

SANDIA REPORT
SAND2017-10178
Unlimited Release
Printed September 2017

Full State Feedback Control for Virtual
Power Plants

A. P. Sakis Meliopoulos, George Cokkinides, Boqi Xie, Chiyang Zhong, Jay Johnson

Prepared by
Georgia Institute of Technology
Atlanta, Georgia

and

Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-NA-0003525.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States Government, nor any agency thereof,

nor any of their employees, nor any of their contractors, subcontractors, or their employees,

make any warranty, express or implied, or assume any legal liability or responsibility for the

accuracy, completeness, or usefulness of any information, apparatus, product, or process

disclosed, or represent that its use would not infringe privately owned rights. Reference herein

to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,

recommendation, or favoring by the United States Government, any agency thereof, or any of

their contractors or subcontractors. The views and opinions expressed herein do not

necessarily state or reflect those of the United States Government, any agency thereof, or any

of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from

 U.S. Department of Energy

 Office of Scientific and Technical Information

 P.O. Box 62

 Oak Ridge, TN 37831

 Telephone: (865) 576-8401

 Facsimile: (865) 576-5728

 E-Mail: reports@osti.gov

 Online ordering: http://www.osti.gov/scitech

Available to the public from

 U.S. Department of Commerce

 National Technical Information Service

 5301 Shawnee Rd

 Alexandria, VA 22312

 Telephone: (800) 553-6847

 Facsimile: (703) 605-6900

 E-Mail: orders@ntis.gov

 Online order: http://www.ntis.gov/search

mailto:reports@osti.gov
http://www.osti.gov/scitech
mailto:orders@ntis.gov
http://www.ntis.gov/search

3

4

SAND2017-10178

Unlimited Release

Printed September 2017

Full State Feedback Control for Virtual Power

Plants

A P Sakis Meliopoulos, George Cokkinides, Boqi Xie, Chiyang Zhong

School of Electrical and Computer Engineering

Georgia Institute of Technology

Jay Johnson

Technical Monitor

Renewable and Distributed Systems Integration

Sandia National Laboratories

5

ACKNOWLEDGMENTS

The Virtual Power Plant project was supported by the Energy and Climate Laboratory Directed

Research and Development Program at Sandia National Laboratories.

6

Contents
Acknowledgments ... 5

Section 1: Executive Summary .. 8

Section 2: Introduction ... 10

Section 3: Object-Oriented Device Modeling ... 16

Section 3.1: Quasi-Dynamic Domain State and Control Quadratized Device Model 17

Section 3.2: Quasi-Dynamic State and Control Algebraic Quadratic Companion Form 18

Section 3.3: Object-Oriented Modeling Example ... 21

Section 4: Automated Construction of Measurement Models... 27

Section 4.1: Measurement Definitions ... 27

Section 4.2: Construction of the Measurement Model at Device Level ... 29

Section 4.3: Construction of the Measurement Model at Network Level .. 32

Section 4.4: Distribution System Distributed Quasi-Dynamic State Estimator (DS-DQSE) 33

4.4.1: DS-DQSE Algorithm ... 35

Section 5: Optimal Power Flow Formation ... 39

Section 5.1: Definition/Formation of Equality Constraints ... 40

Section 5.2: Construction of Inequality Constraints at Network Level ... 41

Section 5.3: Construction of Control Constraints at Network Level ... 43

Section 5.4: Construction of Objective Function at Network Level .. 43

Section 6: Optimal Power Flow Solution Algorithm ... 45

Section 6.1: Linearization .. 46

Section 6.2: Solution of the Linearized Problem ... 48

Section 6.3: Equality Equations Solution (Power Flow Problem) ... 50

Section 6.4: Iterative Linearization/Solution Method .. 51

Section 6.5: Determining Convergence or Addition of New Constraints ... 52

Section 7: Description of Example System .. 54

Section 8: Example DS-DQSE Results .. 59

Section 8.1: Measurement Creation ... 59

Section 8.2: QSE Implementation ... 62

Section 8.3: Test Case Results ... 66

Section 9: Summary and Conclusions ... 75

7

Appendix A: Object-Oriented Modeling Example (Converter with P-Q Control) 76

A.1: Converter Quasi-Dynamic Domain Compact Device Model .. 76

A.2: Converter Quasi-Dynamic Domain Quadratized Device Model .. 78

A.3: Converter Quasi-Dynamic Domain SCAQCF Device Model ... 80

Appendix B: Object-Oriented Algorithm of Constructing the Network SCAQCF Model from Device

SCAQCF Models ... 83

Appendix C: Construction of Network SCAQCF Measurement Model ... 98

Appendix D: Device Operating Constraints... 109

Appendix E: Construction of Equality Constraints in Quadratized OPF Problem 114

Appendix F: Construction of Inequality Constraints in Quadratized OPF Problem 117

Appendix G: Construction of Control Constraints in Quadratized OPF Problem 121

Appendix H: Construction of the Objective Function in Quadratized OPF Problem 122

Appendix I: Linearization of the Quadratized OPF Problem ... 126

I.1: Linearization of the Objective Function .. 126

I.2: Linearization of the Inequality Constraints ... 128

Distribution ... 130

8

Section 1: Executive Summary

This report presents an object-oriented implementation of full state feedback control for virtual

power plants (VPP). The components of the VPP full state feedback control are (1) object-

oriented high-fidelity modeling for all devices in the VPP; (2) Distribution System Distributed

Quasi-Dynamic State Estimation (DS-DQSE) that enables full observability of the VPP by

augmenting actual measurements with virtual, derived and pseudo measurements and performing

the Quasi-Dynamic State Estimation (QSE) in a distributed manner, and (3) automated

formulation of the Optimal Power Flow (OPF) in real time using the output of the DS-DQSE,

and solving the distributed OPF to provide the optimal control commands to the DERs of the

VPP.

The infrastructure of this integrated system is the object-oriented high-fidelity device modeling

within the monitoring devices of the VPP. The modeling approach starts from physically based

models of power devices referred to as compact device models. Any existing model can be used

as a compact device model. The compact model should be mathematically correct, meaning that

the number of states and control variables should be consistent with the number of equations

describing the compact model and the controls should be realizable. A quadratization procedure

and the quadratic integration process are then applied to the compact device model, and the end

result is an object-oriented, in a standardized syntax, interoperable model which is referred to as

state and control algebraic quadratic companion form (SCAQCF). The DS-DQSE and OPF

solvers work directly with the SCAQCF models without any other input (autonomous operation).

The second component of the approach is the DS-DQSE, a critical component for full state

feedback control. The DS-DQSE provides in real-time the estimated states and validated models

by performing QSE. The DS-DQSE is implemented in a distributed architecture where a

distribution system (feeders) are partitioned into several sections. This partition is arbitrary with

each section containing an arbitrary number of loads and resources, controllable or not. The DS-

DQSE runs for each section. It requires that there is at least one local phasor measurement at

each section. Given the measurements and the device SCAQCF models in a distribution system

section, the DS-DQSE creates the measurement mathematical model at device-level. Then, with

the help of network formation techniques, the measurement mathematical model from device-

level are converted to network level measurement models. The state estimation algorithm works

directly with the measurement mathematical models at the network level. The DS-DQSE

provides a quantitative probabilistic consistency check between the network measurement model

and the network model. Specifically, the DS-DQSE provides the best estimate of the states, the

differences (residuals) between the measurements and the model predicted measurements as well

as the expected standard deviation of these quantities. The DS-DQSE it also determines whether

there are bad data and/or model discrepancies by the chi-square test. In case of such bad data, the

source is identified by hypothesis testing. The overall process provides the best estimate of the

state and the validated model of the distribution section. Finally, the output of each DS-DQSE

for each section is sent to the distribution management system where the state and model of the

9

entire distribution system is constructed from the states of each section at a specific time stamp.

We refer to it as the real-time operating conditions and model.

The real time operating conditions and model (also in SCAQCF syntax) enables the optimal use

of distributed energy resources (DER) units and provision of ancillary services incorporating

operational constraints. This is achieved by automatically forming and solving an optimal power

flow with appropriate objective. In this report, the objective is the levelization of the voltage

profile along the distribution circuit. The formation of the OPF problem is automatic by simply

using the objects of the network (in SCAQCF syntax) and the operating constraints (also in

SCAQCF syntax). The automatically formulated OPF problem is then solved to provide the best

settings of the various controls of the DERs as well as utility controls such as capacitor bank

switching, tap changes, etc. The optimal power flow solution algorithm of the OPF solver is an

iterative linear programming method. At each iteration, the OPF is linearized using the co-state

method. The resulting linear optimization problem is in terms of only the control variables. The

problem is converted to a linear program in standard form and solved to provide the optimal

settings of the control variables. The process is repeated to convergence. A couple of iterations

typically suffice. In the actual implementation, the computed optimal settings of the control

variables can be transferred to the hardware that control the corresponding devices.

This report is organized as follows. Section 3 introduces the object-oriented high-fidelity device

modeling approach. Section 4 illustrates the architecture and operation of DS-DQSE. Section 5

presents the definition and formation of the quadratized OPF problem. Section 6 presents the

solution algorithm of the OPF problem. Section 7 presents an example test data for one section in

the distribution system. Section 8 shows the example event data. Section 9 illustrates the

implementation of DS-DQSE in a specific distribution system section. And section 10

summarizes the whole report.

10

Section 2: Introduction

The concept of the Virtual Power Plant (VPP) is quite general referring to collection of resources

and power circuits that are under a coordinated control to make them behave as an entity which

can respond to commands and behave as a controllable and dispatchable resource. A VPP can be

a distribution system section with controllable loads and resources, a microgrid, etc. In this

report, we focus on a distribution system section with resources and we focus on making this

subsystem behave as a dispatchable plant by controlling the cluster of resources in this section.

The report presents an object-oriented implementation of full state feedback control for VPPs.

Figure 2.1 shows the integrated system of the VPP full state feedback control. An object-oriented

method is used to represent models. Then, the Distribution System Distributed Quasi-Dynamic

State Estimator (DS-DQSE) is applied to enable the extraction of the real time model and

operating conditions of the VPP by performing Quasi-Dynamic State Estimation (QSE).

Subsequently, an Optimal Power Flow is autonomously formulated and solved to provide the

optimal controls. The optimal controls are send to the appropriate devices.

Control

Command

Physical Plant

Device SCAQCF

Models
Measurements

Network SCAQCF

Model

Device-Level

Measurement

SCAQCF Models

Network

Measurement

SCAQCF Model

DS-DQSE

Form Quadratized

OPF Problem

OPF Solver

Models & Operating

Condition

Figure 2.1: Integrated and Autonomous System of VPP Full State Feedback Control

11

The infrastructure for the integrated system is based on object-oriented high-fidelity device

models for each device in the VPP. In this application, all device models are in quasi-dynamic

domain, which ignore fast electromagnetic transients but include differential terms for slow

dynamics such as those arising from electromechanical oscillations or the actions of a controller.

The modeling approach starts from physically based models of power devices, referred to it as

compact device models. Any existing model can be used as a compact device model, and these

models are in terms of states and control variables. A quadratization procedure is then applied to

the compact model if the compact model order is higher than two. This procedure consists of

introducing additional variables to reduce higher order terms to nonlinear terms of highest order

two. The result of this step is a quadratized device model in terms of state and control variables,

which is referred as state and control quadratized device model (SCQDM). The SCQDM is then

numerically integrated using the quadratic integration method for the purpose of converting it

into an algebraic model that is referred to as the state and control algebraic quadratic companion

form (SCAQCF). The syntax of the SCAQCF has been standardized and any power device can

be converted into this form. The SCAQCF object is interoperable and usable by any application.

For example, the DS-DQSE as well as the OPF formulator and solver work directly on the

SCAQCF models without any other information.

The DS-DQSE requires measurements obtained on the system to perform the dynamic state

estimation. Any measurement, irrespectively of the source of the measurements, i.e. actual,

virtual, derived or pseudo, can be also expressed in the SCAQCF syntax. With increasing

deployment of smart meters and other grid sensors in distribution systems, the amount of

available measurements is growing. The measurements are expressed as functions of the state in

the SCAQCF syntax and in this form are utilized by the DS-DQSE to perform a dynamic state

estimation. The process of creating the measurement models in SCAQCF syntax is automated.

Specifically, given the measurement set and all the SCAQCF device models, the measurement

models are first developed at the device level, i.e. they are expressed as functions of the state

variables of individual devices. Subsequently, the mapping between device states and system

states is developed and the measurement models are converted from device level to system level.

In this form, the DS-DQSE performs a dynamic state estimation with the measurement models in

terms of system state variables. The process is outlined in Figure 2.2. The dynamic state

estimation includes an observability test, the actual state estimation and bad data detection and

identification. Specifically, once the network SCAQCF measurement model is created, the DS-

DQSE performs an observability test to determine that there are enough measurements to

observe/compute the state. Subsequently it performs the dynamic state estimation and the chi-

square test which checks the consistency between the estimated state and the network model. If

this test indicates the presence of bad measurements, the DS-DQSE initiates the bad data

identification and removes the bad data. The end result of the entire process is a validated model

and a validated operating condition which can now be used for a variety of applications. In this

report we outline the application of optimizing the voltage profile of the feeder.

12

Device Model 1

Device Model 2

Device Model n

Network SCAQCF

Model

Measurement

Definition 1

Measurement

Definition 2

Measurement

Definition n

Measurement Model

Associated with

Device 1

Measurement Model

Associated with

Device 2

Measurement Model

Associated with

Device n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Device Model File &

Network Interface

Node Name List

Measurement

Definition File

Device-Level SCAQCF

Measurement Model

Network

SCAQCF

Measurement

Model

Mapping Lists

Additional

Virtual

Measurements

from Network

KCL Equations

Actual, Derived,

Pseudo and

Virtual

Measurements

Interface Node

Name List

Figure 2.2: Flow Chart of Network SCAQCF Measurement Model Creation

As shown in Figure 2.3, the DS-DQSE is implemented in a distributed architecture. This is a

novel approach compared to present available state estimation applications that are based on a

centralized architecture and executed in the control center. The distribution system (feeders) can

be partitioned into several sections while each section containing some controllable loads and

resources (i.e., each section is a VPP component). The DS-DQSE is executed at each section of

the feeder using local phasor measurements to perform DQSE for this local section. It is required

that there should be at least one GPS synchronized measurement so that the computed best

estimate of the state will have associated with it the time stamp for which this state estimate is

valid. This is a critical requirement as the Distribution Energy Management System (DEMS)

takes the state estimates for each distribution section with the exact time stamp and synthesizes

the state estimate for the entire distribution system.

13

Local DS-DQSE

Local DS-DQSE

Local DS-DQSE

Distribution System

Local DS-DQSELocal DS-DQSE

Distribution

Management System

(DMS)

• Estimated States

• Validated Models

Figure 2.3: DS-DQSE for a Distribution System

The advantages of the distributed architecture are numerous. First of all, the state estimation

algorithm is implemented using only local measurements to estimate the states in this local

distribution section. Thus, the large data traffic is confined within the section, and the state

estimator works on a small dimension subsystem compared to the one processed by a centralized

state estimator. Secondly, since the dimension of the problem solved by DS-DQSE is

significantly decreased, the execution time of the state estimator is fast (i.e. execution of once per

cycle has been achieved). Thirdly, the relatively small dimension of the system allows very

detailed power system models (three-phase dynamic models, instrumentation inclusive). The

three-phase, instrumentation channel inclusive model for the power system can eliminate the

estimation errors from the imbalanced operations and asymmetric models, as well as the

measurement errors introduced by the instrumentation channels. In addition, because of the

proposed measurement set, we increase the measurement redundancy of the distribution system

section, which leads to more accurate estimation results. Last but not least, only the states and

the validated model of each section are sent to the DEMS. This dramatically reduces the data

communications and makes the whole state estimation system more efficient.

The DS-DQSE works as follows. Firstly, a data concentrator collects all the data from all IEDs in

a specific section and converts and synchronizes these data into a C37.118 data stream. A local

DS-DQSE is installed in this section and uses only the measurements from this section for the

purpose of avoiding the requirement of obtaining and transmitting measurements via

communication channels from other sections. Note that for this approach, data from at least one

GPS-synchronized device is required in each section in order to synchronize all the data in the

system. After the state estimation, the estimated states, and validated models for each section are

14

produced and sent to the Distribution Energy Management System (DEMS) where the system

wide state estimate and model is synthesized.

The system wide state estimate and model, validated with the DQSE, is used to formulate and

solve an Optimal Power Flow (OPF) to optimally control distributed energy resources (DER)

units and/or provide ancillary services incorporating local network constraints. The objective

function of the OPF can be user selected and the choices can be numerous. In this report, the

objective is to improve the voltage profile along the distribution feeder. After defining the

objective function, the formation of the OPF problem is automatic by simply using the object-

oriented SCAQCF network model. As a matter of fact, the power flow equations of the model

become the equality constraints of the OPF problem, and the operational constraints of the model

become the inequality constraints of the OPF problem. Since all the equality and inequality

constraints as well as the objective function is quadratic, the formulated OPF problem is a

quadratized OPF problem. The general expression of the quadratized OPF problem is:

:

: 0

: () () ()

T T

objx obju objxx objuu objux objc

T i T i T i

eqx equ eqx equ equx eq

eq eqx equ eq e

Minimize J Y Y F F F C

subject to Y Y F F F B I

where B N t h N t h M I t h K

T T T
x u x x u u u x

x u x x u u u x

x u

0

q

T i T i T i

ineqx inequ ineqx inequ inequx ineqcY Y F F F C

min max

x u x x u u u x

u u u

 (2.1)

The automatically formulated quadratized OPF problem is solved by the OPF solver. The

optimal power flow solution algorithm used in this report is briefly introduced as follows. The

algorithm first uses the co-state method to linearize the OPF problem so that the OPF problem is

converted into a linearized problem in terms of only control variables, i.e. the equality

constraints (power flow) are used to eliminate the state variables. Subsequently, the linearized

problem is converted into a linear program in standard form and it is solved with a simplex type

algorithm. The computed control variables are inserted to the equality constraints which are

solved to determine the new operating condition of the system. This is equivalent to a solution of

the power flow problem. If the updated operating point violates any new constraints, then the

violated constraint is added to the OPF problem and the process is repeated until convergence.

The end result of the OPF solver is the optimal controls which are send to the appropriate

devices.

The proposed OPF solution algorithm is robust and highly efficient. Robustness is achieved by

virtue of starting from a feasible but not optimal solution and at each iteration the solution moves

15

the operating point in the feasible region while approaching the optimality. Therefore, at each

iteration of the algorithm the solution iterate represents a feasible solution. High efficiency

implies less runtime compared with traditional solution methods for the OPF problem. The

reasons are as follows. Firstly, the algorithm models the OPF problem as a quadratic problem for

fast convergence. Secondly, the algorithm identifies the active constraints gradually and adds

them to the modeled constraint set if needed. These features of the algorithm ensure that at each

iteration, the dimension of the problem is the smallest possible for the specific distribution

system.

16

Section 3: Object-Oriented Device Modeling

This section describes a high-fidelity standardized modeling approach for power devices that

enables object-oriented analysis in electric power systems.

As shown in Figure 3.1, the modeling approach starts from physical based models of power

devices referred as compact device models. Any existing model can be used as a compact device

model. In general, these models are in terms of states and control variables. A quadratization

procedure is then applied to the compact model. This procedure consists of introducing

additional variables to reduce higher order terms to nonlinear terms of highest order two. In case

the compact model is linear or quadratic, this procedure is not needed. The end result is a

quadratized device model which in general is also in terms of states and controls. The

quadratized device model is integrated for the purpose of converting it into an algebraic model.

We have selected the quadratic integration method for the integration. The reason for this

selection is that the quadratic integration method has better properties than the popular

trapezoidal integration method and it is also reasonably manageable (from the complexity point

of view). The integration process transforms the state and control quadratized device model

(SCQDM) into a state and control algebraic quadratic companion form (SCAQCF).

Compact

Device

Model

A Set of

Algebraic &

Differential

Linear &

Nonlinear

Equations

&

Inequalities

Quadratized

Model

Quadratized

Equations &

Inequalities, the

Highest Order is

Second Order

State and

Control

Algebraic

Quadratic

Companion

Form

(SCAQCF)

Addition of State

Variables

Quadratic

Integration

Figure 3.1: Object-Oriented Modeling Approach

It is also important to note that the models are in quasi-dynamic domain, where the compact

models typically ignore fast electromagnetic transients but include differential terms for only

slow dynamics such as those arising from electromechanical oscillations or controller actions.

17

This section is organized as follows: the quasi-dynamic domain SCQDM is described in Section

3.1, the quasi-dynamic domain SCAQCF device model is described in Section 3.2; and an

example to illustrate the object-oriented modeling is described in Section 3.3.

Section 3.1: Quasi-Dynamic Domain State and Control Quadratized

Device Model

The quasi-dynamic domain state and control quadratized device model (SCQDM) is used to

represent the physical model and it is a preliminary step to obtain the quasi-dynamic State and

Control Quadratic Companion Form (SCAQCF) device model. All the terms in SCQDM are at

most second order. The specific syntax of the model is provided below with the following

selections/requirements: (a) list all the linear equations for through variables first; (b) list all the

remaining linear equations; (c) all differential terms only appear in the linear equations; (d) list

all the remaining quadratic equations; (e) the equations containing through variables must be

listed first; (f) the highest order of the model is second order. The requirements are always easily

met by introduction of additional state variables. Note that the phasors are divided into real and

imaginary parts in quadratized device model and that all the elements in the matrices are real

values. The general expression for SCQDM is:

1 1 1 1

2 2 2 2

3 3 3 3 3 3

()
() () ()

()
0 () ()

0 () () () () () () () ()

eqx equ eqxd eqc

eqx equ eqxd eqc

T i T i T i

eqx equ eqxx equu equx eqc

d t
I t Y t Y t D C

dt

d t
Y t Y t D C

dt

Y t Y t t F t t F t t F t C

x
x u

x
x u

x u x x u u u x

((), ()) () () () () () () () ()T i T i T i

fx fu fx fu fux fct t Y t Y t t F t t F t t F t C

h x u x u x x u u u x

 Connectivity: TerminalNodeName

 Normalization Factors: StateNormFactor, ThroughNormFactor, ControlNormFactor

min max

min max

 : (,)

subject to

h h x u h

u u u

where:

()I t : the through variables of the device model;

()tx : external and internal state variables of the device model;

18

()tu : control variables of the device model, i.e. transformer tap, etc.;

1eqxY : matrix defining the linear part for state variables in linear through variable equations;

1equY : matrix defining the linear part for control variables in linear through variable equations;

1eqxdD : matrices defining the differential part for state variables in linear through variable

equations;

1eqcC : constant vector of the device model in linear through variable equations;

2eqxY : matrix defining the linear part for state variables in linear virtual equations;

2equY : matrix defining the linear part for control variables in linear virtual equations;

2eqxdD : matrices defining the differential part for state variables in linear virtual equations;

2eqcC : constant vector of the device model in linear virtual equations;

3eqxY : matrix defining the linear part for state variables in the remaining quadratic equations;

3equY : matrix defining the linear part for control variables in the remaining quadratic equations;

3eqcC : constant vector of the device model in the remaining quadratic equations;

eqxxF : matrices defining the quadratic part for state variables in the remaining quadratic equations;

equuF : matrices defining the quadratic part for control variables in the remaining quadratic

equations;

equxF : matrices defining the quadratic part for the product of state and control variables in the

remaining quadratic equations;

TerminalNodeName : terminal names defining the connectivity of the device model;

StateNormFactor: Normalization Factors for the states;

ThroughNormFactor: Normalization Factors for the through and zero variables;

ControlNormFactor: Normalization Factors for the controls;

min max(,) h h x u h : operating constraints;

min max,u u : lower and upper bounds for the control variables;

fxY : constraint matrix defining the linear part for state variables;

fxF : constraint matrices defining the quadratic part for state variables;

fuY : constraint matrix defining the linear part for control variables;

fuF : constraint matrices defining the quadratic part for control variables;

fuxF : constraint matrices defining the quadratic part for the product of state and control variables;

fC : constraint history dependent vector of the device model.

Section 3.2: Quasi-Dynamic State and Control Algebraic Quadratic

Companion Form

19

The next step is to integrate the quasi-dynamic domain SCQDM model to derive an algebraic

equivalent model. For this purpose the quadratic integration method is used. The end result is the

quasi-dynamic domain State and Control Algebraic Quadratic Companion Form (SCAQCF).

Note that this modeling standard can be applied to any device in the power system. The

advantages of the SCAQCF device model are (a) it does not contain differential terms, it is

algebraic, the dynamics are expressed in terms of past history terms, (b) the highest order is

second order, and (c) it is easily cast into a standard syntax so that the utilization of the model

can be performed by object oriented algorithms. The final expression for the quasi-dynamic

domain SCAQCF device model is:

()

0

0

()

0

0

T i T i T i

eqx equ eqx equ equx eq

m

t

Y Y F F F B
t

I

x u x x u u u x
I

() () ()eq eqx equ eq eqB N t h N t h M t h K x u I

(,) T i T i T i

feqx fequ feqx fequ fequx feqY Y F F F C

h x u x u x x u u u x

 Connectivity: TerminalNodeName

min max

min max

 : (,)

subject to

h h x u h

u u u

 Normalization Factor: StateNormFactor, ThroughNormFactor, ControlNormFactor

where

() ()mI t and I t : the through variables of the device model;

x : external and internal state variables of the device model, [(), ()]mt tx x x ;

u : control variables of the device model, [(), ()]mt tu u u ;

eqxY : matrix defining the linear part for state variables;

eqxF : matrices defining the quadratic part for state variables;

equY : matrix defining the linear part for control variables;

equF : matrices defining the quadratic part for control variables;

equxF : matrices defining the quadratic part for the product of state and control variables;

eqB : history dependent vector of the device model;

20

eqxN : matrix defining the last integration step state variables part;

equN : matrix defining the last integration step control variables part;

eqM : matrix defining the last integration step through variables part;

eqK : constant vector of the device model;

TerminalNodeName : terminal names defining the connectivity of the device model;

StateNormFactor: Normalization Factors for the states;

ThroughNormFactor: Normalization Factors for the through and zero variables;

ControlNormFactor: Normalization Factors for the controls;

min max(,) h h x u h : operating constraints;

min max,u u : lower and upper bounds for the control variables;

feqxY : constraint matrix defining the linear part for state variables;

feqxF : constraint matrices defining the quadratic part for state variables;

fequY : constraint matrix defining the linear part for control variables;

fequF : constraint matrices defining the quadratic part for control variables;

fequxF : constraint matrices defining the quadratic part for the product of state and control

variables;

feqC : constraint history dependent vector of the device model.

1 1 1

2 2 2

3

1 1 1

2 1 2

3

4 8

4 8

0

1 2

2

1 2

2

0

eqxd eqx eqxd

eqxd eqx eqxd

eqx

eqx

eqxd eqxd eqx

eqxd eqxd eqx

eqx

D Y D
h h

D Y D
h h

Y
Y

D D Y
h h

D D Y
h h

Y

1

2

3

1

2

3

0

0

0

0

0

0

equ

equ

equ

equ

equ

equ

equ

Y

Y

Y
Y

Y

Y

Y

3

3

0 0

0 0

0

0 0

0 0

0

eqxx

eqxx

eqxx

F
F

F

3

3

0 0

0 0

0

0 0

0 0

0

equu

equu

equu

F
F

F

3

3

0 0

0 0

0

0 0

0 0

0

equx

equx

equx

F
F

F

21

1 1

2 2

1 1

2 2

4

4

0

1 5

2 2

1 5

2 2

0

eqx eqxd

eqx eqxd

eqx

eqx eqxd

eqx eqxd

Y D
h

Y D
h

N

Y D
h

Y D
h

1

2

1

2

0

1

2

1

2

0

equ

equ

equ equ

equ

Y

Y

N Y

Y

(())

(())

0

0

1

2

0

0

size i t

eq

size i t

I

M
I

3

1

2

3

0

0

3

2

3

2

eqc

eq eqc

eqc

eqc

C

K C

C

C

Section 3.3: Object-Oriented Modeling Example

In this subsection, an IGBT-based converter average model with a P-Q controller is presented as

an example of object-oriented device modeling. The compact model of the physical circuit, the

quadratized model and the SCAQCF model are described respectively.

The diagram of the converter with a P-Q controller is demonstrated in Figure 3.2. The control

variables of the system are the desired output active and reactive power (
refP and

refQ) of the

converter. This can be achieved by controlling the modulation index of the converter and the

phase angle difference between internal voltage
aE and terminal voltage

aV . The parameters of

the converter model are the resistance on the DC side and the inductance on the AC side.

Controller

DC-AC Converter

refP

refQ

P Q m

aV

bV

cV

ADV

KDV

Figure 3.2: P-Q Control Converter

22

aE

bE

cE

aV

bV

cV

aI

bI

cI

sL

r

r

+

-

ADV

KDV

ADI

KDI

DCE

Figure 3.3: Circuit Diagram of the DC-AC Converter

A summary of this model in the standard form is as follows. First, the states are listed below.

State Index Description of States States Units

0 Real part of ADV ADrV kV

1 Imaginary part of ADV ADiV kV

2 Real part of KDV KDrV kV

3 Imaginary part of KDV KDiV kV

4 Real part of aV arV kV

5 Imaginary part of aV aiV kV

6 Real part of bV brV kV

7 Imaginary part of bV biV kV

8 Real part of cV crV kV

9 Imaginary part of cV ciV kV

10 Real part of DCE DCrE kV

11 Imaginary part of DCE DCiE kV

12 Real part of aE arE kV

13 Imaginary part of aE aiE kV

14 Real part of bE brE kV

15 Imaginary part of bE biE kV

23

16 Real part of cE crE kV

17 Imaginary part of cE ciE kV

18 Real power output acP MW

19 Reactive power output acQ MVAr

20 Modulation index m No unit

21 Voltage magnitude of aV amagV kV

22
Additional variable (modulation

index times DC link voltage)
DCmE kV

23
Additional variable (DCmE over

amagV)
DCmE OverV No unit

24

Additional variable (sine function

of the angle difference between aE

and aV)

1s No unit

25

Additional variable (cosine

function of the angle difference

between aE and aV)
2s No unit

The control variables are:

Control Index Description of controls Controls Units

0
Reference real power for P-Q

controller
refP MW

1
Reference reactive power for P-Q

controller
refQ MVAr

The parameters are:

Parameter

Index
Description of Parameters

Parameter

Variable
Default Setting

0
Converter equivalent

resistance
r 0.03 ohm

1
Converter equivalent

inductance
L 0.08 mH

2

Proportional coefficient of

PQ controller for real

power

pPK 1.0

24

3
Integral coefficient of PQ

controller for real power
IPK 200.0

4

Proportional coefficient of

PQ controller for reactive

power

pQK 1.0

5

Integral coefficient of PQ

controller for reactive

power
IQK 200.0

The final equations for the model are listed below. The detailed derivation of this model is

provided in Appendix A.

Equation Set 1 (linear through equations):

2

ADr KDr DCr
ADr

V V E
I

r

 (3.1)

2

ADi KDi DCi
ADi

V V E
I

r

 (3.2)

2

ADr KDr DCr
KDr

V V E
I

r

 (3.3)

2

ADi KDi DCi
KDi

V V E
I

r

 (3.4)

1

ar ai ai

s

I V E
L

 (3.5)

1

ai ar ar

s

I V E
L

 (3.6)

1

br bi bi

s

I V E
L

 (3.7)

1

bi br br

s

I V E
L

 (3.8)

1

cr ci ci

s

I V E
L

 (3.9)

1

ci cr cr

s

I V E
L

 (3.10)

Equation Set 2 (linear internal equations):

25

1 3
0

2 2
ar ai brE E E (3.11)

3 1
0

2 2
ar ai biE E E (3.12)

1 3
0

2 2
ar ai crE E E (3.13)

3 1
0

2 2
ar ai ciE E E (3.14)

 1
1 10 ac

P I ref ac

dP ds
K K P P

dt dt
 (3.15)

 2 20 ac
P I ref ac

dQ dm
K K Q Q

dt dt
 (3.16)

Equation Set 3 (quadratic equations):

 21
0

2
ADr DCr KDr DCr DCr acV E V E E P

r
 (3.17)

0 DCiE (3.18)

1

0 ar ai ai ar br bi bi br cr ci ci cr ac

s

V E V E V E V E V E V E P
L

 (3.19)

 2 2 2 2 2 21
0 ar ar ar ai ai ai br br br bi bi bi cr cr cr ci ci ci ac

s

V V E V V E V V E V V E V V E V V E Q
L

 (3.20)

0 DC DCm E mE (3.21)

2 2 2

,0 ar ai a magV V V (3.22)

,0 DC a mag DCmE V mE OverV (3.23)

2 1

1
0

2 2
DC ar ar aimE OverV V E s E s (3.24)

2 1

1
0

2 2
DC ai ai armE OverV V E s E s (3.25)

2 2

1 20 1.0s s (3.26)

26

Operation Constraints:

,max ,max

1 1 1

2 2 2
DC ADr KDr DCr DCI V V E I

r r r
 (3.c1)

 2 2 2 2 2

,max2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 2 2
0 ar ai ar ai ar ar ai ai AC

s s s s s s

V V E E V E V E I
L L L L L L

 (3.c2)

 2 2 2 2 2

,max2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 2 2
0 br bi br bi br br bi bi AC

s s s s s s

V V E E V E V E I
L L L L L L

 (3.c3)

 2 2 2 2 2

,max2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 2 2
0 cr ci cr ci cr cr ci ci AC

s s s s s s

V V E E V E V E I
L L L L L L

 (3.c4)

 0.0 1.0m (3.c5)

27

Section 4: Automated Construction of Measurement

Models

This section introduces the computational procedure which enables data from sensors to be

steamed and used by the distributed quasi-dynamic state estimation. With increasing deployment

of smart meters and other grid sensors in distribution systems, the amount of available

measurements is growing. These measurements as well as the other measurements proposed in

Section 4.1 form the DS-DQSE measurement set that enables the estimation of the distribution

system operating state. Given the measurement set and all the device models in a distribution

system section, the DS-DQSE creates the measurement models at device-level, i.e. the

measurements are expressed as a function of the device states. Then, a network formation

algorithm creates the mapping between the states of individual devices to the state of the network.

Using the mapping, each measurement model is transformed into a model in terms of the

network states. In this form, the measurements are used to perform a dynamic state estimation

and provide the best estimate of the network states. The dynamic state estimation basically

quantifies the consistency between the measurements and the network model. The estimated

states and the validated model for the whole distribution system section together with a

quantitative confidence level for the validity of the model and states is provided to the

distribution management system. This output information from the DS-DQSE can be used for

any application that requires the real time model and operating conditions of the VPP.

The organization of this section is as follows. Section 4.1 describes the measurement definition

set for DS-DQSE. Section 4.2 introduces an object-oriented way to create the device-level

measurement model. Section 4.3 describes the network-level measurement model creation. And

Section 4.4 illustrates the algorithm of distributed quasi-dynamic state estimation.

Section 4.1: Measurement Definitions

With increasing deployment of smart meters and other grid sensors in distribution systems, the

amount of available measurements is growing. These measurements enable implementation of

distribution system state estimators to provide real-time models and operating conditions of the

distribution network. To further increase redundancy and accuracy of the estimated states, we

propose the state estimator measurement definition set where the measurements are classified

into four types:

(a) actual measurements: measurements from actual measurement channels, i.e., any

measurements from any IEDs (relays, meters, FDR, PMUs, etc.);

(b) derived measurements: measurements derived from actual measurements based on topology.

Figure 4.1 shows an example of creating a derived measurement in a distribution system section.

In the figure, three-phase current measurements from B13 to B14 and three-phase current

28

measurements of the capacitor bank at B25 are available. Thus, as shown in equation (4.1), the

three-phase current from B13 to B12 is computed by applying Kirchhoff’s current law (KCL),

which is treated as a derived measurement.

 B13_B12,abc B12_B13,abc B25,abcI I I (4.1)

Figure 4.1: Example of a Derived Measurement

 (c) virtual measurements: mathematical quantities defined by physical laws, such as KCL,

model internal equations, etc. Figure 4.2 shows an example of creating a virtual measurement in

a distribution system section. In the figure, three-phase current measurements from B301 to

B300 and three-phase current measurements from B301 to B302 are available. According to

KCL, the sum of these two three-phase current measurements at B301 is zero, which is treated as

a virtual measurement as shown in equation (4.2).

B301_B300,abc B301_B302,abc0 I I (4.2)

Figure 4.2: Example of a Virtual Measurement

(d) pseudo measurements: not directly measured, represent quantities for which their values are

approximately known, such as missing phase measurements, neutral/shield voltage

measurements, neutral currents, etc.

29

Section 4.2: Construction of the Measurement Model at Device Level

The construction of the network measurement model consists of two steps. The first step is to use

the given device model file and the measurement definition file to create the SCAQCF

measurement models associated with each device. These device-level measurement models

contain device-level actual, derived, pseudo and virtual measurements. The second step is to

construct the network SCAQCF measurement model from device-level measurement models.

This step is achieved by first using the given device model file and the network interface node

name list to create the network SCAQCF model and the mapping lists. Then we create the

network measurement model from device-level measurement model via mapping lists while

adding additional virtual measurements (network KCL equations) from the network SCAQCF

model. The whole procedure is shown in Figure 2.2.

This subsection introduces the procedure to create the device-level SCAQCF measurement

models from measurement definitions as described in Section 4.1. The problem is stated as

follows. Given all the devices in the network and all the measurement definitions from each

device, construct the device measurement model in SCAQCF syntax. The construction must be

performed automatically. The construction of the device measurement model is illustrated below.

Actual Across Measurement:

An actual across measurement of one device is a linear combination of state variables of this

device, i.e.

() ()z t A t x ,

where ()z t is the measurement, A is the linear coefficient matrix, x(t) is the device state vector,

and is the noise error provided by the meter.

Actual Through Measurement:

The actual through measurement equation is obtained from the device model. For instance, if

there is a current measurement at the jth terminal of a device, then the measurement model is the

equation corresponding to the jth terminal in this device model, i.e.

() () () () () ()T i T i T i

zx zu zx zu zux zx zu z zz t Y t Y t F F F N t h N t h M i t h K

x u x x u u u x x u

where ()z t is the measurement, zxY is the linear coefficient matrix for state variables, zuY is the

linear coefficient matrix for control variables, i

zxF is the quadratic part for state variables , i

zuF is

30

the quadratic part for control variables , i

zuxF is the quadratic part for the product of state and

control variables , zxN is the linear coefficient matrix for past history state variables, zuN is the

linear coefficient matrix for past history control variables, zM is the linear coefficient matrix for

past history through variables, zK is the constant value, and is the noise error provided by the

meter.

Derived States Measurements:

A derived state measurement of one device is a linear combination of state variables of this

device, i.e.

() ()z t A t x ,

where ()z t is the measurement, A is the linear coefficient matrix, x(t) is the device state vector,

and is the noise error provided by the meter.

Derived Functional Measurements:

The derived functional measurement equation is obtained from the device model. For instance, if

there is a derived current measurement at the jth terminal of a device, then the measurement

model is the equation corresponding to the jth terminal in this device model, i.e.

() () () () () ()T i T i T i

zx zu zx zu zux zx zu z zz t Y t Y t F F F N t h N t h M i t h K

x u x x u u u x x u

where ()z t is the measurement, zxY is the linear coefficient matrix for state variables, zuY is the

linear coefficient matrix for control variables, i

zxF is the quadratic part for state variables , i

zuF is

the quadratic part for control variables , i

zuxF is the quadratic part for the product of state and

control variables , zxN is the linear coefficient matrix for past history state variables, zuN is the

linear coefficient matrix for past history control variables, zM is the linear coefficient matrix for

past history through variables, zK is the constant value, and is the noise error provided by the

meter.

Virtual Measurements:

Virtual Measurements are those that express physical or mathematical laws such as Kirchhoff

Current Law. For instance, the zero sum of the currents at a common node is a virtual

measurement.

31

0 () () () () ()T i T i T i

zx zu zx zu zux zx zu z zY t Y t F F F N t h N t h M i t h K

x u x x u u u x x u

where zxY is the linear coefficient matrix for state variables, zuY is the linear coefficient matrix

for control variables, i

zxF is the quadratic part for state variables , i

zuF is the quadratic part for

control variables , i

zuxF is the quadratic part for the product of state and control variables , zxN is

the linear coefficient matrix for past history state variables, zuN is the linear coefficient matrix

for past history control variables, zM is the linear coefficient matrix for past history through

variables, zK is the constant value, and is the noise error.

Pseudo State Measurements:

A pseudo state measurement of one device is a linear combination of state variables of this

device, i.e.

() ()z t A t x

where ()z t is the measurement, A is the linear coefficient matrix, x(t) is the device state vector,

and is the noise error of this pseudo measurement.

Pseudo Functional Measurements:

The pseudo functional measurement equation is obtained from the device model. For instance, if

there is a pseudo current measurement at the jth terminal of a device, then the measurement

model is the equation corresponding to the jth terminal in this device model, i.e.

() () () () () ()T i T i T i

zx zu zx zu zux zx zu z zz t Y t Y t F F F N t h N t h M i t h K

x u x x u u u x x u

where ()z t is the measurement, zxY is the linear coefficient matrix for state variables, zuY is the

linear coefficient matrix for control variables, i

zxF is the quadratic part for state variables , i

zuF is

the quadratic part for control variables , i

zuxF is the quadratic part for the product of state and

control variables , zxN is the linear coefficient matrix for past history state variables, zuN is the

linear coefficient matrix for past history control variables, zM is the linear coefficient matrix for

past history through variables, zK is the constant value, and is the noise error of this pseudo

measurement.

The measurement models at the device-level can be expressed as a vector function with the

following general expression. Note that the general expression below becomes a part of the

device object (the SCAQCF object).

32

, , , , ,() () T i T i T i

devm x devm u devm x devm u devm ux devmY t Y t F F F C

z x u x x u u u x η

, ,() () ()devm devm x devm u devm devmC N t h N t h M t h K x u i

 Measurement noise error: dMeterScale, dMeterSigmaPU

where:

z : measurement variables at both time t and time tm, [(), ()]mt tz z z ;

x : external and internal state variables of the measurement model, [(), ()]mt tx x x ;

u : control variables of the measurement model, i.e. transformer tap, etc. [(), ()]mt tu u u ;

,devm xY : matrix defining the linear part for state variables of the device-level measurement model;

,devm xF : matrices defining the quadratic part for state variables of the device-level measurement

model;

,devm uY : matrix defining the linear part for control variables of the device-level measurement

model;

,devm uF : matrices defining the quadratic part for control variables of the device-level measurement

model;

,devm xuF : matrices defining the quadratic part for the product of state and control variables of the

device-level measurement model;

devmC : history dependent vector of the device-level measurement model;

,devm xN : matrix defining the last integration step state variables part of the device-level

measurement model;

,devm uN : matrix defining the last integration step control variables part of the device-level

measurement model;

devmM : matrix defining the last integration step through variables part of the device-level

measurement model;

devmK : constant vector of the measurement model of the device-level measurement model;

dMeterScale : the scale that meters use (in metric units);

dMeterSigmaPU : the standard deviation for the measurements (in per. unit).

Section 4.3: Construction of the Measurement Model at Network Level

This section introduces the procedure to create the network-level SCAQCF measurement model.

This task is achieved by two subtasks: (1) Create the network model of this distribution system

section and the mapping lists from devices to this network; (2) Use the mapping lists to create

the network-level SCAQCF measurement model from device-level SCAQCF measurement

models and add the network KCL equations as additional virtual measurements to the network

33

measurement model. Figure 2.2 shows the flow chart of network-level SCAQCF measurement

model construction. And the general procedure is described here.

The first task is to form the network SCAQCF model. The purpose of the network formation is to

(1) provide the mapping lists (states, equations, controls, and constraints) from devices to the

network, and (2) provide the network KCL equations at the common nodes. Notice that the

formation procedure is object-oriented, in other words, given all the device SCAQCF models in

this network and the network interface node name list, the results are the automatically

constructed network SCAQCF model and the mapping lists. Appendix B illustrates the detailed

object-oriented algorithm for constructing the network SCAQCF model and its SCAQCF

expression.

The next step is to form the network SCAQCF measurement model. This task is achieved by

using the mapping information to transform the measurement model from device-level to

network-level. Specifically, given the network SCAQCF model and the mapping lists, the

network SCAQCF measurement model is automatically constructed. It is accomplished by the

following two subtasks: (1) Use the mapping lists (device states to network states, device

equations to network equations, and device controls to network controls), the states and controls

in the device-level measurement models are replaced with network-level states and controls; (2)

Add network KCL equations as additional virtual measurements to the network-level SCAQCF

measurement model. The detailed object-oriented algorithm for construction of network

SCAQCF measurement model appears in Appendix C.

Section 4.4: Distribution System Distributed Quasi-Dynamic State

Estimator (DS-DQSE)

This section introduces the architecture and the algorithm of DS-DQSE. As a distribution system

section with a cluster of controllable loads and resources, VPP acts as a critical role in the

distribution system operation and control. To optimal control the VPP, the accurate operating

condition and accurate distribution system model are required. And DS-DQSE is able to solve

this problem.

DS-DQSE has following characteristics to fit and support the VPP: (a) State estimation and data

validation: DS-DQSE provides real-time estimated states, validated measurements. and validated

models through distributed dynamic state estimation. Notice that in addition to the actual data

collected from IEDs, several other types of measurements are defined, resulting in high

measurement redundancy. Such high redundancy guarantees the accuracy of the estimated states

and the network model of VPP. (b) Anomalies detection and root cause identification: the hidden

failures such as blown fuses, cut wires, etc. or human errors such as incorrect entry of system

parameters such as CT and VT ratios, incorrect instrument transformer connection (delta/wye)

can be detected and identified. (c) Missing data creation: the missing data can be estimated and

created in case of temporary loss of data.

34

As shown in Figure 4.4, the DS-DQSE is implemented in a distributed architecture. This is a

novel approach compared to present available state estimation applications that are based on a

centralized architecture and are executed in the control center. The distribution system (feeders)

can be partitioned into several sections while each section containing some controllable loads

and resources (i.e., each section is a VPP). Each section installs a DS-DQSE to perform Quasi-

Dynamic State Estimation (QSE) for this local section. QSE incorporates slow dynamics (e.g.,

electromechanical transients of rotating electrical machines, controls of power electronics, etc.)

while neglecting fast electromagnetic transients. The advantage of the distributed architecture is

numerous. First of all, the DS-DQSE is implemented using only local measurements to estimate

the states of the local distribution section. Thus, the data traffic is confined, and the state

estimator works on a small dimension of the system compared to the one processed by a

centralized state estimator. Secondly, since the dimensionally of the problem solved by DS-

DQSE is significantly decreased, the execution time of the state estimator is fast (i.e. at each

cycle). Thirdly, the relative small dimension of the system allows very detailed power system

models (three-phase dynamic models, instrumentation inclusive). The three-phase,

instrumentation channel inclusive model can eliminate the estimation errors from the imbalanced

operations and asymmetric system, as well as the measurement errors introduced by the

instrumentation channels. In addition, because of the proposed measurement set, we increase the

measurement redundancy of the distribution system section and therefore more accurate

estimation results. Last but not least, only the states and validated models of each section are sent

to the distribution energy management system (DEMS). This feature dramatically reduces the

data communications and makes the whole state estimation system more efficient.

Local DS-DQSE

Local DS-DQSE

Local DS-DQSE

Distribution System

Local DS-DQSELocal DS-DQSE

Distribution

Management System

(DMS)

Figure 4.4: DS-DQSE for a Distribution System

35

The DS-DQSE works as follows. Firstly, a data concentrator collects all the data from all IEDs in

a specific section and converts and synchronizes these data into a C37.118 data stream. A local

DS-DQSE is installed in this section and only uses all the measurements from this section for the

purpose of avoiding the requirement of obtaining and transmitting measurements via

communication channels from other sections. Note that for this approach, data from at least one

GPS-synchronized device is required in each section in order to time tag the estimation results

with GPS accuracy. After the state estimation, the estimated states, validated measurements, and

validated models for each section are sent to the DMS where the system wide estimated states

and model are synthesized.

The estimator is defined in terms of models, states, measurement sets and estimation methods.

The quasi-dynamic state estimation algorithm is object-oriented, i.e. all the models in the system

are expressed in SCAQCF syntax (described in Section 3) and the DS-DQSE operates directly on

these object models. The local state estimator uses the generated network-level SCAQCF

measurement models (see previous section) to perform QSE and outputs the estimated states,

validated measurements, and validated models. This approach allows efficient bad data detection

and identification, alarm analysis and root cause identification. The advantage comes from the

fact that in each local section, the DS-DQSE has greater redundancy of data compared to a

typical centralized state estimator based on SCADA data alone.

4.4.1: DS-DQSE Algorithm

The DS-DQSE uses three different methods to estimate the states: (a) Unconstrained Least

Square Method, (b) Constrained Least Square Method, and (c) Extended Kalman Filtering

Method. The unconstrained weighted least square (UWLS) method is briefly presented below.

From section 4.3, we have the network measurement model:

 , , , , ,

, ,

() ()

 () () ()

T i T i T i

netm x netm u netm x netm u netm ux netm

netm netm x netm u netm netm

Y t Y t F F F C

C N t h N t h M t h K

z x u x x u u u x η

x u i

 (4.3)

For a given state estimation, it is assumed that the controls do not change during this short period

and therefore are treated as constants. Therefore the measurements z are expressed as functions

of the states:

 , ,

, () ()

i

netm x netm x netm

netm netm x netm netm

Y F C h

C N t h M t h K

T
z x + x x - + η x η

x i

 (4.4)

36

where z is the measurement vector of the system,
,netm xY is the linear coefficient matrix regarding

to the state vector x , ,

i

netm xF is the nonlinear (quadratic) coefficient matrix, netmC is the history

dependent vector,
,netm xN is the linear coefficient matrix regarding to the last integration step

state variables, netmM is the linear coefficient matrix regarding to the last integration step through,

netmK is the constant vector of the network measurement model, and η is the measurement error.

The standard deviation (the measurement error) of each measurement is part of the measurement

data and depend on the IED from which the data have been obtained. The pseudo-measurements

are not associated with any physical IED and their standard deviations are set as a relatively high

value (e.g., 0.1 p.u.). Virtual measurements are measurements with zero standard deviation. To

avoid numerical problems, a relatively small standard deviation is used (e.g., 0.001 p.u.).

The UWLS method minimizes the sum of the weighted squares of the components of the

residual vector. Mathematically:

 () ()Minimize J h h
T

z t x W z t x (4.5)

where W is the weight matrix with the weights defined as the inverse of the squared standard

deviations: 2 2 2

1 2
diag 1/ ,1/ , ,1/

n
 W , and i is the standard deviation corresponding to

each measurement iz .

Unknown state vector x is obtained by the optimal condition:

 0dJ d x (4.6)

To obtain the solution of the nonlinear optimization problem above, we linearize the nonlinear

equations (the highest order is the second order in the measurement model) at the point
x by

assuming that an initial guess
x is very close to the optimal solution:

 () () /h h

x=x

r x x x x - x z (4.7)

After we set

 () /h
x=x

H x x , (4.8)

and

 ()h z' x + Hx + z , (4.9)

the equation becomes:

 r = Hx - z' . (4.10)

And the optimization problem is now expressed as:

37

 Minimize J
T

Hx- z' W Hx- z' . (4.11)

The optimal condition is when

 0 2dJ d T
x H W Hx z' . (4.12)

The solution is:

1

T T
x = H WH H Wz' . (4.13)

Upon substitution of the z' vector, we generalize the solution as an iterative equation:

 h -1 -1
ν+1 T T T T

x = H WH H Wz' = x - H WH H W x - z . (4.14)

After calculating the solution, we apply the chi-square test. The chi-square test provides a

mathematical method of evaluating whether the measurements fit the system model. The

procedure is as follows:

First, we compute the chi-square value as

2

()i i

i i

h z

x
. (4.15)

Then we apply the confidence level:

 P 1 Pr(,) , (4.16)

where is the degree of freedom, which is the difference between the number of measurements

and states. If the confidence level remains 100%, it turns out that the measurements match the

system model, and if it is 0, the system must contain bad data or hidden failures, and the bad data

identification procedure is initiated. The state estimator will identify the bad data and remove

them from the measurement set. At the end, the computed best estimate of the state of this

section will be best for the given measurements.

The computed best estimate of this section and the network model are utilized to compute the

best estimate of the bad data, if any, and the best estimate of missing data, if any:

 ˆ ˆ ˆ
bad

T i

bad eqz_bad eqz_ eqz_bad
z = Y x + x F x - B + η (4.17)

 ˆ ˆ ˆ

T i

miss eqz_miss eqz_miss eqz_miss
z = Y x + x F x - B + η (4.18)

38

where the model equations for the bad data and missing data are denoted with the subscript “bad”

and “miss”, x̂ is the best estimate of this network.

If the confidence level remains high, then the measurements are consistent with the network

model. In this case, the network model is validated, and the network model as well as the

estimated operating conditions are transmitted to the distribution management system (DMS) for

optimal control application.

39

Section 5: Optimal Power Flow Formation

One of the applications of DS-DQSE output is the full state feedback control of the distribution

system. The DS-DQSE is able to continuously monitor the distribution network operating

condition, validate the models, and deliver the information to the controller in less than two

cycles. The accurate operating conditions as well as the validated models enable optimal use of

distributed energy resources (DER) to achieve an objective such as voltage control. For this

purpose on Optimal Power Flow is formulated using the validated model from the DS-DQSE as

well as the operating conditions from the DS-DQSE. Note that the equality and inequality

constraints of the OPF are constructed from the device-level and network-level models as

described in Appendix D. This section introduces the details of the definition and formation of

this OPF problem.

The OPF problem is formed using the quadratized model from DS-DQSE. By construction it is a

quadratized OPF problem of the following mathematical form:

:

: 0

() () ()

T T

objx obju objxx objuu objux objc

T i T i T i

eqx equ eqx equ equx eq

eq eqx equ eq eq

ineq

Minimize J Y Y F F F C

subject to Y Y F F F B I

B N t h N t h M I t h K

Y

T T T
x u x x u u u x

x u x x u u u x

x u

0T i T i T i

x inequ ineqx inequ inequx ineqcY F F F C

min max

x u x x u u u x

u u u

 (5.1)

In this report, the objective is to improve the voltage profile across the network.

The formation of the OPF problem is achieved automatically by simply using the object-oriented

SCAQCF distribution network model. The problem is stated as follows. Given the network

model in SCAQCF syntax, define and form the various components in the OPF problem.

40

Section 5.1: Definition/Formation of Equality Constraints

This section introduces the definition and formation of equality constraints in the quadratized

OPF problem. Since the equality constraints are obtained from the network model, they are also

in the SCAQCF form and their general expression is:

 g ,

 () () ()

T i T i T i

eqx equ eqx equ equx eq

eq eqx equ eq eq

Y Y F F F B I

B N t h N t h M I t h K

0 x u x u x x u u u x

x u

. (5.2)

 Connectivity: TerminalNodeName

 Normalization Factor: StateNormFactor, ThroughNormFactor, ControlNormFactor

where

I : the through variables of the network model;

x : external and internal state variables of the network model, [(), ()]mt tx x x ;

u : control variables of the network model, [(), ()]mt tu u u ;

eqxY : matrix defining the linear part for state variables;

eqxF : matrices defining the quadratic part for state variables;

equY : matrix defining the linear part for control variables;

equF : matrices defining the quadratic part for control variables;

equxF : matrices defining the quadratic part for the product of state and control variables;

eqB : history dependent vector of the network model;

eqxN : matrix defining the last integration step state variables part;

equN : matrix defining the last integration step control variables part;

eqM : matrix defining the last integration step through variables part;

eqK : constant vector of the network model.

TerminalNodeName : terminal names defining the connectivity of the network model;

StateNormFactor: Normalization Factors for the states;

ThroughNormFactor: Normalization Factors for the through and zero variables;

ControlNormFactor: Normalization Factors for the controls;

As shown in Figure 5.1, three components in the network SCAQCF model construct the equality

constraints of the OPF problem. These three components are: (1) power flow equations, (2)

network node names, and (3) state, through and control variables normalization factors. Notice

that the formation procedure is object-oriented. In other words, given these three components as

41

inputs, we construct the equality constraints of the quadratized OPF problem as the output. The

formation procedure first initializes the arrays defined for equality constraints, then copies the

corresponding arrays from the network model to the equality constraints. The detailed object-

oriented algorithm of equality constraints formation is illustrated in Appendix E.

(1)

(2)

(3)

Figure 5.1: Three Components in Network SCAQCF Model for Constructing Equality

Constraints

Section 5.2: Construction of Inequality Constraints at Network Level

This section introduces the definition and formation of inequality constraints in the quadratized

OPF problem. Since the inequality constraints are obtained from the network model, they are

also in the SCAQCF syntax and their general expression is:

 , 0T i T i T i

ineqx inequ ineqx inequ inequx ineqch Y Y F F F C

x u x u x x u u u x . (5.3)

where

ineqxY : constraint matrix defining the linear part for state variables;

42

ineqxF : constraint matrices defining the quadratic part for state variables;

inequY : constraint matrix defining the linear part for control variables;

inequF : constraint matrices defining the quadratic part for control variables;

inequxF : constraint matrices defining the quadratic part for the product of state and control

variables;

ineqcC : history dependent vectors for the inequality constraints.

As shown in Figure 5.2, two components in the network SCAQCF model construct the inequality

constraints of the quadratized OPF problem. These two components are: (1) network functional

constraint equations, and (2) upper bound and lower bound vectors of these functional

constraints. Notice that the formation procedure is object-oriented. In other words, given these

two components as inputs, we construct the inequality constraints of the quadratized OPF

problem as the output. The formation procedure first initializes the arrays defined for inequality

constraints, then transform the bilateral inequalities in the network model to the unilateral

inequalities in the OPF problem. The detailed object-oriented algorithm of inequality constraints

formation is illustrated in Appendix F.

(1)

(2)

Figure 5.2: Two Components in Network SCAQCF Model for Constructing Inequality

Constraints

43

Section 5.3: Construction of Control Constraints at Network Level

This section introduces the definition and formation of control constraints in the quadratized

OPF problem. The control constraints in the OPF problem are directly obtained from the control

constraints in the network model, and their general expression is:

min max

u u u . (5.4)

where

minu : lower bound vector for the control variables;

maxu : upper bound vector for the control variables.

The formation procedure is object-oriented, i.e., given the control constraints from the network

model as the input, we compute the control constraints of the quadratized OPF problem as the

output. The detailed object-oriented algorithm of control constraints formation is illustrated in

Appendix G.

Section 5.4: Construction of Objective Function at Network Level

This section introduces the definition and formation of the objective function in the quadratized

OPF problem. The objective function is defined as the minimization of the sum of the squares of

the difference between the voltage magnitudes at selected nodes and the targeted voltage values.

Since the voltage phasors are in Cartesian coordinates, the magnitude of a voltage phasor is not

quadratized, but in a square root form. To solve this problem, we create a voltage magnitude

model where the voltage magnitude is a state with “_MG” in its node name. Wherever it is

desirable to control the voltage, a voltage magnitude model is placed at that node. Notice that the

network model is formed by considering all the voltage magnitude models. Therefore, if a node

name with “_MG” occurs in the network node name list, it is detected and automatically

included. In this way, the objective function is expressed as:

2

, ,target

i selected nodes/phases ,target

minimize :
i mag i

i i

V V
J

V

 , (5.5)

where
,i magV is a state of the network, which is the voltage magnitude of the selected nodes/phase

to neutral voltage,
,targetiV is the corresponding targeted voltage value, and i is a user defined

tolerance value (e.g., 4%). Note that
,i magV is identified by the corresponding node name with

“_MG”, while
,targetiV and i are the parameters obtained from the corresponding voltage

magnitude model.

44

The formation procedure is to expand the objective function and store the coefficients from

different parts into corresponding arrays. The general quadratized format of the objective

function is:

 : T T

objx obju objxx objuu objux objcMinimize J Y Y F F F C T T T
x u x x u u u x , (5.6)

where

T

objxY : coefficients of the linear state variables in the objective function;

T

objuY : coefficients of the linear control variables in the objective function;

objxxF : coefficients of quadratic state variables in the objective function;

objuuF : coefficients of quadratic control variables in the objective function;

objuxF : coefficients of the production of state and control variables in the objective function;

objcC : constant value in the objective function.

The objective function formation procedure is object-oriented, i.e., given the network node name

list and its network index from the network model as inputs, we construct the arrays defined for

the objective function as outputs. The detailed object-oriented algorithm is illustrated in

Appendix H.

45

Section 6: Optimal Power Flow Solution Algorithm

This section introduces the optimal power flow solution algorithm after the OPF problem is

defined and formed in Section 5. Given the defined optimization problem and the current

operating point
0 0(,)x u , the algorithm first applies the co-state method to linearize the OPF

problem so that the OPF problem becomes a linearized problem represented in terms of control

variables only. The number of linearized operational constraints is only the inequality constraints

that are close to their limits (modeled constraints). Operational constraints that are not near the

limits do not need to be part of the OPF solution (un-modeled constraints). The control

constraints are the physical upper and lower bounds of the control variables from those

controllable devices. Then the algorithm computes the optimal values of the control variables

using linear programming and solves the state variables by power flow equations. If the updated

operating point violates the original quadratic modeled constraints, then the OPF solver modifies

the b vector in the set of inequality constraints in linear programming, retrieves the operating

point from the last iteration, and resolves the linearized optimization problem. If the updated

operating point violates some of the un-modeled constraints, then the OPF solver adds these

constraints, retrieves the operating point from the last iteration, linearizes the new constraints,

and solves the linearized optimization problem again. The end result of the OPF solver is the

optimal control output, i.e. the optimal values of the control variables. Figure 6.1 shows the flow

chart of the algorithm.

Start

Given the Defined

Optimization Problem &

Current Operating Point

(x
0
, u

0
)

Form the Linearized

Optimization Problem

Solve the Linearized

Optimization Problem;

Output: New Control

Values u

Compute State Variables x

Using Network Model

Update the Operating

Point (x
0
, u

0
)

Check Violation for

Modeled Constraints

Update the LP Problem,

Compute the New b Vector

in LP

Retrieve the Operating Point

from the Last Iteration (x
0
,

u
0
)

Check Violation for All

Constraints

Add New Violated

Constraints to the Model

Retrieve the Operating

Point from the Last

Iteration (x
0
, u

0
)

Linearize New Constraints

Replace the Operating

Point (x
0
, u

0
) by (x, u)

Go to the Next Iteration

End

Y

N

N

Y

N

Y

1 ? u u

Figure 6.1: Flow Chart of the Algorithm

46

The proposed OPF solution algorithm is robust and highly efficient. The robustness means that

the algorithm starts from a feasible but not optimal solution and moves the operating point in the

feasible region while approaching the optimality. Therefore, the output of the algorithm is

always a feasible solution. High efficiency means - less runtime compared to traditional solution

methods for the OPF problem. The reasons are as follows: (1) The algorithm models the OPF

problem as a quadratic problem for fast convergence; (2) The algorithm identifies the active

constraints gradually and adds them to the modeled constraint set if needed. These features of the

algorithm ensure that at each iteration, the dimension of the problem is the smallest possible for

the specific distribution system section.

Section 6.1: Linearization

This subsection introduces the linearization of the quadratized OPF problem using the co-state

method. The reason of using linearization techniques is: (1) The quadratized OPF problem

consists of both state variables and control variables. To simplify the problem, we apply the co-

state method so that the OPF problem becomes a linearized problem represented by only control

variables; (2) After the linearization, the problem is transformed into a LP in standard form

which is solve with a linear programming solver. A brief introduction of the linearization

procedure is as follows. The detailed procedure is given in Appendix H.

Recall that the general expression of the OPF problem is:

: ,

: 0 ,

() () ()

T T

objx obju objxx objuu objux objc

T i T i T i

eqx equ eqx equ equx eq

eq eqx equ eq

Minimize J Y Y F F F C

subject to g Y Y F F F B I

B N t h N t h M I t h

T T T
x u x u x x u u u x

x u x u x x u u u x

x u

 , 0

eq

T i T i T i

ineqx inequ ineqx inequ inequx ineqc

K

h Y Y F F F C

min max

x u x u x x u u u x

u u u

 (6.1)

The formulated OPF problem is quadratic and in a standard format, so the linearization

procedure is implemented as an object oriented program. Note that the objective function,

inequality constraints, and control variables are the three components that will be linearized,

while the equality constraints are taken into consideration during the linearization procedure. The

algorithm is applied only to the modeled inequality constraints. Non-modeled inequality

constraints need not to be linearized.

47

The final expression of the linearized objective function is:

 JJ d T
c u , (6.2)

where u is the increment of the control variable u ,
0 u u u , 0

x and
0

u are the current

operating point, c is the linear coefficient vector of u ,

 0 0 0 0 0 0, , ,
ˆT

dJ J g

d

j

x u x u x u
c x

u u u
, (6.3)

ˆ
jx is the co-state vector regarding to the objective function,

1
0 0 0 0, ,

ˆ
J g

j

x u x u
x

x x
, (6.4)

and Jd is a constant value, 0 0,Jd J x u .

The final expression of the linearized inequalities is:

 0 a u d , (6.5)

Where a is the linear coefficient matrix of u ,

 0 0 0 0 0 0, , ,

ˆ
d g

d

h

h x u h x u x u
a x

u u u
, (6.6)

ˆ
h

x is the co-state vector regarding to the inequalities,

1
0 0 0 0, ,

ˆ
g

h

h x u x u
x

x x
, (6.7)

and d is the constant value vector, 0 0,d h x u .

The constraints of the control variable are also changed to the constraint of the increment of

control variable in the following way:

Substitute 0 u u u into the control variable constraint
min max

u u u , we have:

 0 min maxu u u u . (6.8)

Thus, the constraint of increment of control variable is:

 0 0 min maxu u u u u . (6.9)

48

After the linearization of the quadratized OPF problem, we have the linearized problem with

respect to u only, and its expression is:

0 0

:

: 0

JMinimize J d

subject to

T

min max

c u

a u d

u u u u u

. (6.10)

Section 6.2: Solution of the Linearized Problem

This subsection introduces the procedure to solve the linearized optimization problem defined by

equation set (6.10) by a standard linear programming (i.e., simplex method) solver. Recall that

the linearized problem consists of inequality constraints, and all its variables are free variables.

Simplex method solvers require that all variables be non-negative as shown in equation set (6.11).

:

:

 0

TMinimize c

subject to A B

x

x

x

 (6.11)

In order to (1) transform the inequality constraints in the linearized problem to the equality

constraints in the standard form, and (2) transform the free variables in the linearized problem to

the non-negative variables in the standard form, we need to introduce non-negative variables to

the linearized optimization problem.

First, we introduce non-negative variables
is and

is into the objective function:

 , i i ii u s s , (6.12)

where 0is and 0is .

Denote 1

T

ns s s , and 1

T

ns s s , where n is the total number of the control

variables.

Then, the objective function is in the following form:

 : T TMinimize J

s
c c

s
. (6.13)

The constraints are then changed into the standard form. For each inequality constraint

0irow i iu d a , a non-negative variable iy is introduced. And the inequality constraint is

transformed into the equality constraint:

 0irow i i i is s y d a , (6.14)

49

where 0iy .

For each control variable constraint
min 0 max 0

i i i i

i iu u s s u u , non-negative variables ip and

iq are introduced, so that
min 0

i i

i is s u u is transformed to

min 0 0i i

i i is s p u u . (6.15)

And
max 0

i i

i is s u u is transformed to

max 0 0i i

i i is s q u u . (6.16)

Thus, the inequality constraints are changed to:

0

0

0

, , , , 0

I I

I I

0

min

0

max

s
a a y d

s

s
p u u

s

s
q u u

s

s s y p q

, (6.17)

And the problem is now in the following standard form:

:

:

 0

Minimize J C d

subject to A B

T
z

z

z

, (6.18)

where 0

0

0

C

c

c

,

s

s

z y

p

q

,

0 0

0 0

0 0

I

A I I I

I I I

a a

, and
0

0

B

min

max

d

u u

u u

.

The solution of the linearized optimization problem is obtained by a standard linear

programming solver (i.e., simplex method). The solution provides the variables ,
s s and u .

The updated optimal values of the control variables are: 0 u u u .

50

Section 6.3: Equality Equations Solution (Power Flow Problem)

Once the new control values are obtained, the network states need to be updated accordingly. As

the state and control variables obey the power flow equations , 0g x u , we use power flow

equations to solve for the updated states by substituting the new control values into the control

variables. The details are illustrated below.

Recall that the power flow equations , 0g x u is:

 0 g , 0

() () ()

T i T i T i

eqx equ eqx equ equx eq

eq eqx equ eq eq

Y Y F F F B I

B N t h N t h M I t h K

x u x u x x u u u x

x u

.(6.19)

The updated states are solved by the Newton-Raphson method. And the detailed procedure is as

follows.

(1) Let 0 and x x , where is the iteration number to obtain the states x in the

Newton-Raphson method.

(2) Substitute
x and u into the power flow equation g ,

x u , and compute g ,
x u . If

 g , x u ,
x is the solution and the procedure is terminated, where is a user-

defined small value that is used to determine whether the solution is converged.

Otherwise, go to step (3).

(3) Compute the Jacobian matrix:
 g ,

x u

x
. The Jacobian matrix can be easily achieved as

illustrated in Section 6.1.

(4) Compute

1

1
g ,

g ,

x u
x x x u

x
.

(5) 1 . If max , go to step (2); otherwise, return nonconvergence. (max is the user-

defined maximum number of iterations allowed to compute the states x , and max is set

to be 15 in this algorithm.)

The new operating point (x and u) is formed from the above computed values.

51

Section 6.4: Iterative Linearization/Solution Method

Since the new operating point is computed from the linearized optimization problem, it may

overshoot and violate some of the original quadratic inequality constraints because of

linearization errors. Some of these modeled operational constraints may be out of their bounds,

especially for those constraints reaching upper bounds in the linearized optimization problem.

Therefore, we need to check whether the active constraints , 0h x u still hold at the new

operating point.

If any modeled constraint is violated, the algorithm updates its corresponding constant item b in

the linearized optimization problem, retrieves the previous solution, and solves the updated

linearization problem and the power flow problem again.

Note that for each linearized inequality constraint, we have:
 0 0

0 0
,

, 0
dh

h
d

x u

x u u
u

, and

the constant item b is:

0 0

0 0
,

,
dh

h b
d

x u

u x u
u

.

The details of modifying the constant item b are as follows.

 0 0,h x u
 0 0,x u

0

 ,h x u

 0 0,h x u

 0 0

0 0
,

,
h

h

x u
x u u

u

 0 0

0 0
,

, ,
h

h h

x u
x u x u u

u

h

 ,h x u

Overshoot

u

u

A

B

C

D
E

F

Figure 6.2: Linearization Update Method

As shown in Figure 6.2, the inequality constraint violation is caused by the linearization error of

the control variable u. Firstly, the LP result is u , and point B is the operating point for the

52

linearized problem and point A is the operating point for the nonlinear problem. Although point

B still does not violate the constraint, point A is above the upper bound. And the overshoot is

 , 0 ,h h x u x u . To solve this problem, the overshoot ,h x u is subtracted from the upper

bound. The solution of the linearized optimization problem moves from point B to point D in the

figure, and the solution point for the nonlinear problem moves from point A to point C. The

constraints will then be satisfied in most cases. However, in the situation as shown in Figure 6.2,

the point C still violates the constraint. Therefore,
 0 0

0 0
,

,
h

h

x u
x u u

u
 shall also be

subtracted from the constant item b, and the new operating points move from square points to the

triangular points (point E and F). In this way, both the operating points of the linearized problem

and the nonlinear problem satisfy the constraints. Thus, the constant item b is modified as:

 0 0,h x u , if , 0h x u is not violated or

 0 0,

,
h

h

x u
x u u

u
, if , 0h x u is violated.

Section 6.5: Determining Convergence or Addition of New Constraints

Once the modeled constraints are all satisfied, the algorithm will check all the remaining un-

modeled constraints. Since the linearized problem does not include all the operating constraints,

the new operating point may not satisfy some of them.

If the updated operating point satisfies all the un-modeled constraints, the algorithm has

converged. The current iterate operating point (x and u) is the optimal operating point of the

system. Otherwise, i.e. if one or more un-modeled operating constraints is violated, the algorithm

stores the current operating point and proceeds to the next iteration.

In this case, the algorithm adds the un-modeled violated constraints into the OPF, linearizes the

newly added constraints, and solves the updated linearized optimization problem and power flow

equations. This is achieved by the following two steps.

Step 1: Check violations for all constraints and add new violated constraints to the linearized

optimization problem model.

This step checks all the operating constraints defined in the OPF problem. If any un-modeled

constraint is not satisfied, the algorithm adds this constraint and continues to check whether the

violation exists in the rest of the operating constraints.

Step 2: Linearize the new constraints and retrieve the previous operating point.

This step is to linearize the new constraints and add the new linearized constraints to the

linearized optimization problem. The OPF performs another iteration considering all the modeled

constraints (including the newly added ones). The linearization technique is introduced in

53

Section 6.1. The procedure of solving the updated operating point is introduced from Section 6.2

to Section 6.4.

54

Section 7: Description of Example System

This section describes the proposed distribution system. Figure 7.1 shows the proposed

distribution system consisting of three substations and two feeders. Feeder A contains three

sections while feeder B contains two sections. Each section has several IEDs and a DS-DQSE,

while a master state estimator monitors the whole system and processes the output data from the

local state estimator in each section. The details of each section are given in the following

paragraphs.

Figure 7.1: Proposed Distribution System

Figure 7.2 shows the feeder A, section 1 that consists of four distribution lines (13.8kV), one

capacitor bank, one delta-wye transformer, and five loads. Four IEDs are installed in this section.

IED_1 monitors the three-phase voltage and current phasors at high voltage side of the

transformer (B12), IED_2 collects the data from the capacitor bank (B25), IED_3 and IED_4

measure the three-phase voltage and current phasors of the distribution lines (B13 and B16).

Besides, one local state estimator is installed to collect the data from all IEDs and performs

quasi-dynamic state estimation.

55

Figure 7.2: Distribution Feeder A, Section 1

Figure 7.3 shows the distribution feeder A, section 2 containing two distribution lines (13.8) kV,

two reclosers, one capacitor bank, three single-phase lines, two single-phase transformers with

secondary center-tap, two loads (residential loads), one battery, one converter and one three-

phase transformer. Six IEDs are installed in this section: IED_1 and IED_3 monitor three-phase

voltage and current phasors at the breakers (B111 and B205); IED_2 collects the data at the

transformer (B200); IED_4 and IED_5 measure the single-phase voltage and current phasors at

B201 and B206. IED_6 collects the data from the capacitor bank (B205). Besides, there is one

local state estimator collecting the data from all IEDs and performing quasi-dynamic state

estimation in this section.

56

Figure 7.3: Distribution Feeder A, Section 2

Figure 7.4 shows the distribution feeder A, section 3 consisting of one distribution line (13.8kV),

one recloser, one capacitor bank, one single-phase line, one single-phase transformer with

secondary center-tap and one load (residential load). Three IEDs are installed in this section:

IED_1 monitors the three-phase voltage and current phasors at a breaker (Bus209), IED_2

collects the data from the capacitor bank (Bus210), and IED_3 measures the single-phase voltage

and current phasor at Bus211. As same as sections 1 and 2 of feeder A, there is one local state

estimator in charge of collecting the data from all IEDs and performing quasi-dynamic state

estimation in this section.

57

Figure 7.4: Distribution System, Feeder A, Section 3

Figure 7.5 shows the distribution feeder B, section 1 that contains three distribution lines

(13.8kV), two reclosers, one capacitor bank, one delta-wye transformer and one load (induction

motor, industrial load). Four IEDs are installed in this section: IED_1 and IED_3 monitor three-

phase voltage and current phasors at breakers (Bus301 and Bus305); IED_2 collects the data

from the capacitor bank (Bus302); IED_4 monitors three-phase voltage and current phasors at

Bus303. Besides, one local state estimator collects the data from all IEDs and performs quasi-

dynamic state estimation in this section.

Figure 7.5: Distribution System, Feeder B, Section 1

Figure 7.6 shows the distribution feeder B, section 2 containing one distribution line (13.8kV),

one recloser, one capacitor bank, one single-phase line, one single-phase transformer with

secondary center-tap and one load (residential load). Three IEDs are installed in this section:

58

IED_1 monitors the breaker at Bus400, IED_2 collects the data from the capacitor bank

(Bus401), and IED_3 measures the single-phase voltage and current phasors at Bus402. Besides,

one local state estimator collects the data from all IEDs and performs quasi-dynamic state

estimation in this section.

Figure 7.6: Distribution System, Feeder B, Section 2

In this report, Feeder A, Section 1 is investigated and analyzed. The local state estimator in

Feeder A, Section 1 runs a 60-second event to test its performance. The figure of Feeder A,

Section 1 is shown in Figure 7.2. The parameters of this section are as follows.

Distribution line 1 (B12 to B13), distribution line 2 (B13 to B14), distribution line 3 (B14 to B15)

and distribution line 4 (B15 to B16) are 0.5 miles, 0.2 miles, 0.2 miles, and 0.3 miles,

respectively, and they are all operating at 13.8 kV.

The three-phase delta-wye transformer (13.8kV to 0.48kV) is rated at 36.0 MVA with 0.002 p.u.

winding resistance and 0.05 p.u. leakage reactance.

A capacitor bank is located at B25 for reactive power compensation. The rated voltage is 13.8

kV and the rated reactive power is 600kVAR.

Three-phase loads are located at B10, B09, and B08, respectively. These loads are considered as

residential loads with 0.48kV rated voltage. The load at B10 is rated at 1600kW real power and

400kVar reactive power, while the loads at B09 and B08 are with 800kW real power and

200kVAR reactive power consumption.

Besides, there are two loads with the same ratings (0.24 kV, 10kW, 3kVAR) at B14 and B15,

respectively.

Four IEDs are installed in this section. IED_1 is SEL-734 and IED_2, IED_3, IED_4 are GE-

D60. IED_1 measures three-phase voltage phasors at B12 and three-phase current phasors from

B12 to B11. IED_2 at B25 measures three-phase voltage and current phasors for the capacitor

bank. IED_3 measures three-phase voltage phasors at B13 and three-phase current phasors from

B13 to B14. IED_4 at B16 measures three-phase voltage phasors at B16 and three-phase current

phasors from B16 to B15. The meter scales for the voltage and the current are 13.8kV and 400A,

respectively.

59

Section 8: Example DS-DQSE Results

This section presents the implementation of DS-DQSE.

Section 8.1: Measurement Creation

The quasi-dynamic state estimation is performed in Feeder A, Section 1. Note that this section

contains 13 devices and 116 states, but only 24 phasor measurements (i.e. 48 measurements if

the phasor measurement is partitioned into magnitude and phase angle measurement) are

available. Therefore, the section is unobservable because of limited relays. In order to make this

section observable, derived measurements, pseudo-measurements and virtual measurements are

proposed, and these measurements are created based on the system topology and actual

measurements from relays.

In general, the measurements in a specific section are classified into four types: (a) Actual

Measurements: measurements that come from actual measurement channels, i.e. any

measurements from any IEDs (relays, meters, FDR, PMUs, etc.); (b) Derived Measurements:

measurements derived from actual measurements based on topology; (c) Pseudo Measurements:

not directly measured, quantities represented for which their value is approximately known, such

as missing phase measurements, neutral/shield voltage measurements, neutral currents, etc. (d)

Virtual Measurements: mathematical quantities defined by physical laws, such as Kirchhoff’s

current law, model equations, etc.

The derived measurements and virtual measurements are easily created. For example, in Figure

8.1, the current from B12 to B13 is approximately set as the opposite direction current from B12

to B11 as:

B12_B13,abc B12_B11,abcI I (8.1)

And the current from B13 to B12 is computed by applying Kirchhoff Current Law:

 B13_B12,abc B13_B14,abc B25,abcI I I (8.2)

60

Figure 8.1: An example for derived measurements in Feeder A, Section 1

The pseudo-measurements in this section are created as follows:

Figure 8.2 An example for pseudo-measurements in Feeder A, Section 1

Figure 8.2 shows three distribution lines from B13 to B16. The length of these three lines are 0.2,

0.2 and 0.3 miles, respectively. Two loads at Bus17 and Bus18 are identical single-phase loads at

phase A. The voltage and current measurements are only available at B13 and B16. The expected

voltage measurements at B14 and B15 are approximately computed as:

 B13, B16,

B14,

0.5 0.2

0.7

abc abc

abc

V V
V

 (8.3)

 B13, B16,

B15,

0.3 0.4

0.7

abc abc

abc

V V
V

 (8.4)

The expected current measurements from B14 to B17 and from B15 to B18 are computed as:

 B14_B17,abc B13,abc B16,abc0.5I I I (8.5)

 B15_B18,abc B13,abc B16,abc0.5I I I (8.6)

61

The expected current measurements from B14 to B13 and from B14 to B15 are:

B14_B13,abc B13_B14,abcI I (8.7)

 B14_B15,abc B13_B14,abc B14_B17,abc B13_B14,abc B16_B15,abc0.5 0.5I I I I I (8.8)

The expected current measurements from Bus105 to Bus104 and from Bus105 to Bus106 are:

B15_B14,abc B14_B15,abc B13_B14,abc B16_B15,abc0.5 0.5I I I I (8.9)

 B15_B16,abc B14_B15,abc B15_B18,abc B16_B15,abcI I I I (8.10)

Figure 8.3 shows a part of feeder A, section 1. A three-phase transformer is between B12 to B11.

Three-phase loads are located at B10, B09, and B08. The relay is installed at B12, and therefore,

the voltage and current measurements at B11, B10, B09 and B08 are unobservable. Since the

voltage at the transformer Y side are highly dependent on the amount of the load, the pseudo

measurement for the voltage at the delta side is not accurate. Therefore, only the currents at the

low voltage side are considered. The expected current measurements from B11 to B12 are

computed as:

B11 B12 B12

B11 B12 B12

B11 B12 B12

B11 B11 B11 B11

() _

() _

() _

()

a ab ca

b bc ab

c ca bc

n a b c

I I I TXM ratio

I I I TXM ratio

I I I TXM ratio

I I I I

 (8.11)

As the rated power of the load is known, the expected current measurements at each load are

approximately computed by the rated power ratio between these loads. In this section, if all the

three loads are connected to the grid, the expected current measurements at B10, B09 and B08

are:

B10 B11

B09 B10

B08 B10

0.5

0.5

0.5

abc abc

abc abc

abc abc

I I

I I

I I

 (8.12)

If only the loads at B10 and B09 are connected to the grid, the expected current measurements at

B10, B09, and B08 are:

B10 B11

B09 B10

B08

2

3

1

2

0

abc abc

abc abc

abc

I I

I I

I

 (8.13)

62

Figure 8.3: An example for pseudo-measurements in Feeder A, Section 1

All these measurements are treated as pseudo-measurements with relatively high standard

deviation, e.g. 0.1 p.u. In addition, the standard deviation of actual measurements and virtual

measurements are usually set as 0.01 p.u. and 0.001 p.u. respectively.

After adding pseudo-measurements, derived measurements, and virtual measurements, the

system is observable. In this section, in addition to the 48 actual measurements, 70 pseudo-

measurements, 12 derived measurements, and 6 virtual measurements (136 measurements in

total) are available. The redundancy is (136-116)/116=17.2%.

Section 8.2: QSE Implementation

The user interface of the state estimator is shown in Figure 8.4. The design of the state estimator

supports the connection of the state estimator to a section bus or a data concentrator such as a

PDC (phasor data concentrator), etc. In this way, the implementation in any section is

straightforward and requires relatively short time.

63

Figure 8.4: User Interface of State Estimator

The PDC client connects either to a PDC (for real time data) or to the test data server (for

simulation experiments) and receives a C37.118 synchro-phasor data stream that may also be

mixed with data from standard relays. The test data server serves the purpose of numerical

experimentation with the quasi-state estimation where a C37.118 data stream is created that is

served to the PDC client. The user can define the data source to be a synchro-phasor, phasor data,

or time domain file that has been saved upon simulation of the system. The measurement data is

streamed to the test data server before the state estimation, and the interface of the synchro-

phasor test server and PDC client are shown in Figure 8.5 and Figure 8.6, respectively. Note that

a PDC Client Data Frame Report is automatically generated to display the input measurements in

details as shown in Figure 8.7.

64

Figure 8.5: Test Data Server Interface

Figure 8.6: PDC Client Interface

65

Figure 8.7: PDC Client Data Frame Report

Before the execution of the state estimator, the user has to map the measurements to the

corresponding state estimator measurement channels in the PDC client as shown in Figure 8.8.

This is a necessary step because the state estimator measurement channels are linked to the

model of the system and have all the information that is necessary for the execution of the state

estimator. And then, the state estimator identifies the topology, creates the derived measurements,

pseudo-measurements, and virtual measurements automatically, and performs the quasi-dynamic

state estimation. The estimated measurements, estimated states, residuals between measurements

and estimated measurements, normalized residuals, variance of each state, chi-square, confidence

level, and execution time can be displayed and output.

66

Figure 8.8: Measurement Mapping

Section 8.3: Test Case Results

The time plots of all the measurements from four relays are shown in Section 8.3. The estimated

state report, measurement, and estimated measurement report are generated when the state

estimator is running, the reports at one time stamp are shown in Figure 8.9, Figure 8.10 and

Figure 8.11, respectively.

67

Figure 8.9: Estimated State Report

Figure 8.10: Estimated Voltage Measurement Report

68

Figure 8.11: Estimated Current Measurements Report

The performance evaluation, which is also called the parameterized (parameter k) chi-square test

is shown in Figure 8.12 and it is generated as follows:

Figure 8.12: Performance Evaluation of State Estimation Result

69

All the phasors are divided into real and imaginary parts so that the state estimator is able to

manipulate the data in real number. The chi-square test is calculated as:

2

1

n
i

i i

r

k

 , (8.14)

where ir is the residual between measurement and estimated measurement i, and i is the

standard deviation of the corresponding measurement. Note that the variable k enables to express

the results of the chi-square test with only one variable.

The confidence level is calculated as:

2 2Pr[] 1.0 Pr(,) . (8.15)

A confidence level around 100% (small chi-square value) when k=1 infers that the

measurements are highly consistent with the dynamic model of the system, while a confidence

level around 0% (large chi-square value) when k=1 means that the measurements do not match

the dynamic model of the system. During this event, the confidence level is kept at 100%

according to the parameterized chi-square test when k=1 as shown in Figure 8.12, which means

that the measurements match the system model perfectly and there are no bad data or hidden

failures in the system.

The state estimator also generates time plots of all the states. In this example, the states are the

voltage phasors at each bus in this section, the internal states in some devices (such as the

transformer), as well as the states at the other side of the interconnecting distribution line. The

time plots of states at each bus are shown in Figure 8.13-8.18. Compared to the time plots of the

actual voltage measurements at B12, B13, B16, and B25 as shown in Figure 8.19 and Figure

8.20, we find that the estimated states track the system perfectly.

70

Figure 8.13: Estimated Voltage Phasors at B08 and B09

Figure 8.14: Estimated Voltage Phasors at B10 and B11

 3.6

 80.5

 157.4

 234.2

 311.1

V
B08_A
B08_B
B08_C

-179.0

 -89.3

 0.5

 90.2

 180.0

D
e
g

B08_A
B08_B
B08_C

 3.6

 77.9

 152.3

 226.6

 300.9

V

B09_A
B09_B
B09_C

-115.7

 -53.1

 9.4

 72.0

 134.5

D
e
g

B09_A
B09_B
B09_C

 0.00 9.56 19.12 28.68 38.24 47.80 57.36

Time (Seconds)

263.08

269.80

276.52

283.24

289.97

V

B10_A
B10_B
B10_C

-179.9

 -90.1

 -0.3

 89.4

 179.2

D
e
g

B10_A
B10_B
B10_C

263.08

269.80

276.52

283.24

289.97

V

B11_A
B11_B
B11_C

-179.9

 -90.1

 -0.3

 89.4

 179.2

D
e
g

B11_A
B11_B
B11_C

 0.00 9.56 19.12 28.68 38.24 47.80 57.36

Time (Seconds)

71

Figure 8.15: Estimated Voltage Phasors at B12 and B13

Figure 8.16: Estimated Voltage Phasors at B14 and B15

 7.827

 7.852

 7.876

 7.901

 7.925

k
V

B12_A
B12_B
B12_C

-179.4

 -89.6

 0.1

 89.9

 179.6

D
e
g

B12_A
B12_B
B12_C

 7.865

 7.885

 7.906

 7.926

 7.946

k
V

B13_A
B13_B
B13_C

-179.3

 -89.5

 0.2

 90.0

 179.7

D
e
g

B13_A
B13_B
B13_C

 0.00 9.56 19.12 28.68 38.24 47.80 57.36

Time (Seconds)

 7.896

 7.914

 7.932

 7.951

 7.969

k
V

B14_A
B14_B
B14_C

-179.2

 -89.4

 0.3

 90.1

 179.8

D
e
g

B14_A
B14_B
B14_C

 7.925

 7.943

 7.960

 7.978

 7.995

k
V

B15_A
B15_B
B15_C

-179.1

 -89.3

 0.4

 90.2

 179.9

D
e
g

B15_A
B15_B
B15_C

 0.00 9.56 19.12 28.68 38.24 47.80 57.36

Time (Seconds)

72

Figure 8.17: Estimated Voltage Phasors at B16 and B25

Figure 8.18: Estimated Voltage Phasors at B30 and Feeder-A

 7.956

 7.972

 7.989

 8.005

 8.022

k
V

B16_A
B16_B
B16_C

-180.0

 -90.2

 -0.5

 89.2

 179.0

D
e
g

B16_A
B16_B
B16_C

 0.00

 1.99

 3.97

 5.96

 7.94

k
V

B25_A
B25_B
B25_C

-116.8

 -45.0

 26.9

 98.8

 170.6

D
e
g

B25_A
B25_B
B25_C

 0.00 9.56 19.12 28.68 38.24 47.80 57.36

Time (Seconds)

 7.956

 7.972

 7.989

 8.005

 8.022

k
V

B30_A
B30_B
B30_C

-180.0

 -90.2

 -0.5

 89.2

 179.0

D
e
g

B30_A
B30_B
B30_C

 8.032

 8.043

 8.054

 8.065

 8.075

k
V

FEEDER-A_A
FEEDER-A_B
FEEDER-A_C

-179.2

 -89.5

 0.3

 90.0

 179.8

D
e
g

FEEDER-A_A
FEEDER-A_B
FEEDER-A_C

 0.00 9.56 19.12 28.68 38.24 47.80 57.36

Time (Seconds)

73

Figure 8.19: Voltage Measurements at B12 and B13

Figure 8.20: Voltage Measurements at B16 and B23

 7.827

 7.851

 7.876

 7.900

 7.925

k
V

V_B12_A_M
V_B12_B_M
V_B12_C_M

-179.2

 -89.4

 0.4

 90.1

 179.9

D
e
g

V_B12_A_P
V_B12_B_P
V_B12_C_P

 7.864

 7.885

 7.905

 7.926

 7.946

k
V

V_B13_A_M
V_B13_B_M
V_B13_C_M

-179.1

 -89.3

 0.5

 90.2

 180.0

D
e
g

V_B13_A_P
V_B13_B_P
V_B13_C_P

 0.00 10.00 20.00 30.00 40.00 50.00 59.99

Time (Seconds)

 7.955

 7.972

 7.988

 8.005

 8.021

k
V

V_B16_A_M
V_B16_B_M
V_B16_C_M

-179.7

 -90.0

 -0.2

 89.5

 179.2

D
e
g

V_B16_A_P
V_B16_B_P
V_B16_C_P

 0.00

 1.99

 3.97

 5.96

 7.94

k
V

V_B25_A_M
V_B25_B_M
V_B25_C_M

-116.6

 -44.8

 27.0

 98.8

 170.6

D
e
g

V_B25_A_P
V_B25_B_P
V_B25_C_P

 0.00 10.00 20.00 30.00 40.00 50.00 59.99

Time (Seconds)

74

In addition, 3-D visualizations have been developed. A screenshot of the 3D visualization is

shown in Figure 8.21. The estimated voltage magnitude for each node is visualized as a tube.

The height of the tube is proportional to the voltage magnitude. The estimated voltage phase of a

node is visualized as an arc. The angle of the arc is proportional to the voltage phase angle.

Surface plots are also available as illustrated in Figure 8.21, the voltage measurements or

estimated measurements are plotted as a contour map to reflect the magnitude of each

measurement. Note that in this test case, the voltage surface at the load sides are a bit lower than

the rated voltage because of the loads in this section.

Figure 8.21: 3D Visualization Screenshot

75

Section 9: Summary and Conclusions

This report presents an object-oriented implementation of full state feedback control for VPPs.

The components of the VPP full state feedback control are: (1) object-oriented high-fidelity

modeling for all devices in the VPP; (2) DS-DQSE that continuously monitors and outputs

estimated states and validated models by performing quasi-dynamic state estimation; (3) OPF

solver that uses the output (estimated states and validated models) of DS-DQSE to formulate and

solve the OPF which provides the optimal control commands as a feedback to the VPP.

The object-oriented device modeling approach has been presented in Section 3. The modeling

approach starts from the physically based model with state and control variables. The end result

is an algebraic model, referred to as state and control algebraic quadratic companion form

(SCAQCF). The advantages of SCAQCF are (1) it is an object-oriented, interoperable, and

unified syntax for all the devices in the power system; (2) It is easy to be formed and it stores all

the information of a device; (3) DS-DQSE and OPF solver are able to work directly on these

SCAQCF models without any other model information.

DS-DQSE, a critical role in full state feedback control system, is then proposed. DS-DQSE is

able to provide real-time estimated states, validated measurements and validated models after

quasi-dynamic state estimation. Besides, in addition to the actual data collected from IEDs,

several other types of measurements (derived, pseudo, and virtual measurements) are defined,

resulting in high measurement redundancy, which guarantees the accuracy of the estimated states

and the network model of VPP. DS-DQSE is installed in a distributed architecture, which has the

following advantages: (1) Since DS-DQSE uses local measurements to estimate the states in the

local distribution system, the data traffic is confined; (2) The dimension of the problem solved by

DS-DQSE is much smaller than that solved by the traditional centralized state estimator, and

therefore, the execution time of the DS-DQSE is fast (i.e. at each cycle); (3) the relatively small

dimension of the system allows detailed power system models that can eliminate the estimation

errors from the imbalanced operations and the asymmetric system, as well as the measurement

errors introduced by the instrumentation channels.

An OPF solver is illustrated to solve the optimal control problem for VPPs. The OPF solver

processes the output (estimated states and validated models) of DS-DQSE and gives the optimal

control command as a feedback to the VPP. The OPF solver is also implemented in an object-

oriented way and the algorithm of OPF solver proves to be robust and efficient. The robustness

means that the algorithm starts from a feasible but not optimal solution and moves the operating

point in the feasible region while approaching the optimality. Therefore, the output of the

algorithm is always a feasible solution. High efficiency means that the algorithm consumes less

runtime compared with traditional solution methods for the OPF problem. The reasons are as

follows. Firstly, the algorithm models the OPF problem as a quadratic problem for fast

convergence. Secondly, the algorithm identifies the active constraints gradually and adds them to

the modeled constraint set if needed. These features ensure that at each iteration, the dimension

of the problem is the smallest possible for the specific distribution system section.

76

Appendix A: Object-Oriented Modeling Example

(Converter with P-Q Control)

This appendix provides the derivation of the IGBT converter average model with P-Q controller

from compact device model to the SCAQCF model. The diagram of the P-Q control converter

and the circuit diagram are given in Figure 3.2 and Figure 3.3. The states, controls, and

parameters are introduced in Section 3.3. Based on these information, we first create the compact

device model, and then generate the quadratized device model by introducing additional states to

make the highest order less or equal to two. In the end, we present the SCAQCF model.

A.1: Converter Quasi-Dynamic Domain Compact Device Model

The DC-AC converter described here is an IGBT converter with pulse width modulation. Figure

3.3 shows the circuit diagram of the DC-AC converter with five terminals.
ADV ,

KDV ,
ADI , and

KDI are voltages and currents at DC terminals while
aV ,

bV ,
cV ,

aI ,
bI , and

cI are the voltages

and currents at AC terminals. In addition, r is the resistance at DC side, sL is the inductance at

each phase on AC side, and DCE is the voltage across the capacitor.

The through variables in this model are the five inflow terminal currents
ADI ,

KDI ,
aI ,

bI , and

cI .

The states are:
ADV ,

KDV ,
aV ,

bV ,
cV ,

DCE ,
aE ,

bE ,
cE , acP , acQ , m , .

The control variables are:
refP ,

refQ .

The compact device model is therefore given by

2

AD KD DC
AD

V V E
I

r

 (A.1)

2

AD KD DC
KD

V V E
I

r

 (A.2)

1

a a a

s

I V E
j L

 (A.3)

1

b b b

s

I V E
j L

 (A.4)

77

1

c c c

s

I V E
j L

 (A.5)

0 DCr ADr acE I P (A.6)

 2
30

j

a bE e E

 (A.7)

 2
30

j

a cE e E

 (A.8)

 * * *0 Re a a b b c c acV I V I V I P (A.9)

 * * *0 Im a a b b c c acV I V I V I Q (A.10)

 1 1

sin
0

ref ac

P I ref ac

d P P d
K K P P

dt dt

 (A.11)

 2 20

ref ac

P I ref ac

d Q Q dm
K K Q Q

dt dt

 (A.12)

0
2 2

ja
DCr a

a

Vm
E E e

V

 (A.13)

where acP and acQ are the output active and reactive power of the converter. refP and refQ are the

targeted active and reactive power output of the converter, m is the modulation index of the

converter, is the phase angle difference between aE and aV , 1PK and 1IK are the

proportional and integral coefficient of PQ controller for real power, 2PK and 2IK are the

proportional and integral coefficient of PQ controller for reactive power. Note that phasors are

used in the compact device model.

Operation Constraints:

,max

1 1 1
0

2 2 2
AD KD DC DCV V E I

r r r
 (A.c1)

 ,max

1 1
0 a a AC

s s

V E I
j L j L

 (A.c2)

 ,max

1 1
0 b b AC

s s

V E I
j L j L

 (A.c3)

78

 ,max

1 1
0 c c AC

s s

V E I
j L j L

 (A.c4)

 0.0 1.0m (A.c5)

A.2: Converter Quasi-Dynamic Domain Quadratized Device Model

The compact device model is expanded into the quadratized device model (QDM). Additional

states are added to guarantee the highest order in QDM is two. The QDM has 26 states and 26

equations, including 10 through equations and 16 internal equations.

The states are: ADrV , ADiV , KDrV , KDiV , arV , aiV , brV , biV , crV , ciV , DCrE , DCiE , arE , aiE , brE ,

biE , crE , ciE , acP , acQ , m ,
,a magV , DCmE , DCmE OverV , 1s , 2s .

The control variables are:
refP ,

refQ .

The equations are listed as follows:

Equation Set 1 (linear through equations):

2

ADr KDr DCr
ADr

V V E
I

r

 (A.14)

2

ADi KDi DCi
ADi

V V E
I

r

 (A.15)

2

ADr KDr DCr
KDr

V V E
I

r

 (A.16)

2

ADi KDi DCi
KDi

V V E
I

r

 (A.17)

1

ar ai ai

s

I V E
L

 (A.18)

1

ai ar ar

s

I V E
L

 (A.19)

1

br bi bi

s

I V E
L

 (A.20)

1

bi br br

s

I V E
L

 (A.21)

79

1

cr ci ci

s

I V E
L

 (A.22)

1

ci cr cr

s

I V E
L

 (A.23)

Equation Set 2 (linear internal equations):

1 3
0

2 2
ar ai brE E E (A.24)

3 1
0

2 2
ar ai biE E E (A.25)

1 3
0

2 2
ar ai crE E E (A.26)

3 1
0

2 2
ar ai ciE E E (A.27)

 1
1 10 ac

P I ref ac

dP ds
K K P P

dt dt
 (A.28)

 2 20 ac
P I ref ac

dQ dm
K K Q Q

dt dt
 (A.29)

Equation Set 3 (quadratic equations):

 21
0

2
ADr DCr KDr DCr DCr acV E V E E P

r
 (A.30)

0 DCiE (A.31)

1

0 ar ai ai ar br bi bi br cr ci ci cr ac

s

V E V E V E V E V E V E P
L

 (A.32)

 2 2 2 2 2 21
0 ar ar ar ai ai ai br br br bi bi bi cr cr cr ci ci ci ac

s

V V E V V E V V E V V E V V E V V E Q
L

 (A.33)

0 DC DCm E mE (A.34)

2 2 2

,0 ar ai a magV V V (A.35)

,0 DC a mag DCmE V mE OverV (A.36)

80

2 1

1
0

2 2
DC ar ar aimE OverV V E s E s (A.37)

2 1

1
0

2 2
DC ai ai armE OverV V E s E s (A.38)

2 2

1 20 1.0s s (A.39)

Operation Constraints:

,max ,max

1 1 1

2 2 2
DC ADr KDr DCr DCI V V E I

r r r
 (A.c6)

 2 2 2 2 2

,max2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 2 2
0 ar ai ar ai ar ar ai ai AC

s s s s s s

V V E E V E V E I
L L L L L L

 (A.c7)

 2 2 2 2 2

,max2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 2 2
0 br bi br bi br br bi bi AC

s s s s s s

V V E E V E V E I
L L L L L L

 (A.c8)

 2 2 2 2 2

,max2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 2 2
0 cr ci cr ci cr cr ci ci AC

s s s s s s

V V E E V E V E I
L L L L L L

 (A.c9)

 0.0 1.0m (A.c10)

A.3: Converter Quasi-Dynamic Domain SCAQCF Device Model

The state and control algebraic quadratic form (SCAQCF) device model is derived from

applying the quadratic integration to the quadratized device model with a time step h. The

SCAQCF device model is:

()

0

0

()

0

0

T i T i T i

eqx equ eqx equ equx eq

m

t

Y Y F F F B
t

I

x u x x u u u x
I

() () ()eq eqx equ eq eqB N t h N t h M t h K x u I

81

(,) T i T i T i

feqx fequ feqx fequ fequx feqY Y F F F C

h x u x u x x u u u x

 Connectivity: TerminalNodeName

min max

min max

 : (,)

subject to

h h x u h

u u u

 Normalization Factor: StateNormFactor, ThroughNormFactor, ControlNormFactor

 Note: All the above variables are in metric system.

The normalization factors, functional constraints and variable limits are the same as the quasi-

dynamic SCQDM.

where the matrices are given by

1 1 1

2 2 2

3

1 1 1

2 1 2

3

4 8

4 8

0

1 2

2

1 2

2

0

eqxd eqx eqxd

eqxd eqx eqxd

eqx

eqx

eqxd eqxd eqx

eqxd eqxd eqx

eqx

D Y D
h h

D Y D
h h

Y
Y

D D Y
h h

D D Y
h h

Y

1

2

3

1

2

3

0

0

0

0

0

0

equ

equ

equ

equ

equ

equ

equ

Y

Y

Y
Y

Y

Y

Y

3

3

0 0

0 0

0

0 0

0 0

0

eqxx

eqx

eqxx

F
F

F

3

3

0 0

0 0

0

0 0

0 0

0

equu

equ

equu

F
F

F

3

3

0 0

0 0

0

0 0

0 0

0

equx

equx

equx

F
F

F

82

1 1

2 2

1 1

2 2

4

4

0

1 5

2 2

1 5

2 2

0

eqx eqxd

eqx eqxd

eqx

eqx eqxd

eqx eqxd

Y D
h

Y D
h

N

Y D
h

Y D
h

1

2

1

2

0

1

2

1

2

0

equ

equ

equ equ

equ

Y

Y

N Y

Y

(())

(())

0

0

1

2

0

0

size i t

eq

size i t

I

M
I

3

1

2

3

0

0

3

2

3

2

eqc

eq eqc

eqc

eqc

C

K C

C

C

83

Appendix B: Object-Oriented Algorithm of

Constructing the Network SCAQCF Model from Device

SCAQCF Models

This appendix introduces the procedure to form the network SCAQCF model. The purpose of the

network formation is to (1) provide the mapping lists (states, equations, controls) from devices to

the network, (2) provide the network KCL equations at the common nodes. Given all the device

models in this network and network interface node name list, the automatic construction of the

network model is illustrated below.

Step 1: Input the device SCAQCF information and store the information into the variables

defined in SCAQCF standard.

The SCAQCF standard appears in Section 3. This step has been done in device-level

measurement model creation part.

Step 2: Input the network interface node name list.

Step 3: Creation of Mapping List from Device Nodes to Network Nodes. This step is achieved

by

(1) Creating a connector node name list;

(2) Creating the network node model via breaker processing;

(3) Creating a mapping list from device node to network node.

The result is stored in the array:

pDev->pQDSCAQCFModel_OptimalNodeNumber[i] = k;

 i: the node number in the device model

 k: the node number in the network

Step 4: Determine the dimension of the network.

This step determines the dimension of all the arrays of the network model and then initializes

these arrays.

Step 5: Mapping lists (equation, state, control, and constraint) creation.

The results are stored in the following arrays:

84

(1) Device Equation to Network Equation Mapping List

Example: pDev = (Device*)vImportedDevices[i]

 pDev->pQDSCAQCFNetwork_EquIndex[j] = k;

 k: network equation number

 i: device number

 j: device equation number

(2) Device State to Network State Mapping List

Example: pDev = (Device*)vImportedDevices[i]

 pDev->pQDSCAQCFNetwork_StateIndex[j] = k;

 k: network state number

 i: device number

 j: device state number

(3) Device Control Variable to Network Control Variable Mapping List

Example: pDev = (Device*)vImportedDevices[i]

 pDev->pQDSCAQCFNetwork_ControlIndex[j] = k;

 k: network control number

 i: device number

 j: device control number

(4) Device Constraint to Network Constraint Mapping List

Example: pDev = (Device*)vImportedDevices[i]

 pDev->pQDSCAQCFNetwork_ConstraintIndex[j] = k;

 k: network constraint number

 i: device number

 j: device constraint number

Step 6: Network model formation.

This step creates the network model by adding all the device contributions to the network.

(1) Create network state variable normalization factors.

Given:

m_vdQDSCAQCFModel_StateNormFactor from iDeviceth device

Device State to Network State Mapping List: pQDSCAQCFNetwork_StateIndex

Create:

vdQDSCAQCFNetwork_StateNormFactor

85

Process:

pDev=(Device*)vImportedDevices[iDevice];

Elements in State Normalization

Factor of the iDeviceth device
Elements in State Normalization Factor of the Network

State number: idev inet = pDev-> pQDSCAQCFNetwork_StateIndex[idev]

Normalization factor: vdev = pDev-

>

m_vdQDSCAQCFModel_StateNo

rmFactor [idev]

vdQDSCAQCFNetwork_StateNormFactor[inet] =

vdQDSCAQCFNetwork_StateNormFactor[inet] + vdev

vdQDSCAQCFNetwork_StateNormFactor[inet]=

vdQDSCAQCFNetwork_StateNormFactor [inet] / n

 where n is the number of device states mapping to this network state.

(2) Formulate network through variable normalization factors

Given:

m_vdQDSCAQCFModel_ThroughNormFactor from iDeviceth device

Device Equation to Network Equation Mapping List: pQDSCAQCFNetwork_EquIndex

Create:

pQDSCAQCFNetwork_ThroughNormFactor

Process:

pDev=(Device*)vImportedDevices[iDevice];

Elements in Through Normalization Factor of the

iDeviceth device

Elements in Through Normalization Factor of

the Network

through variable number: idev
inet = pDev->

pQDSCAQCFNetwork_EquIndex[idev]

normalization factor: vdev= pDev->

m_vdQDSCAQCFModel_ThroughNormFactor[idev]

pQDSCAQCFNetwork_StateNormFactor[inet]

=

pQDSCAQCFNetwork_StateNormFactor[inet]

+ vdev

pQDSCAQCFNetwork_StateNormFactor[inet]

=

86

pQDSCAQCFNetwork_StateNormFactor[inet] /

n

where n is the number of device through variables mapping to this network through

variables.

(3) Formulate network control variable normalization factors

Given:

m_vdQDSCAQCFModel_ControlNormFactor from iDeviceth device

Device Control Variable to Network Control Variable Mapping List:

pQDSCAQCFNetwork_ControlIndex

Create:

vdQDSCAQCFNetwork_ControlNormFactor

Process:

pDev=(Device*)vImportedDevices[iDevice];

Elements in Control Variable Normalization

Factor of the iDeviceth device

Elements in Control Variable Normalization

Factor of the Network

control variable number: idev
inet = pDev->

vdQDSCAQCFNetwork_ControlIndex[idev]

normalization factor: vdev = pDev-

>m_vdQDSCAQCFModel_ControlNormFactor

[idev]

vdQDSCAQCFNetwork_ControlNormFactor

[inet] = vdev

(4) Formulate network Yeqx

Given:

m_vqQDSCAQCFModel_Yeqx from iDeviceth device

Device Equation to Network Equation Mapping List: pQDSCAQCFNetwork_EquIndex

Device State to Network State Mapping List:

pQDSCAQCFNetwork_StateIndex

Create:

pQDSCAQCFNetwork_Yeqx

Process:

pDev=(Device*)vImportedDevices[iDevice];

87

Elements in Yeqx of the iDeviceth device Elements in Yeqx of the Network

equation number: idev
inet = pDev->

pQDSCAQCFNetwork_EquIndex[idev]

state number: jdev
jnet = pDev->

pQDSCAQCFNetwork_StateIndex[jdev]

coefficient: vdev=pDev-

>m_vqQDSCAQCFModel_Yeqx[idev][jdev]

pQDSCAQCFNetwork_Yeqx[inet][jnet] =

pQDSCAQCFNetwork_Yeqx[inet][jnet]+vdev

(5) Formulate network Yequ

Given:

m_vqQDSCAQCFModel_Yequ from iDeviceth device

Device Equation to Network Equation Mapping List: pQDSCAQCFNetwork_EquIndex

Device Control Variable to Network Control Variable Mapping List:

pQDSCAQCFNetwork_ControlIndex

Create:

pQDSCAQCFNetwork_Yequ

Process:

pDev=(Device*)vImportedDevices[iDevice];

Elements in Yequ of the iDeviceth device Elements in Yequ of the Network

equation number: idev
inet = pDev->

pQDSCAQCFNetwork_EquIndex[idev]

control number: jdev
jnet = pDev->

pQDSCAQCFNetwork_ControlIndex[jdev]

coefficient: vdev = pDev-

>m_vqQDSCAQCFModel_Yequ[idev][jdev]
pQDSCAQCFNetwork_Yequ[inet][jnet] = vdev

(6) Formulate network Feqxx

Given:

m_vcQDSCAQCFModel_Feqxx from iDeviceth device

Device Equation to Network Equation Mapping List:

pQDSCAQCFNetwork_EquIndex

88

Device State Variable to Network State Variable Mapping List:

pQDSCAQCFNetwork_StateIndex

Create:

pQDSCAQCFNetwork_Feqxx

Process:

pDev=(Device*)vImportedDevices[iDevice]

Elements in Feqxx of the

iDeviceth device
Elements in Feqxx of the Network

equation number: kdev
pQDSCAQCFNetwork_Feqxx[iFeqxx].scubix_k =

pDev-> pQDSCAQCFNetwork_EquIndex[kdev];

state number: idev
pQDSCAQCFNetwork_Feqxx[iFeqxx].scubix_i = pDev-

> pQDSCAQCFNetwork_StateIndex[idev]

state number: jdev
pQDSCAQCFNetwork_Feqxx[iFeqxx].scubix_j = pDev-

> pQDSCAQCFNetwork_StateIndex[jdev]

Coefficient: vdev
pQDSCAQCFNetwork_Feqxx[iFeqxx].scubix_v= vdev;

iFeqxx++;

(7) Formulate network Fequu

Given:

m_vcQDSCAQCFModel_Fequu from iDeviceth device

Device Equation to Network Equation Mapping List:

pQDSCAQCFNetwork_EquIndex

Device Control Variable to Network Control Variable Mapping List:

pQDSCAQCFNetwork_ControlIndex

Create:

pQDSCAQCFNetwork_Fequu

Process:

pDev=(Device*)vImportedDevices[iDevice]

Elements in Fequu of the

iDeviceth device
Elements in Fequu of the Network

equation number: kdev
pQDSCAQCFNetwork_Fequu[iFequu].scubix_k =

pDev-> pQDSCAQCFNetwork_EquIndex[kdev];

89

control number: idev
pQDSCAQCFNetwork_Fequu[iFequu].scubix_i = pDev-

> pQDSCAQCFNetwork_ControlIndex[idev];

control number: jdev
pQDSCAQCFNetwork_Fequu[iFequu].scubix_j = pDev-

> pQDSCAQCFNetwork_ControlIndex[jdev];

Coefficient: vdev
pQDSCAQCFNetwork_Fequu[iFequu].scubix_v= vdev;

iFequu++;

(8) Formulate network Fequx

Given:

m_vcQDSCAQCFModel_Fequx from iDeviceth device

Device Equation to Network Equation Mapping List: pQDSCAQCFNetwork_EquIndex

Device Control Variable to Network Control Variable Mapping List:

pQDSCAQCFNetwork_ControlIndex

Device State Variable to Network State Variable Mapping List:

pQDSCAQCFNetwork_StateIndex

Create:

pQDSCAQCFNetwork_Fequx

Process:

pDev=(Device*)vImportedDevices[iDevice]

Elements in Fequx of the

iDeviceth device
Elements in Fequx of the Network

equation number: kdev
pQDSCAQCFNetwork_Fequx[iFequx].scubix_k =

pDev-> pQDSCAQCFNetwork_EquIndex[kdev];

control number: idev
pQDSCAQCFNetwork_Fequx[iFequx].scubix_i = pDev-

> pQDSCAQCFNetwork_ControlIndex[idev];

state number: jdev
pQDSCAQCFNetwork_Fequx[iFequx].scubix_j = pDev-

> pQDSCAQCFNetwork_StateIndex[jdev];

coefficient: vdev
pQDSCAQCFNetwork_Fequx[iFequx].scubix_v = vdev;

iFequx++;

(9) Formulate network Neqx

90

Given:

m_vqQDSCAQCFModel_Neqx from iDeviceth device

Device Equation to Network Equation Mapping List: pQDSCAQCFNetwork_EquIndex

Device State Variable to Network State Variable Mapping List:

pQDSCAQCFNetwork_StateIndex

Create:

pQDSCAQCFNetwork_Neqx

Process:

pDev=(Device*)vImportedDevices[iDevice]

Elements in Neqx of the iDeviceth device Elements in Neqx of the Network

equation number: kdev
knet = pDev->

pQDSCAQCFNetwork_EquIndex[kdev]

state number: idev
inet = pDev->

pQDSCAQCFNetwork_StateIndex[idev]

coefficient: vdev=pDev->

m_vqQDSCAQCFModel_Neqx[kdev][idev]

pQDSCAQCFNetwork_Neqx[knet][inet] = vdev +

pQDSCAQCFNetwork_Neqx[knet][inet]

(10) Formulate network Nequ

Given:

m_vqQDSCAQCFModel_Nequ from iDeviceth device

Device Equation to Network Equation Mapping List: pQDSCAQCFNetwork_EquIndex

Device Control Variable to Network Control Variable Mapping List:

pQDSCAQCFNetwork_ControlIndex

Create:

pQDSCAQCFNetwork_Nequ

Process:

pDev=(Device*)vImportedDevices[iDevice]

Elements in Nequ of the iDeviceth device Elements in Nequ of the Network

equation number: kdev
knet = pDev->

pQDSCAQCFNetwork_EquIndex[kdev]

control number: idev
inet = pDev->

pQDSCAQCFNetwork_ControlIndex[idev]

coefficient: vdev=pDev-> pQDSCAQCFNetwork_Nequ[knet][inet] = vdev

91

m_vqQDSCAQCFModel_Nequ[kdev][idev]

(11) Formulate network Meq

Given:

m_vqQDSCAQCFModel_Meq from iDeviceth device

Device Equation to Network Equation Mapping List:

pQDSCAQCFNetwork_EquIndex

Create:

pQDSCAQCFNetwork_Meq

Process:

pDev=(Device*)vImportedDevices[iDevice]

Elements in Meq of the iDeviceth device Elements in Meq of the Network

equation number: kdev knet = pDev-> pQDSCAQCFNetwork_EquIndex[kdev]

equation number: idev inet = pDev-> pQDSCAQCFNetwork_EquIndex[idev]

coefficient: vdev=pDev->

m_vqQDSCAQCFModel_Meq[kdev][idev]

pQDSCAQCFNetwork_Meq[knet][inet] = vdev +

pQDSCAQCFNetwork_Meq[knet][inet]

(12) Formulate network Keq

Given:

m_vlQDSCAQCFModel_Keq from iDeviceth device

Device Equation to Network Equation Mapping List:

pQDSCAQCFNetwork_EquIndex

Create:

pQDSCAQCFNetwork_Keq

Process:

pDev=(Device*)vImportedDevices[iDevice]

Elements in Keq of the iDeviceth

device
Elements in Keq of the Network

equation number: kdev knet = pDev-> pQDSCAQCFNetwork_EquIndex[kdev]

coefficient: vdev=pDev-> pQDSCAQCFNetwork_Keq[knet] = vdev +

92

m_vlQDSCAQCFModel_Keq[kdev] pQDSCAQCFNetwork_Keq[knet]

(13) Formulate network Yfeqx

Given:

m_vqQDSCAQCFModel_Yfeqx from iDeviceth device

Device Constraint Equation to Network Constraint Equation Mapping List:

pQDSCAQCFNetwork_ConstraintIndex

Device State to Network State Mapping List:

pQDSCAQCFNetwork_StateIndex

Create:

pQDSCAQCFNetwork_Yfeqx

Process:

pDev=(Device*)vImportedDevices[iDevice];

Elements in Yfeqx of the iDeviceth device Elements in Yfeqx of the Network

constraint equation number: idev
inet = pDev->

pQDSCAQCFNetwork_ConstraintIndex[idev]

state number: jdev
jnet = pDev->

pQDSCAQCFNetwork_StateIndex[jdev]

coefficient: vdev=pDev-

>m_vqQDSCAQCFModel_Yfeqx[idev][jdev]
pQDSCAQCFNetwork_Yfeqx[inet][jnet] = vdev;

(14) Formulate network Yfequ

Given:

m_vqQDSCAQCFModel_Yfequ from iDeviceth device

Device Constraint Equation to Network Constraint Equation Mapping List:

pQDSCAQCFNetwork_ConstraintIndex

Device Control to Network Control Mapping List:

pQDSCAQCFNetwork_ControlIndex

Create:

pQDSCAQCFNetwork_Yfequ

Process:

pDev=(Device*)vImportedDevices[iDevice];

93

Elements in Yfequ of the iDeviceth device Elements in Yfequ of the Network

constraint equation number: idev
inet = pDev->

pQDSCAQCFNetwork_ConstraintIndex[idev]

control number: jdev
jnet = pDev->

pQDSCAQCFNetwork_ControlIndex[jdev]

coefficient: vdev=pDev-

>m_vqQDSCAQCFModel_Yfequ[idev][jdev]
pQDSCAQCFNetwork_Yfequ[inet][jnet] = vdev;

(15) Formulate network Ffeqxx

Given:

m_vcQDSCAQCFModel_Ffeqxx from iDeviceth device

Device Constraint Equation to Network Constraint Equation Mapping List:

pQDSCAQCFNetwork_ConstraintIndex

Device State Variable to Network State Variable Mapping List:

pQDSCAQCFNetwork_StateIndex

Create:

pQDSCAQCFNetwork_Ffeqxx

Process:

pDev=(Device*)vImportedDevices[iDevice]

Elements in Ffeqxx of the

iDeviceth device
Elements in Ffeqxx of the Network

constraint equation number:

kdev

pQDSCAQCFNetwork_Ffeqxx[iFfeqxx].scubix_k =

pDev-> pQDSCAQCFNetwork_ConstraintIndex[kdev];

state number: idev
pQDSCAQCFNetwork_Ffeqxx[iFfeqxx].scubix_i =

pDev-> pQDSCAQCFNetwork_StateIndex[idev]

state number: jdev
pQDSCAQCFNetwork_Ffeqxx[iFfeqxx].scubix_j =

pDev-> pQDSCAQCFNetwork_StateIndex[jdev]

Coefficient: vdev
pQDSCAQCFNetwork_Ffeqxx[iFfeqxx].scubix_v= vdev;

iFfeqxx++;

(16) Formulate network Ffequu

Given:

94

m_vcQDSCAQCFModel_Ffequu from iDeviceth device

Device Constraint Equation to Network Constraint Equation Mapping List:

pQDSCAQCFNetwork_ConstraintIndex

Device Control Variable to Network Control Variable Mapping List:

pQDSCAQCFNetwork_ControlIndex

Create:

pQDSCAQCFNetwork_Ffequu

Process:

pDev=(Device*)vImportedDevices[iDevice]

Elements in Ffequu of the

iDeviceth device
Elements in Ffequu of the Network

constraint equation number:

kdev

pQDSCAQCFNetwork_Ffequu[iFfequu].scubix_k =

pDev-> pQDSCAQCFNetwork_ConstraintIndex[kdev];

control number: idev
pQDSCAQCFNetwork_Ffequu[iFfequu].scubix_i =

pDev-> pQDSCAQCFNetwork_ControlIndex[idev]

control number: jdev
pQDSCAQCFNetwork_Ffequu[iFfequu].scubix_j =

pDev-> pQDSCAQCFNetwork_ControlIndex[jdev]

Coefficient: vdev
pQDSCAQCFNetwork_Ffequu[iFfequu].scubix_v= vdev;

iFfequu++;

(17) Formulate network Ffequx

Given:

m_vcQDSCAQCFModel_Ffequx from iDeviceth device

Device Constraint Equation to Network Constraint Equation Mapping List:

pQDSCAQCFNetwork_ConstraintIndex

Device Control Variable to Network Control Variable Mapping List:

pQDSCAQCFNetwork_ControlIndex

Device State Variable to Network State Variable Mapping List:

pQDSCAQCFNetwork_StateIndex

Create:

pQDSCAQCFNetwork_Ffequx

Process:

pDev=(Device*)vImportedDevices[iDevice]

95

Elements in Ffequx of the

iDeviceth device
Elements in Ffequx of the Network

constraint equation number:

kdev

pQDSCAQCFNetwork_Ffequx[iFfequx].scubix_k =

pDev-> pQDSCAQCFNetwork_ConstraintIndex[kdev];

control number: idev
pQDSCAQCFNetwork_Ffequx[iFfequx].scubix_i =

pDev-> pQDSCAQCFNetwork_ControlIndex[idev]

state number: jdev
pQDSCAQCFNetwork_Ffequx[iFfequx].scubix_j =

pDev-> pQDSCAQCFNetwork_StateIndex[jdev]

Coefficient: vdev
pQDSCAQCFNetwork_Ffequx[iFfequx].scubix_v= vdev;

iFfequx++;

(18) Formulate network Cfeq

Given:

m_vlQDSCAQCFModel_Cfeq from iDeviceth device

Device Constraint Equation to Network Constraint Equation Mapping List:

pQDSCAQCFNetwork_ConstraintIndex

Create:

pQDSCAQCFNetwork_Cfeq

Process:

pDev=(Device*)vImportedDevices[iDevice];

Elements in Cfeq of the iDeviceth device Elements in Cfeq of the Network

constraint equation number: idev
inet = pDev->

pQDSCAQCFNetwork_ConstraintIndex[idev]

coefficient: vdev=pDev-

>m_vlQDSCAQCFModel_Cfeq[idev]
pQDSCAQCFNetwork_Cfeq[inet] = vdev;

The general expression of the network SCAQCF model is:

96

, , , , , ,

()

0

0

()

0

0

T i T i T i

net eqx net equ net eqx net equ net equx net eq

m

t

Y Y F F F B
t

I

x u x x u u u x
I

, , , , ,() () ()net eq net eqx net equ net eq net eqB N t h N t h M t h K x u I

, , , , , ,(,) T i T i T i

net feqx net fequ net feqx net fequ net fequx net feqY Y F F F C

h x u x u x x u u u x

 Connectivity: TerminalNodeName

min max

min max

 : (,)

subject to

h h x u h

u u u

 Normalization Factor: StateNormFactor, ThroughNormFactor, ControlNormFactor

 Note: All the above variables are in metric system.

where

() ()mt and tI I : the through variables of the network model;

x : external and internal state variables of the network model, [(), ()]mt tx x x ;

u : control variables of the network model, [(), ()]mt tu u u ;

,net eqxY : matrix defining the linear part for state variables;

,net eqxF : matrices defining the quadratic part for state variables;

,net equY : matrix defining the linear part for control variables;

,net equF : matrices defining the quadratic part for control variables;

,net equxF : matrices defining the quadratic part for the product of state and control variables;

,net eqB : history dependent vector of the network model;

,net eqxN : matrix defining the last integration step state variables part;

,net equN : matrix defining the last integration step control variables part;

,net eqM : matrix defining the last integration step through variables part;

,net eqK : constant vector of the network model;

TerminalNodeName : terminal names defining the connectivity of the network model;

StateNormFactor: Normalization Factors for the states;

ThroughNormFactor: Normalization Factors for the through and zero variables;

ControlNormFactor: Normalization Factors for the controls;

97

min max(,) h h x u h : operating constraints,

min max,u u : lower and upper bounds for the control variables;

,net feqxY : constraint matrix defining the linear part for state variables;

,net feqxF : constraint matrices defining the quadratic part for state variables;

,net fequY : constraint matrix defining the linear part for control variables;

,net fequF : constraint matrices defining the quadratic part for control variables;

,net fequxF : constraint matrices defining the quadratic part for the product of state and control

variables;

,net feqC : constraint history dependent vector of the network model.

98

Appendix C: Construction of Network SCAQCF

Measurement Model

This appendix describes the procedure to form the network SCAQCF measurement model. The

task is achieved by the following two subtasks: (1) Use the mapping lists (states, equations,

controls) formed in Appendix B to create the network SCAQCF measurement model from

device-level SCAQCF measurement models; (2) Add the network KCL equations as additional

virtual measurements to the network measurement model. The detailed procedure is illustrated

below.

Step 1: Use mapping lists to form the network SCAQCF measurement model from device-level

SCAQCF measurement model.

(1) Create network measurement model Ym,x

Given:

m_vlQDSCAQCFMeasLinTermX associated with iDeviceth device

Device State Variable to Network State Variable Mapping List:

pQDSCAQCFNetwork_StateIndex

Create:

pNetMeasModel-> m_vlQDSCAQCFMeasLinTermX

Process:

pDev=(Device*)vImportedDevices[iDevice];

Elements in Ym,x of the iDeviceth device

measurement model

Elements in Ym,x of the network measurement

model

state number: idev = pDevMeasModel-

>m_vlQDSCAQCFMeasLinTermX.slinear_i;

pNetMeasModel-

>m_vlQDSCAQCFMeasLinTermX.slinear_i =

pDev->

pQDSCAQCFNetwork_StateIndex[idev];

Coefficient: vdev = pDevMeasModel-

>m_vlQDSCAQCFMeasLinTermX.slinear_v;

pNetMeasModel-

>m_vlQDSCAQCFMeasLinTermX.slinear_v =

vdev;

99

(2) Create network measurement model Ym,u

Given:

m_vlQDSCAQCFMeasLinTermU associated with iDeviceth device

Device Control Variable to Network Control Variable Mapping List:

pQDSCAQCFNetwork_ControlIndex

Create:

pNetMeasModel-> m_vlQDSCAQCFMeasLinTermU

Process:

pDev=(Device*)vImportedDevices[iDevice];

Elements in Ym,u of the iDeviceth device

measurement model

Elements in Ym,u of the network measurement

model

Control number: idev = pDevMeasModel-

>m_vlQDSCAQCFMeasLinTermU.slinear_i;

pNetMeasModel-

>m_vlQDSCAQCFMeasLinTermU.slinear_i =

pDev->

pQDSCAQCFNetwork_ControlIndex[idev];

Coefficient: vdev = pDevMeasModel-

>m_vlQDSCAQCFMeasLinTermU.slinear_v;

pNetMeasModel-

>m_vlQDSCAQCFMeasLinTermU.slinear_v =

vdev;

(3) Create network measurement model Fm,x

Given:

m_vqQDSCAQCFMeasNonlinTermX associated with iDeviceth device

Device State Variable to Network State Variable Mapping List:

pQDSCAQCFNetwork_StateIndex

Create:

pNetMeasModel-> m_vqQDSCAQCFMeasNonlinTermX

Process:

pDev=(Device*)vImportedDevices[iDevice];

Elements in Fm,x of the iDeviceth device

measurement model

Elements in Fm,x of the network measurement

model

State number: idev = pDevMeasModel-

>m_vqQDSCAQCFMeasNonlinTermX.squad_

pNetMeasModel-

>m_vqQDSCAQCFMeasNonlinTermX.squad

_i = pDev-

100

i; >pQDSCAQCFNetwork_StateIndex[idev]

State number: jdev = pDevMeasModel-

>m_vqQDSCAQCFMeasNonlinTermX.squad_

j;

pNetMeasModel-

>m_vqQDSCAQCFMeasNonlinTermX.squad

_j = pDev-

>pQDSCAQCFNetwork_StateIndex[jdev]

Coefficient: vdev = pDevMeasModel-

>m_vqQDSCAQCFMeasNonlinTermX.squad_

v;

pNetMeasModel-

>m_vqQDSCAQCFMeasNonlinTermX.squad

_v = vdev

(4) Create network measurement model Fm,u

Given:

m_vqQDSCAQCFMeasNonlinTermU associated with iDeviceth device

Device Control Variable to Network Control Variable Mapping List:

pQDSCAQCFNetwork_ControlIndex

Create:

pNetMeasModel-> m_vqQDSCAQCFMeasNonlinTermU

Process:

pDev=(Device*)vImportedDevices[iDevice];

Elements in Fm,u of the iDeviceth device

measurement model

Elements in Fm,u of the network measurement

model

Control number: idev = pDevMeasModel-

>m_vqQDSCAQCFMeasNonlinTermU.squad

_i

pNetMeasModel-

>m_vqQDSCAQCFMeasNonlinTermU.squad

_i = pDev-

>pQDSCAQCFNetwork_ControlIndex[idev]

Control number: jdev = pDevMeasModel-

>m_vqQDSCAQCFMeasNonlinTermU.squad

_j

pNetMeasModel-

>m_vqQDSCAQCFMeasNonlinTermU.squad

_j = pDev-

>pQDSCAQCFNetwork_ControlIndex[jdev]

Coefficient: vdev = pDevMeasModel-

>m_vqQDSCAQCFMeasNonlinTermU.squad

_v

pNetMeasModel-

>m_vqQDSCAQCFMeasNonlinTermU.squad

_v = vdev

101

(5) Create network measurement model Fm,ux

Given:

m_vqQDSCAQCFMeasNonlinTermUX associated with iDeviceth device

Device Control Variable to Network Control Variable Mapping List:

pQDSCAQCFNetwork_ControlIndex

Device State Variable to Network State Variable Mapping List:

pQDSCAQCFNetwork_StateIndex

Create:

pNetMeasModel-> m_vqQDSCAQCFMeasNonlinTermUX

Process:

pDev=(Device*)vImportedDevices[iDevice];

Elements in Fm,ux of the iDeviceth device

measurement model

Elements in Fm,ux of the network

measurement model

Control number: idev = pDevMeasModel-

>m_vqQDSCAQCFMeasNonlinTermUX.squa

d_i

pNetMeasModel-

>m_vqQDSCAQCFMeasNonlinTermUX.squa

d_i = pDev-

>pQDSCAQCFNetwork_ControlIndex[idev];

State number: jdev = pDevMeasModel-

>m_vqQDSCAQCFMeasNonlinTermUX.squa

d_j

pNetMeasModel-

>m_vqQDSCAQCFMeasNonlinTermUX.squa

d_j = pDev-

>pQDSCAQCFNetwork_StateIndex[jdev];

Coefficient: vdev = pDevMeasModel-

>m_vqQDSCAQCFMeasNonlinTermUX.squa

d_v

pNetMeasModel-

>m_vqQDSCAQCFMeasNonlinTermUX.squa

d_v = vdev;

(6) Create Network Measurement Model Nm,x

Given:

m_vlQDSCAQCFMeasPastTermX associated with iDeviceth device

Device State Variable to Network State Variable Mapping List:

pQDSCAQCFNetwork_StateIndex

Create:

pNetMeasModel-> m_vlQDSCAQCFMeasPastTermX

102

Process:

pDev=(Device*)vImportedDevices[iDevice];

Elements in Nm,x of the iDeviceth device

measurement model

Elements in Nm,x of the network measurement

model

State number: idev = pDevMeasModel-

>m_vlQDSCAQCFMeasPastTermX.slinear_i

pNetMeasModel-

>m_vlQDSCAQCFMeasPastTermX.slinear_i =

pDev-> pQDSCAQCFNetwork_StateIndex[idev]

Coefficient: vdev = pDevMeasModel-

>m_vlQDSCAQCFMeasPastTermX.slinear_v

pNetMeasModel-

>m_vlQDSCAQCFMeasPastTermX.slinear_v =

vdev

(7) Create Network Measurement Model Nm,u

Given:

m_vlQDSCAQCFMeasPastTermU associated with iDeviceth device

Device Control Variable to Network Control Variable Mapping List:

pQDSCAQCFNetwork_ControlIndex

Create:

pNetMeasModel-> m_vlQDSCAQCFMeasPastTermU

Process:

pDev=(Device*)vImportedDevices[iDevice];

Elements in Nm,u of the iDeviceth device

measurement model

Elements in Nm,u of the network measurement

model

Control number: idev = pDevMeasModel-

>m_vlQDSCAQCFMeasPastTermU.slinear_i

pNetMeasModel-

>m_vlQDSCAQCFMeasPastTermU.slinear_i =

pDev->

pQDSCAQCFNetwork_ControlIndex[idev]

Coefficient: vdev = pDevMeasModel-

>m_vlQDSCAQCFMeasPastTermU.slinear_v

pNetMeasModel-

>m_vlQDSCAQCFMeasPastTermU.slinear_v =

vdev

(8) Create Network Measurement Model Mm

103

Given:

m_vlQDSCAQCFMeasPastTermI associated with iDeviceth device

Device Equation to Network Equation Mapping List: pQDSCAQCFNetwork_EquIndex

Create:

pNetMeasModel-> m_vlQDSCAQCFMeasPastTermI

Process:

pDev=(Device*)vImportedDevices[iDevice];

Elements in Mm of the iDeviceth device

measurement model

Elements in Mm of the network measurement

model

Equation number: idev = pDevMeasModel-

>m_vlQDSCAQCFMeasPastTermI.slinear_i

pNetMeasModel-

>m_vlQDSCAQCFMeasPastTermI.slinear_i =

pDev-> pQDSCAQCFNetwork_EquIndex[idev]

Coefficient: vdev = pDevMeasModel-

>m_vlQDSCAQCFMeasPastTermI.slinear_v

pNetMeasModel-

>m_vlQDSCAQCFMeasPastTermI.slinear_v =

vdev

(9) Create Network Measurement Model Km

Given:

m_vdQDSCAQCFMeasConstantK associated with iDeviceth device

Create:

pNetMeasModel-> m_vdQDSCAQCFMeasConstantK

Process:

pDev=(Device*)vImportedDevices[iDevice];

Elements in Km of the iDeviceth device

measurement model

Elements in Km of the network measurement

model

Coefficient: vdev = pDevMeasModel-

>m_vdQDSCAQCFMeasConstantK.slinear_v

pNetMeasModel-

>m_vdQDSCAQCFMeasConstantK.slinear_v

= vdev

(10) vNetworkMeasModel.push_back(pNetMeasModel);

Step 2: Add the network KCL equations as additional virtual measurements to the network

measurement model.

104

(1) Determine the network KCL equations and their equation numbers in the whole

network model.

The network SCAQCF model can be categorized into three equation sets. The first equation set

is the terminal through variable equation set. The second equation set contains the network

internal KCL equations. The third equation set consists of all the device internal equations.

Therefore, it’s simple to locate the network KCL equations in the network model.

(2) Add these network KCL internal equations into the network measurement model.

For the kth equation (network KCL equation) in the network model:

(a) Add Yeqx to the network measurement model;

Create:

pNetMeasModel-> m_vlQDSCAQCFMeasLinTermX

Process:

Elements in Yeqx of the network

model

Elements in Ym,x of the network measurement

model

state number: i
pNetMeasModel-

>m_vlQDSCAQCFMeasLinTermX.slinear_i = i;

Coefficient: v =

pQDSCAQCFNetwork_Yeqx[k][i];

pNetMeasModel-

>m_vlQDSCAQCFMeasLinTermX.slinear_v = v;

(b) Add Yequ to the network measurement model;

Create:

pNetMeasModel-> m_vlQDSCAQCFMeasLinTermU

Process:

Elements in Yequ of the network

model

Elements in Ym,u of the network measurement

model

control number: i
pNetMeasModel-

>m_vlQDSCAQCFMeasLinTermU.slinear_i = i;

Coefficient: v =

pQDSCAQCFNetwork_Yequ[k][i];

pNetMeasModel-

>m_vlQDSCAQCFMeasLinTermU.slinear_v = v;

(c) Add Feqxx to the network measurement model;

105

Create:

pNetMeasModel-> m_vqQDSCAQCFMeasNonLinTermX

Process:

Elements in Feqxx of the network

model

Elements in Fm,x of the network measurement

model

state number: i

pNetMeasModel-

>m_vqQDSCAQCFMeasNonLinTermX.squad_i =

i;

state number: j

pNetMeasModel-

>m_vqQDSCAQCFMeasNonLinTermX.squad_j =

j;

Coefficient: v

pNetMeasModel-

>m_vqQDSCAQCFMeasNonLinTermX.squad_v =

v;

(d) Add Fequu to the network measurement model;

Create:

pNetMeasModel-> m_vqQDSCAQCFMeasNonLinTermU

Process:

Elements in Fequu of the network

model

Elements in Fm,u of the network measurement

model

control number: i

pNetMeasModel-

>m_vqQDSCAQCFMeasNonLinTermU.squad_i =

i;

control number: j

pNetMeasModel-

>m_vqQDSCAQCFMeasNonLinTermU.squad_j =

j;

Coefficient: v

pNetMeasModel-

>m_vqQDSCAQCFMeasNonLinTermU.squad_v =

v;

(e) Add Fequx to the network measurement model;

Create:

pNetMeasModel-> m_vqQDSCAQCFMeasNonLinTermUX

106

Process:

Elements in Fequx of the network

model

Elements in Fm,ux of the network measurement

model

state number: i

pNetMeasModel-

>m_vqQDSCAQCFMeasNonLinTermUX.squad_i

= i;

control number: j

pNetMeasModel-

>m_vqQDSCAQCFMeasNonLinTermUX.squad_j

= j;

Coefficient: v

pNetMeasModel-

>m_vqQDSCAQCFMeasNonLinTermUX.squad_v

= v;

(f) Add Neqx to the network measurement model;

Create:

pNetMeasModel-> m_vlQDSCAQCFMeasPastTermX

Process:

Elements in Neqx of the network

model

Elements in Nm,x of the network measurement

model

state number: i
pNetMeasModel-

>m_vlQDSCAQCFMeasPastTermX.slinear_i = i;

Coefficient: v =

pQDSCAQCFNetwork_Neqx[k][i];

pNetMeasModel-

>m_vlQDSCAQCFMeasPastTermX.slinear_v = v;

(g) Add Nequ to the network measurement model;

Create:

pNetMeasModel-> m_vlQDSCAQCFMeasPastTermU

Process:

Elements in Nequ of the network

model

Elements in Nm,u of the network measurement

model

control number: i
pNetMeasModel-

>m_vlQDSCAQCFMeasPastTermU.slinear_i = i;

Coefficient: v =

pQDSCAQCFNetwork_Nequ[k][i];

pNetMeasModel-

>m_vlQDSCAQCFMeasPastTermU.slinear_v = v;

107

(h) Add Meq to the network measurement model;

Create:

pNetMeasModel-> m_vlQDSCAQCFMeasPastTermI

Process:

Elements in Meq of the network

model

Elements in Mm of the network measurement

model

through variable number: i
pNetMeasModel-

>m_vlQDSCAQCFMeasPastTermI.slinear_i = i;

Coefficient: v =

pQDSCAQCFNetwork_Meq[k][i];

pNetMeasModel-

>m_vlQDSCAQCFMeasPastTermI.slinear_v = v;

(i) Add Keq to the measurement model;

Create:

pNetMeasModel-> m_vdQDSCAQCFMeasConstantK

Process:

Elements in Keq of the network

model

Elements in Nm,x of the network measurement

model

Coefficient: v =

pQDSCAQCFNetwork_Keqx[k];

pNetMeasModel-

>m_vdQDSCAQCFMeasConstantK = v;

The final expression for the network SCAQCF measurement model is:

, , , , ,() () T i T i T i

netm x netm u netm x netm u netm ux netmY t Y t F F F C

z x u x x u u u x η

, ,() () ()netm netm x netm u netm netmC N t h N t h M t h K x u i

 Measurement noise error: dMeterScale, dMeterSigmaPU

 Note: All the above variables are in metric system.

where:

z : measurement variables at both time t and time tm, [(), ()]mt tz z z ;

x : external and internal state variables of the measurement model, [(), ()]mt tx x x ;

u : control variables of the measurement model, i.e. transformer tap, etc. [(), ()]mt tu u u ;

108

,netm xY : matrix defining the linear part for state variables of the network measurement model;

,netm xF : matrices defining the quadratic part for state variables of the network measurement model;

,netm uY : matrix defining the linear part for control variables of the network measurement model;

,netm uF : matrices defining the quadratic part for control variables of the network measurement

model;

,netm xuF : matrices defining the quadratic part for the product of state and control variables of the

network measurement model;

netmC : history dependent vector of the network measurement model;

,netm xN : matrix defining the last integration step state variables part of the network measurement

model;

,netm uN : matrix defining the last integration step control variables part of the network

measurement model;

netmM : matrix defining the last integration step through variables part of the network

measurement model;

netmK : constant vector of the network measurement model;

dMeterScale : the scale that meters use (in metric units);

dMeterSigmaPU : the standard deviation for the measurements (in per. unit).

109

Appendix D: Device Operating Constraints

This appendix lists some typical devices in the distribution system and illustrates the operating

constraints of these devices. As described in Section 3.2, the device operating constraints are

stored in min max(,) h h x u h , and the formation algorithm of network operating constraints

(introduced in Section 4.3) works directly on these device-level operating constraints.

Operating Constraints of Distribution Lines and Single-Phase Circuits

The operating constraint of a distribution line or a single-phase circuit is that the current phasor

magnitude shall be less than the ampacity of the line conductor at each phase. The general

expression for the operating constraint using variables in Figure D.1 is:

0 ABCN ampacityI I , and (D.1)

 0 abcn ampacityI I , (D.2)

where
ABCNI denotes the current phasors at one terminal of the line,

abcnI denotes the current

phasors at the other terminal of the line, and
ampacityI is the ampacity of the line conductor.

The quadratic form of the operating constraint is:

2 2 2

, , 2 2 2 1 2 1 2

, , , ,2 2 2

, ,

0
0

0

ABCN real ABCN imag ampacity k k k k

eqx i eqx j i j eqx i eqx j i j ampacity

i j i jabcn real abcn imag ampacity

I I I
Y Y x x Y Y x x I

I I I

 , (D.3)

where
,ABCN realI and

,ABCN imagI are the real and imaginary part of the current phasors at one

terminal of the line,
,abcn realI and

,abcn imagI are the real and imaginary part of the current phasors at

the other terminal of the line, the superscript k represents the terminal k of the SCAQCF device

model,
2

,

k

eqx iY represents the i-th element of the 2k-th row of the matrix
eqxY ,

2

,

k

eqx jY represents the j-

th element of the 2k-th row of the matrix
eqxY ,

2 1

,

k

eqx iY
 represents the i-th element of the (2k+1)-th

row of the matrix
eqxY ,

2 1

,

k

eqx jY
 represents the j-th element of the (2k+1)-th row of the matrix

eqxY ,

ix is the i-th state of the device, and
jx is the j-th state of the device.

Figure D.1: Distribution Line

ABCNI abcnI

110

Operating Constraints of Residential Loads

The operating constraint of a residential load is that the voltage magnitude shall be larger than

0.95 p.u. but less than 1.05 p.u. The load model is shown in Figure D.2. The general expression

of the operating constraint is:

1

2

0.95 1.05

0.95 1.05

rated L rated

rated L rated

V V V

V V V

, (D.4)

where

2 2

1 1, 1,

2 2

2 2, 2,

L L real L imag

L L real L imag

V V V

V V V

. (D.5)

The quadratic form of the operating constraint is:

2 2 2 2

1, 1,

2 2 2 2

2, 2,

0.95 1.05

0.95 1.05

rated L real L imag rated

rated L real L imag rated

V V V V

V V V V

, (D.6)

where
1LV and

2LV are the voltage phasors at L1 and L2,
1,L realV and

1,L imagV are the real and

imaginary parts of
1LV ,

2,L realV and
2,L imagV are the real and imaginary parts of

2LV , and ratedV is

the rated voltage of the load.

Figure D.2: Balanced Load at the Secondary Bus (Residential Load)

Operating Constraint of a Transformer with Secondary Center Tap

The operating constraint of a transformer with the secondary center tap is that the magnitude of

the current phasor through the primary side shall be less than the rated current value. The general

expression for the operating constraint using variables in Figure D.3 is:

00 ratedI I , (D.7)

111

where 0I is the current phasor through the primary side of the transformer, ratedI is the rated

current at the primary side of the transformer.

The quadratic form of the operating constraint is:

 2 2 2 0 0 1 1 2

0, 0, , , , ,0 0real imag rated eqx i eqx j i j eqx i eqx j i j rated

i j i j

I I I Y Y x x Y Y x x I , (D.8)

where 0,realI and
0,imagI are the real and imaginary parts of phasor 0I ,

0

,eqx iY represents the i-th

element of the first row of the matrix
eqxY ,

0

,eqx jY represents the j-th element of the first row of the

matrix
eqxY ,

1

,eqx iY represents the i-th element of the second row of the matrix
eqxY ,

1

,eqx jY

represents the j-th element of the second row of the matrix
eqxY , ix is the i-th state of the device,

and
jx is the j-th state of the device.

0V

1V

2V

3V

4V

1Y 2Y

2Y

mY

1: 2t

0I

1I

2I

3I

4I

E

tE

tE

Figure D.3: Transformer with Secondary Center Tap

Operating Constraint of the Battery

The operating constraints of the battery are: (1) the DC current shall be less than the ampacity of

the battery; (2) the state of charge (SOC) of the battery shall be in a proper range. The general

expression is:

,max ,maxDC ADr DCI I I , and (D.9)

 max max0.1 1.0SOC SOC SOC , (D.10)

where ADrI is the current output of the battery,
,maxDCI is the maximum output current, maxSOC is

the maximum charge the battery can hold, and the unit of maxSOC is kilo-Coulombs.

Since the operating constraint of the battery is linear, the quadratic expression of the operating

constraint is the same as the operating constraint listed above.

112

1
s

s s

z
g jb

ADV

KDV

ADI

KDI

DCE SOC

Figure D.4: Battery

Operating Constraint of the Converter

The operating constraints of the converter are: (1) both the DC and AC currents shall be less than

the corresponding rated current value; (2) the modulation index of the converter shall be in a

proper range; (3) the output real and imaginary power shall be less than the rated power.

The general expression of these constraints is:

,0 ADr DC ratedI I , (D.11)

,0 abc AC ratedI I , (D.12)

 0 1.0m , (D.13)

2 2 20.0 ac ac ratedP Q S , (D.14)

2 2 20.0 ref ref ratedP Q S , (D.15)

where ADrI is the DC current of the converter,
,DC ratedI is the rated DC current value of the

converter,
abcI denotes the current phasors at AC side of the converter,

,AC ratedI is the rated AC

current value of the converter, m is the modulation index of the SPWM converter, acP and acQ

are the output real and reactive power,
refP and

refQ are the desired output active and reactive

power of the converter, and ratedS is the rated power of the converter.

The quadratic form of the operating constraint is:

,max0 ADr DCI I , (D.16)

113

 2 2 2 2 2 2 1 2 1 2

, , , ,0 0 k k k k

real imag rated eqx i eqx j i j eqx i eqx j i j rated

i j i j

I I I Y Y x x Y Y x x I , (D.17)

 0 1.0m , (D.18)

 2 2 20.0 ac ac ratedP Q S , (D.19)

2 2 20.0 ref ref ratedP Q S , (D.20)

where the superscript k represents the terminal k of the SCAQCF device model,
2

,

k

eqx iY represents

the i-th element of the 2k-th row of the matrix
eqxY ,

2

,

k

eqx jY represents the j-th element of the 2k-th

row of the matrix
eqxY ,

2 1

,

k

eqx iY
 represents the i-th element of the 2k+1-th row of the matrix

eqxY ,

2 1

,

k

eqx jY
 represents the j-th element of the 2k+1-th row of the matrix

eqxY , ix is the i-th state of the

device, and
jx is the j-th state of the device.

aE

bE

cE

aV

bV

cV

aI

bI

cI

sL

r

r

+

-

ADV

KDV

ADI

KDI

DCE

Figure D.5: Converter

114

Appendix E: Construction of Equality Constraints in

Quadratized OPF Problem

This appendix introduces the procedure to form the equality constraints in the quadratized OPF

problem from the network SCAQCF model. The equality constraints are defined in section 5.1,

and the network SCAQCF model is defined in section 4.3. The problem is stated as follows.

Given the network SCAQCF model, we compute the equality constraints. The end result is

stored in the following arrays.

double** pEquConstraint_Yeqx;

Dimension: nQDSCAQCFNetwork_Equ by nQDSCAQCFNetwork_State;

Coefficients of the linear state variables for the equality constraints.

It stores the entry’s row number, column number and entry value.

double** pEquConstraint_Yequ;

Dimension: pQDSCAQCFNetwork_Equ by nQDSCAQCFNetwork_Control;

Coefficients of the linear control variables for the equality constraints.

It stores the entry’s row number, column number and entry value.

SP_CUBIX* pEquConstraint_Feqxx;

Dimension: SP_CUBIX[nQDSCAQCFNetwork_Feqxx]

Coefficients of the quadratic state variables for the equality constraints.

It stores the entry’s row number, column number, entry value and its position in the

quadratic term.

SP_CUBIX* pEquConstraint_Fequu;

Dimension: SP_CUBIX[nQDSCAQCFNetwork_Fequu];

Coefficients of the quadratic control variables for the equality constraints.

It stores the entry’s row number, column number, entry value and its position in the

quadratic term.

SP_CUBIX* pEquConstraint_Fequx;

Dimension: SP_CUBIX[nQDSCAQCFNetwork_Fequx]

Coefficients of the production of state and control variables for the equality constraints.

It stores the entry’s row number, column number, entry value and its position in the

quadratic term.

double** pEquConstraint_Neqx;

Dimension: nQDSCAQCFNetwork_Equ by nQDSCAQCFNetwork_StateOver2;

Coefficients of the past state variables for the equality constraints.

115

It stores the entry’s row number, column number and entry value.

double** pEquConstraint_Nequ;

Dimension: nQDSCAQCFNetwork_Equ by nQDSCAQCFNetwork_ControlOver2;

Coefficients of the past control variables for the equality constraints.

It stores the entry’s row number, column number and entry value.

double** pEquConstraint_Meq;

Dimension: nQDSCAQCFNetwork_Equ by nQDSCAQCFNetwork_Node * 2;

Coefficients of the past through variables for the equality constraints.

It stores the entry’s row number, column number and entry value.

double* pEquConstraint_Keq;

Dimension: nQDSCAQCFNetwork_Equ by 1;

Constant vectors for the equality constraints.

It stores the entry’s row number and entry value.

CString* pEquConstraint_NodeName;

Dimension: nQDSCAQCFNetwork_Node by 1;

It stores the network node names.

double* pEquConstraint_StateNormFactor;

Dimension: nQDSCAQCFNetwork_State by 1;

Normalization factors of the states.

It stores the entry’s row number and entry value.

double* pEquConstraint_ThroughNormFactor;

Dimension: nQDSCAQCFNetwork_Equ by 1;

Normalization factors of the through variables.

It stores the entry’s row number and entry value.

double* pEquConstraint_ControlNormFactor;

Dimension: nQDSCAQCFNetwork_Control by 1;

Normalization factors of the control variables.

It stores the entry’s row number and entry value.

The array formation procedure for this subsection is simple. As a matter of fact, the arrays

defined in this subsection are copied from the corresponding arrays of the network.

116

Equality Constraints Arrays Formation

(1) pEquConstraint_Yeqx is copied from pQDSCAQCFNetwork_Yeqx (
eqxY) of the network

model;

(2) pEquConstraint_Yequ is copied from pQDSCAQCFNetwork_Yequ (
equY) of the network

model;

(3) pEquConstraint_Feqxx is copied from pQDSCAQCFNetwork_Feqxx (
eqxxF) of the

network model;

(4) pEquConstraint_Fequu is copied from pQDSCAQCFNetwork_Fequu (
equuF) of the

network model;

(5) pEquConstraint_Fequx is copied from pQDSCAQCFNetwork_Fequx (
equxF) of the

network model;

(6) pEquConstraint_Neqx is copied from pQDSCAQCFNetwork_Neqx (
eqxN) of the network

model;

(7) pEquConstraint_Nequ is copied from pQDSCAQCFNetwork_Nequ (
equN) of the network

model;

(8) pEquConstraint_Meq is copied from pQDSCAQCFNetwork_Meq (
eqM) of the network

model;

(9) pEquConstraint_Keq is copied from pQDSCAQCFNetwork_Keq (
eqK) of the network

model;

(10) pEquConstraint_NodeName is copied from pQDSCAQCFNetowork_NodeName of the

network model;

(11) pEquConstraint_StateNormFactor is copied from

pQDSCAQCFNetwork_StateNormFactor of the network model;

(12) pEquConstraint_ThroughNormFactor is copied from

pQDSCAQCFNetwork_ThroughNormFactor of the network model;

(13) pEquConstraint_ControlNormFactor is copied from

pQDSCAQCFNetwork_ControlNormFactor of the network model.

117

Appendix F: Construction of Inequality Constraints in

Quadratized OPF Problem

This appendix introduces the procedure to form the inequality constraints in the quadratized OPF

problem from the network SCAQCF model. The inequality constraints are defined in section 5.2,

and the network SCAQCF model is defined in section 4.3. The problem is stated as follows.

Given the network SCAQCF model, we compute the inequality constraints. The end result is

stored in the following arrays.

double** pInEquConstraint_Yeqx;

Dimension: nQDSCAQCFNetwork_Constraint * 2 by nQDSCAQCFNetwork_State;

Coefficients of the linear state variables for the inequality constraints.

It stores the entry’s row number, column number and entry value.

double** pInEquConstraint_Yequ;

Dimension: nQDSCAQCFNetwork_Constraint * 2 by nQDSCAQCFNetwork_Control;

Coefficients of the linear control variables for the inequality constraints.

It stores the entry’s row number, column number and entry value.

SP_CUBIX* pInEquConstraint_Feqxx;

Dimension: SP_CUBIX[nQDSCAQCFNetwork_Ffeqxx * 2];

Coefficients of the quadratic state variables for the inequality constraints.

It stores the entry’s row number, column number, entry value and its position in the

quadratic term.

SP_CUBIX* pInEquConstraint_Fequu;

Dimension: SP_CUBIX[nQDSCAQCFNetwork_Ffequu * 2]

Coefficients of the quadratic control variables for the inequality constraints.

It stores the entry’s row number, column number, entry value and its position in the

quadratic term.

SP_CUBIX* pInEquConstraint_Fequx;

Dimension: SP_CUBIX[nQDSCAQCFNetwork_Ffequx * 2]

Coefficients of the production of state and control variables for the inequality constraints.

It stores the entry’s row number, column number, entry value and its position in the

quadratic term.

double* pInEquConstraint_Ceqc;

Dimension: nQDSCAQCFNetwork_Constraint * 2 by 1;

History dependent vectors for the inequality constraints.

118

It stores the entry’s row number and entry value.

The arrays are formed as follows.

(1) Formulate pInEquConstraint_Yeqx;

Elements in Yfeqx in the network

model
Elements in pInEquConstraint_Yeqx

constraint equation number: inet

pInEquConstraint_Yeqx[inet][jnet] = -vdev;

pInEquConstraint_Yeqx[inet+nQDSCAQCFNetwork_Const

raint][jnet] = vdev;

state number: jnet

coefficient: vnet=

pQDSCAQCFNetwork_Yfeqx[inet

][jnet]

(2) Formulate pInEquConstraint_Yequ;

Elements in Yfequ in the network

model
Elements in pInEquConstraint_Yequ

constraint equation number: inet

pInEquConstraint_Yequ[inet][jnet]= -vdev;

pInEquConstraint_Yequ[inet+nQDSCAQCFNetwork_Const

raint][jnet] = vdev;

control number: jnet

coefficient: vnet=

pQDSCAQCFNetwork_Yfequ[inet

][jnet]

(3) Formulate pInEquConstraint_Feqxx;

Elements in Ffeqxx in the

network model
Elements in pInEquConstraint_Feqxx

constraint equation number:

knet

pInEquConstraint_Feqxx[iFeqxx].scubix_k = knet;

pInEquConstraint_Feqxx[iFeqxx +

nQDSCAQCFNetwork_Ffeqxx].scubix_k = knet +

nQDSCAQCFNetwork_Constraint;

state number: inet

pInEquConstraint_Feqxx[iFeqxx].scubix_i = inet;

pInEquConstraint_Feqxx[iFeqxx +

nQDSCAQCFNetwork_Ffeqxx].scubix_i = inet;

119

state number: jnet

pInEquConstraint_Feqxx[iFeqxx].scubix_j = jnet;

pInEquConstraint_Feqxx[iFeqxx +

nQDSCAQCFNetwork_Ffeqxx].scubix_j = jnet;

Coefficient: vnet

pInEquConstraint_Feqxx[iFeqxx].scubix_v = -vnet;

pInEquConstraint_Feqxx[iFeqxx +

nQDSCAQCFNetwork_Ffeqxx].scubix_v = vnet;

iFeqxx++;

(4) Formulate pInEquConstraint_Fequu;

Elements in Ffequu in the

network model
Elements in pInEquConstraint_Fequu

constraint equation number: knet

pInEquConstraint_Fequu[iFequu].scubix_k = knet;

pInEquConstraint_Fequu[iFequu +

nQDSCAQCFNetwork_Ffequu].scubix_k = knet +

nQDSCAQCFNetwork_Constraint;

control number: inet

pInEquConstraint_Fequu[iFequu].scubix_i = inet;

pInEquConstraint_Fequu[iFequu +

nQDSCAQCFNetwork_Ffequu].scubix_i = inet;

control number: jnet

pInEquConstraint_Fequu[iFequu].scubix_j = jnet;

pInEquConstraint_Fequu[iFequu +

nQDSCAQCFNetwork_Ffequu].scubix_j = jnet;

Coefficient: vnet

pInEquConstraint_Fequu[iFequu].scubix_v = -vnet;

pInEquConstraint_Fequu[iFequu +

nQDSCAQCFNetwork_Ffequu].scubix_v = vnet;

iFequu++;

(5) Formulate pInEquConstraint_Fequx;

Elements in Ffequx in the

network model
Elements in pInEquConstraint_Fequx

constraint equation number: knet

pInEquConstraint_Fequx[iFequx].scubix_k = knet;

pInEquConstraint_Fequx[iFequx +

nQDSCAQCFNetwork_Ffequx].scubix_k = knet +

120

nQDSCAQCFNetwork_Constraint;

control number: inet

pInEquConstraint_Fequx[iFequx].scubix_i = inet;

pInEquConstraint_Fequx[iFequx +

nQDSCAQCFNetwork_Ffequx].scubix_i = inet;

state number: jnet

pInEquConstraint_Fequx[iFequx].scubix_j = jnet;

pInEquConstraint_Fequx[iFequx +

nQDSCAQCFNetwork_Ffequx].scubix_j = jnet;

Coefficient: vnet

pInEquConstraint_Fequx[iFequx].scubix_v = -vnet;

pInEquConstraint_Fequx[iFequx +

nQDSCAQCFNetwork_Ffequx].scubix_v = vnet;

iFequx++;

(6) Formulate pInEquConstraint_Ceqc;

Elements in Cfeqc in the network

model
Elements in pInEquConstraint_Ceqc

constraint equation number: knet

pInEquConstraint_Ceqc[knet] = -vnet + hminnet;

pInEquConstraint_Ceqc[knet +

nQDSCAQCFNetwork_Constraint] = vnet; -

hmaxnet;

coefficient: vnet=

pQDSCAQCFNetwork_Cfeqc[knet]

hminnet =

pQDSCAQCFNetwork_hmin[knet]

hmaxnet =

pQDSCAQCFNetwork_hmax[knet]

121

Appendix G: Construction of Control Constraints in

Quadratized OPF Problem

This appendix introduces the procedure to form the control constraints in the quadratized OPF

problem from the network SCAQCF model. The control constraints are defined in section 5.3,

and the network SCAQCF model is defined in section 4.3. The problem is stated as follows.

Given the control constraints from the network SCAQCF model, we compute the control

constraints of the OPF problem. The end result is stored in the following arrays.

double** pControlConstraint_umin;

Dimension: nQDSCAQCFNetwork_Control by 1;

Minimum values for the control variables.

double** pControlConstraint_umax;

Dimension: nQDSCAQCFNetwork_Control by 1;

Maximum values for the control variables.

The array formation procedure is simple. As a matter of fact, the defined arrays are copied from

the corresponding arrays of the network.

Control Constraints Arrays Formation

(1) pControlConstraint_umin is copied from pQDSCAQCFNetwork_umin (
minu) of the

network model;

(2) pControlConstraint_umax is copied from pQDSCAQCFNetwork_umax (
maxu) of the

network model;

122

Appendix H: Construction of the Objective Function in

Quadratized OPF Problem

This appendix introduces the procedure to form the objective function in the quadratized OPF

problem from the network SCAQCF model. The objective function is defined in section 5.4, and

the network SCAQCF model is defined in section 4.3. The problem is stated as follows. Given

the network node name list and its network index from the network SCAQCF model, we

compute the objective function of the OPF problem. The end result is stored in the following

arrays.

double* pObjFunction_Yeqx;

Dimension: 1 by nQDSCAQCFNetwork_State;

Coefficients of the linear state variables in the objective function.

It stores the entry’s column number and entry value.

double* pObjFunction_Yequ;

Dimension: 1 by nQDSCAQCFNetwork_Control;

Coefficients of the linear control variables in the objective function.

It stores the entry’s column number and entry value.

double pObjFunction_Ceqc;

Dimension: 1 by 1;

Constant value in the objective function

double** pObjFunction_Feqxx;

Dimension: nQDSCAQCFNetwork_State by nQDSCAQCFNetwork_State;

Coefficients of the quadratic state variables in the objective function.

It stores the entry’s row number, column number and entry value in the quadratic term.

double** pObjFunction_Fequu;

Dimension: nQDSCAQCFNetwork_Control by nQDSCAQCFNetwork_Control;

Coefficients of the quadratic control variables in the objective function.

It stores the entry’s row number, column number and entry value in the quadratic term.

double** pObjFunction_Fequx;

Dimension: nQDSCAQCFNetwork_State by nQDSCAQCFNetwork_Control;

Coefficients of the production of state and control variables in the objective function.

It stores the entry’s row number, column number and entry value in the quadratic term.

The arrays are formed as follows.

123

The objective function after expansion is:

2

, ,target

i selected nodes/phases ,target

2

, ,2 2 2 2
i selected nodes/phases i selected nodes/phases i selected nodes/phases,target ,target

minimize :

1 2 1

i mag i

i i

i mag i mag

i i i i i

V V
J

V

V V
V V

Notice that the objective function only contains coefficients of the linear state variables,

coefficients of the quadratic state variables and the constant value.

2 2

i selected nodes/phases ,target

1

i iV

 is stored in pObjFunction_Feqxx;

2

i selected nodes/phases ,target

2

i iV

 is stored in pObjFunction_Yeqx;

2

i selected nodes/phases

1

i

 is stored in pObjFunction_Ceqc.

(1) Formulate pObjFunction_Yeqx;

Process:

Go through all the node names (pQDSCAQCFNetwork_NodeName) in this network, find

the node names with “_MG”;

Node names with “_MG” in the

network
Create pObjFunction_Yeqx

node number: i

Optimal node number in the network: inet =

pQDSCAQCFNetwork_OptimalNodeNumber[i];

State Number: jnet = inet * 2;

Coefficient: v = -2 / (
2

jnet *

pQDSCAQCFNetwork_StateNormFactor[jnet]);

pObjFunction_Yeqx[jnet] = v;

(2) Formulate pObjFunction_Yequ;

Process:

In this case, pObjFunction_Yequ = 0;

124

(3) Formulate pObjFunction_Ceqc;

Process:

Go through all the node names (pQDSCAQCFNetwork_NodeName) in this network, find

the node names with “_MG”;

Node names with “_MG” in the

network
Create pObjFunction_Ceqc

node number: i

Optimal node number in the network: inet =

pQDSCAQCFNetwork_OptimalNodeNumber[i];

State Number: jnet = inet * 2;

Coefficient: v = 1 /
2

jnet ;

pObjFunction_Ceqc = pObjFunction_Ceqc + v;

(4) Formulate pObjFunction_Feqxx;

Process:

Go through all the node names (pQDSCAQCFNetwork_NodeName) in this network, find

the node names with “_MG”;

Node names with “_MG” in the

network
Create pObjFunction_Feqxx

node number: i

Optimal node number in the network: inet =

pQDSCAQCFNetwork_OptimalNodeNumber[i];

State Number: jnet = inet * 2;

Coefficient: v = 1 / (
2

jnet *

pQDSCAQCFNetwork_StateNormFactor[jnet]^2);

pObjFunction_Feqxx[jnet][jnet] = v;

(5) Formulate pObjFunction_Fequu;

Process:

In this case, pObjFunction_Fequu = 0;

(6) Formulate pObjFunction_Fequx;

125

Process:

In this case, pObjFunction_Fequx = 0;

126

Appendix I: Linearization of the Quadratized OPF

Problem

This appendix introduces the linearization of the quadratized OPF problem using co-state method.

The general expression of the quadratized OPF problem is described in section 5. Since the

control constraints are linear and the equality constraints are already taken into account when

linearizing the objective function and inequalities, this appendix will illustrate the method to

linearize the objective function and inequality constraints.

I.1: Linearization of the Objective Function

Denote the present operating condition with 0
u u and 0

x x . Linearization of the objective

function ,J x u around the present operating point, yields:

0 0,

, ,
dJ

J J
d

 0 0 0
x u

x u x u u u
u

, (I.1)

where

 0 0 0 0 0 0, , ,dJ J J d

d d

x u x u x u x

u u x u
. (I.2)

Since the objective function is quadratic and all the coefficient matrices have been defined and

formed in Section 5, the partial derivatives
 0 0,J

x u

u
 and

 0 0,J

x u

x
 can be computed

directly:

0 0

0, 0 0
, T T

T i i i

obju obju obju objux

J
Y F F F

x u
u u x

u
, and (I.3)

0 0

0, 0 0,
, T

T i i T i

objx objx objx objux

J
Y F F F

x u
x x u

x
. (I.4)

The derivative
d

d

x

u
 is obtained from the equality constraints g , 0x u . Upon differentiation of

the equality constraints, with respect to control variable u , we have

 0 0 0 0, ,

0
g g d

d

x u x u x

u x u
. (I.5)

127

The solution of
d

d

x

u
 is:

1
0 0 0 0, ,g gd

d

x u x ux

u x u
. (I.6)

Since the equality constraints are also quadratic and all the coefficient matrices have been

defined and formed in Section 5, the partial derivatives
 0 0,g

x u

x
 and

 0 0,g

x u

u
 are

automatically computed as follows,

0 0

0, 0 0
, T T

T i i i

equ equ equ equx

g
Y F F F

x u
u u x

u
, and (I.7)

0 0

0, 0 0,
, T

T i i T i

eqx eqx eqx equx

g
Y F F F

x u
x x u

x
. (I.8)

Back substitution in
 0 0,dJ

d

x u

u
 yields:

1
0 0 0 0 0 0 0 0 0 0, , , , ,dJ J J g g

d

x u x u x u x u x u

u u x x u
. (I.9)

Note that

1
0 0 0 0, ,J g

x u x u

x x
 is the co-state vector that is independent of the control

variables, and it is pre-computed at the present operating point. The vector is represented by ˆ
J

x ,

and we have:

1
0 0 0 0, ,

ˆ
J g

J

x u x u
x

x x
. (I.10)

Therefore, the linearization of the objective function around the present operating point is:

0 0 0 0

0 0 0
, ,

ˆ, ,
J g

J J

J

x u x u
x u x u x u u

u u
. (I.11)

Substitute the current operating point (x0, u0) into (I.11), we have the final expression of the

linearized objective function:

 JJ d T
c u , (I.12)

128

where u is the increment of the control variable u ,

0 u u u , (I.13)

c is the linear coefficient vector of u ,

 0 0 0 0 0 0, , ,

ˆT
dJ J g

d

j

x u x u x u
c x

u u u
, (I.14)

Jd is a constant value,

 0 0,Jd J x u . (I.15)

I.2: Linearization of the Inequality Constraints

The inequality constraints are linearized in a similar way. Denote the present operating condition

with 0
u u and 0

x x . Linearization of 0 0,h x u around the present operating point, yields:

0 0

0 0 0
,

, ,
d

d

h x u
h x u h x u u u

u
, (I.16)

where

 0 0 0 0 0 0, , ,d d

d d

h x u h x u h x u x

u u x u
. (I.17)

Since the inequality constraints are also quadratic and all the coefficient matrices have been

defined and formed in Section 5, the partial derivatives
 0 0,h

x u

u
 and

 0 0,h

x u

x
 are

computed directly:

0 0

0, 0 0
, T T

T i i i

inequ inequ inequ inequx

h
Y F F F

x u
u u x

u
, and (I.18)

0 0

0, 0 0,
, T

T i i T i

ineqx ineqx ineqx inequx

h
Y F F F

x u
x x u

x
. (I.19)

The computation of the derivative
d

d

x

u
 has been illustrated in Appendix H.1:

129

1
0 0 0 0, ,g gd

d

x u x ux

u x u
. (I.20)

Back substitution in
 0 0,d

d

h x u

u
 yields:

1

0 0 0 0 0 0 0 0 0 0, , , , ,d g g

d

h x u h x u h x u x u x u

u u x x u
. (I.21)

Note that

1
0 0 0 0, ,g

h x u x u

x x
 is the co-state vector that is independent of the control

variables, and it is pre-computed at the present operating point. The vector is represented by ˆ
h

x ,

and we have:

1
0 0 0 0, ,

ˆ
g

h

h x u x u
x

x x
. (I.22)

Therefore, the linearization of the inequality constraints around the present operating point is:

0 0 0 0

0 0 0
, ,

ˆ, ,
g

h

h x u x u
h x u h x u x u u

u u
. (I.23)

Substitute the current operating point (x0, u0) into (I.23), we have the final expression of the

linearized inequality constraint:

 0
h

a u d (I.24)

where u is the increment of the control variable u ,

0 u u u , (I.25)

a is the linear coefficient matrix of u ,

 0 0 0 0 0 0, , ,

ˆ
d g

d

h

h x u h x u x u
a x

u u u
, (I.26)

and h
d is the constant value vector,

 0 0,
h

d h x u . (I.27)

130

Distribution

2 U.S. Department of Energy

 Solar Energy Technologies Office

 Attn: Guohui Yuan

 M. Kemal Celik

 950 L’Enfant Plaza

 Washington, DC 20585

1 U.S. Department of Energy

 Attn: Dan T. Ton

 1000 Independence Ave. SW

 EE-2A, FORS

 Washington, DC 20585

1 Electric Power Research Institute

 Attn: Brian Seal

 942 Corridor Park Blvd.

 Knoxville, TN 37932

1 National Renewable Energy Laboratory

 Attn: Murali Baggu

 1617 Cole Blvd.

 Golden, CO 80401-3305

1 MS1033 Jay Johnson 8812

1 MS1084 Jack Flicker 5267

1 MS1033 Cliff Hansen 8812

1 MS1027 Anya Castillo 5853

1 MS1140 David Schoenwald 8813

1 MS1188 Mark A. Smith 8833

1 MS0757 Russell Graves 6612

1 MS0671 Jordan Henry 5828

1 MS0671 Trevor Hutchins 5828

1 MS1033 Abraham Ellis 8812

1 MS1033 Ross Guttromson 8812

1 MS1104 Charlie Hanley 8810

1 MS0899 Technical Library 9536 (electronic copy)

131

