 570 °C
- $T_{sCO2,in} = 550 \, ^{\circ}C$
- T_{sCO2,out} = 700 °C
- $\dot{m} = 0.5 \text{ kg/s}$

sCO₂ flow system provides pressurized sCO₂ at 550 °C to heat exchanger for test and evaluation

