Particle-to-sCO2 Heat Exchanger Designs for Concentrating Solar Power DOE SuNLaMP Project 1507, Contacts: Cliff Ho, Matt Carlson, Kevin Albrecht, Sandia National Laboratories #### **Problem Statement** - Conventional molten-salt central receiver systems are limited to temperatures <600 °C - Advanced power cycles (combined air Brayton, supercritical CO₂ Brayton) require higher temperatures (>700 °C) - Particle receivers are being investigated to achieve these higher temperatures, but particle heat exchangers operating at necessary temperatures and pressures (>20 MPa) do not exist #### Particle/sCO₂ Heat Exchanger Design Options | Design Options | Pros | Cons | Risk Mitigation | |--|--|--|--| | B&W Fluidized Bed HX Direction of Bulk Air Flow Particle Food Air Plant Monitor Particle Bulk Air Plant Ai | High heat transfer
coefficient, low heat
transfer area Vast industry
experience | Parasitic power
requirements and
heat loss from
fluidizing gas | Minimization of
fluidization velocity to
reduce power
requirements and
heat loss through
CFD modeling | | Solex – Shell-and-Tube
Moving Packed Bed HX | Gravity-driven flow Tubes can handle
high-pressure sCO ₂ Lower pressure drop
of sCO2 in tubes
relative to plates | Particle flow
stagnation area
on top of tube
and shadow area
beneath tube
may impede heat
transfer | Improve particle/tube
heat transfer via
staggered tube
arrangement with
optimized spacing
and/or extended
surfaces | | VPE/Solex – Shell-and-Plate
Moving Packed Bed HX | Gravity-driven flow High potential
surface area for
particle contact Higher heat transfer
coefficient than shell-
and-tube due to
narrow channels and
large surface area | Thermal
gradients and
warping of plates,
numerous
nozzles, potential
for non-uniform
particle flow | Use of multiple plate
banks to minimize
thermal gradient,
proper spacing of
plates, and adequate
thermal insulation
around nozzles | #### Solarized Supercritical CO₂ (sCO2) Flow System ### **Objectives** - Design, develop, and test the world's first particle/sCO₂ heat exchanger to enable solarized sCO2 Brayton cycles operating at >50% efficiency - Particle temperature ≥ 720 °C - sCO₂ temperature ≥ 700 °C - sCO₂ pressure up to 20 MPa - Overall heat transfer coefficient ≥ 100 W/m²-K - Total cost of power-block components ≤ \$900/kW_a ### **Approach** - Work with industry to design and develop particle-sCO₂ heat exchanger that meets cost/performance requirements - Evaluate alternative designs including fluidized-bed and moving packed-bed (shell-and-tube, shell-and-plate) heat exchangers - Integrate heat exchanger with high-temperature falling particle receiver and modular sCO₂ flow loop ## **Integrated System** Particle receiver testing at the National Solar Thermal Test Facility at Sandia National Laboratories, Albuquerque, NM High-Temperature Particle Receiver Solex/VPE particle/sCO2 shell-and-plate heat exchanger - Heat duty = 100 kW - $T_{particle,in} = 775 \, ^{\circ}C$ - T_{particle,out} = 570 °C - $T_{sCO2,in} = 550 \, ^{\circ}C$ - T_{sCO2,out} = 700 °C - $\dot{m} = 0.5 \text{ kg/s}$ sCO₂ flow system provides pressurized sCO₂ at 550 °C to heat exchanger for test and evaluation