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Section 1: Executive Summary 
 

This report presents an object-oriented implementation of full state feedback control for virtual 

power plants (VPP). The components of the VPP full state feedback control are (1) object-

oriented high-fidelity modeling for all devices in the VPP; (2) Distribution System Distributed 

Quasi-Dynamic State Estimation (DS-DQSE) that enables full  observability of the VPP by 

augmenting actual measurements with virtual, derived and pseudo measurements and performing 

the Quasi-Dynamic State Estimation (QSE) in a distributed manner, and (3) automated 

formulation of the Optimal Power Flow (OPF) in real time using the output of the DS-DQSE, 

and solving the distributed OPF to provide the optimal control commands to the DERs of the 

VPP. 

The infrastructure of this integrated system is the object-oriented high-fidelity device modeling 

within the monitoring devices of the VPP. The modeling approach starts from physically based 

models of power devices referred to as compact device models. Any existing model can be used 

as a compact device model. The compact model should be mathematically correct, meaning that 

the number of states and control variables should be consistent with the number of equations 

describing the compact model and the controls should be realizable. A quadratization procedure 

and the quadratic integration process are then applied to the compact device model, and the end 

result is an object-oriented, in a standardized syntax, interoperable model which is referred to as 

state and control algebraic quadratic companion form (SCAQCF). The DS-DQSE and OPF 

solvers work directly with the SCAQCF models without any other input (autonomous operation). 

The second component of the approach is the DS-DQSE, a critical component for full state 

feedback control. The DS-DQSE provides in real-time the estimated states and validated models 

by performing QSE. The DS-DQSE is implemented in a distributed architecture where a 

distribution system (feeders) are partitioned into several sections. This partition is arbitrary with 

each section containing an arbitrary number of loads and resources, controllable or not. The DS-

DQSE runs for each section. It requires that there is at least one local phasor measurement at 

each section. Given the measurements and the device SCAQCF models in a distribution system 

section, the DS-DQSE creates the measurement mathematical model at device-level. Then, with 

the help of network formation techniques, the measurement mathematical model from device-

level are converted to network level measurement models. The state estimation algorithm works 

directly with the measurement mathematical models at the network level. The DS-DQSE 

provides a quantitative probabilistic consistency check between the network measurement model 

and the network model. Specifically, the DS-DQSE provides the best estimate of the states, the 

differences (residuals) between the measurements and the model predicted measurements as well 

as the expected standard deviation of these quantities. The DS-DQSE it also determines whether 

there are bad data and/or model discrepancies by the chi-square test. In case of such bad data, the 

source is identified by hypothesis testing. The overall process provides the best estimate of the 

state and the validated model of the distribution section. Finally, the output of each DS-DQSE 

for each section is sent to the distribution management system where the state and model of the 
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entire distribution system is constructed from the states of each section at a specific time stamp. 

We refer to it as the real-time operating conditions and model.  

The real time operating conditions and model (also in SCAQCF syntax) enables the optimal use 

of distributed energy resources (DER) units and provision of ancillary services incorporating 

operational constraints. This is achieved by automatically forming and solving an optimal power 

flow with appropriate objective. In this report, the objective is the levelization of the voltage 

profile along the distribution circuit. The formation of the OPF problem is automatic by simply 

using the objects of the network (in SCAQCF syntax) and the operating constraints (also in 

SCAQCF syntax). The automatically formulated OPF problem is then solved to provide the best 

settings of the various controls of the DERs as well as utility controls such as capacitor bank 

switching, tap changes, etc. The optimal power flow solution algorithm of the OPF solver is an 

iterative linear programming method. At each iteration, the OPF is linearized using the co-state 

method. The resulting linear optimization problem is in terms of only the control variables. The 

problem is converted to a linear program in standard form and solved to provide the optimal 

settings of the control variables. The process is repeated to convergence. A couple of iterations 

typically suffice. In the actual implementation, the computed optimal settings of the control 

variables can be transferred to the hardware that control the corresponding devices. 

This report is organized as follows. Section 3 introduces the object-oriented high-fidelity device 

modeling approach. Section 4 illustrates the architecture and operation of DS-DQSE. Section 5 

presents the definition and formation of the quadratized OPF problem. Section 6 presents the 

solution algorithm of the OPF problem. Section 7 presents an example test data for one section in 

the distribution system. Section 8 shows the example event data. Section 9 illustrates the 

implementation of DS-DQSE in a specific distribution system section. And section 10 

summarizes the whole report. 
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Section 2: Introduction 
 

The concept of the Virtual Power Plant (VPP) is quite general referring to collection of resources 

and power circuits that are under a coordinated control to make them behave as an entity which 

can respond to commands and behave as a controllable and dispatchable resource. A VPP can be 

a distribution system section with controllable loads and resources, a microgrid, etc. In this 

report, we focus on a distribution system section with resources and we focus on making this 

subsystem behave as a dispatchable plant by controlling the cluster of resources in this section. 

The report presents an object-oriented implementation of full state feedback control for VPPs. 

Figure 2.1 shows the integrated system of the VPP full state feedback control. An object-oriented 

method is used to represent models. Then, the Distribution System Distributed Quasi-Dynamic 

State Estimator (DS-DQSE) is applied to enable the extraction of the real time model and 

operating conditions of the VPP by performing Quasi-Dynamic State Estimation (QSE). 

Subsequently, an Optimal Power Flow is autonomously formulated and solved to provide the 

optimal controls. The optimal controls are send to the appropriate devices. 

Control 
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Figure 2.1: Integrated and Autonomous System of VPP Full State Feedback Control 
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The infrastructure for the integrated system is based on object-oriented high-fidelity device 

models for each device in the VPP. In this application, all device models are in quasi-dynamic 

domain, which ignore fast electromagnetic transients but include differential terms for slow 

dynamics such as those arising from electromechanical oscillations or the actions of a controller. 

The modeling approach starts from physically based models of power devices, referred to it as 

compact device models. Any existing model can be used as a compact device model, and these 

models are in terms of states and control variables. A quadratization procedure is then applied to 

the compact model if the compact model order is higher than two. This procedure consists of 

introducing additional variables to reduce higher order terms to nonlinear terms of highest order 

two. The result of this step is a quadratized device model in terms of state and control variables, 

which is referred as state and control quadratized device model (SCQDM). The SCQDM is then 

numerically integrated using the quadratic integration method for the purpose of converting it 

into an algebraic model that is referred to as the state and control algebraic quadratic companion 

form (SCAQCF). The syntax of the SCAQCF has been standardized and any power device can 

be converted into this form. The SCAQCF object is interoperable and usable by any application. 

For example, the DS-DQSE as well as the OPF formulator and solver work directly on the 

SCAQCF models without any other information. 

The DS-DQSE requires measurements obtained on the system to perform the dynamic state 

estimation. Any measurement, irrespectively of the source of the measurements, i.e. actual, 

virtual, derived or pseudo, can be also expressed in the SCAQCF syntax. With increasing 

deployment of smart meters and other grid sensors in distribution systems, the amount of 

available measurements is growing. The measurements are expressed as functions of the state in 

the SCAQCF syntax and in this form are utilized by the DS-DQSE to perform a dynamic state 

estimation. The process of creating the measurement models in SCAQCF syntax is automated. 

Specifically, given the measurement set and all the SCAQCF device models, the measurement 

models are first developed at the device level, i.e. they are expressed as functions of the state 

variables of individual devices. Subsequently, the mapping between device states and system 

states is developed and the measurement models are converted from device level to system level. 

In this form, the DS-DQSE performs a dynamic state estimation with the measurement models in 

terms of system state variables. The process is outlined in Figure 2.2. The dynamic state 

estimation includes an observability test, the actual state estimation and bad data detection and 

identification. Specifically, once the network SCAQCF measurement model is created, the DS-

DQSE performs an observability test to determine that there are enough measurements to 

observe/compute the state. Subsequently it performs the dynamic state estimation and the chi-

square test which checks the consistency between the estimated state and the network model. If 

this test indicates the presence of bad measurements, the DS-DQSE initiates the bad data 

identification and removes the bad data. The end result of the entire process is a validated model 

and a validated operating condition which can now be used for a variety of applications. In this 

report we outline the application of optimizing the voltage profile of the feeder. 
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Figure 2.2: Flow Chart of Network SCAQCF Measurement Model Creation 

As shown in Figure 2.3, the DS-DQSE is implemented in a distributed architecture. This is a 

novel approach compared to present available state estimation applications that are based on a 

centralized architecture and executed in the control center. The distribution system (feeders) can 

be partitioned into several sections while each section containing some controllable loads and 

resources (i.e., each section is a VPP component). The DS-DQSE is executed at each section of 

the feeder using local phasor measurements to perform DQSE for this local section. It is required 

that there should be at least one GPS synchronized measurement so that the computed best 

estimate of the state will have associated with it the time stamp for which this state estimate is 

valid. This is a critical requirement as the Distribution Energy Management System (DEMS) 

takes the state estimates for each distribution section with the exact time stamp and synthesizes 

the state estimate for the entire distribution system.  
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Figure 2.3: DS-DQSE for a Distribution System 

The advantages of the distributed architecture are numerous. First of all, the state estimation 

algorithm is implemented using only local measurements to estimate the states in this local 

distribution section. Thus, the large data traffic is confined within the section, and the state 

estimator works on a small dimension subsystem compared to the one processed by a centralized 

state estimator. Secondly, since the dimension of the problem solved by DS-DQSE is 

significantly decreased, the execution time of the state estimator is fast (i.e. execution of once per 

cycle has been achieved). Thirdly, the relatively small dimension of the system allows very 

detailed power system models (three-phase dynamic models, instrumentation inclusive). The 

three-phase, instrumentation channel inclusive model for the power system can eliminate the 

estimation errors from the imbalanced operations and asymmetric models, as well as the 

measurement errors introduced by the instrumentation channels. In addition, because of the 

proposed measurement set, we increase the measurement redundancy of the distribution system 

section, which leads to more accurate estimation results. Last but not least, only the states and 

the validated model of each section are sent to the DEMS. This dramatically reduces the data 

communications and makes the whole state estimation system more efficient.  

The DS-DQSE works as follows. Firstly, a data concentrator collects all the data from all IEDs in 

a specific section and converts and synchronizes these data into a C37.118 data stream. A local 

DS-DQSE is installed in this section and uses only the measurements from this section for the 

purpose of avoiding the requirement of obtaining and transmitting measurements via 

communication channels from other sections. Note that for this approach, data from at least one 

GPS-synchronized device is required in each section in order to synchronize all the data in the 

system. After the state estimation, the estimated states, and validated models for each section are 
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produced and sent to the Distribution Energy Management System (DEMS) where the system 

wide state estimate and model is synthesized.  

The system wide state estimate and model, validated with the DQSE, is used to formulate and 

solve an Optimal Power Flow (OPF) to optimally control distributed energy resources (DER) 

units and/or provide ancillary services incorporating local network constraints. The objective 

function of the OPF can be user selected and the choices can be numerous. In this report, the 

objective is to improve the voltage profile along the distribution feeder. After defining the 

objective function, the formation of the OPF problem is automatic by simply using the object-

oriented SCAQCF network model. As a matter of fact, the power flow equations of the model 

become the equality constraints of the OPF problem, and the operational constraints of the model 

become the inequality constraints of the OPF problem. Since all the equality and inequality 

constraints as well as the objective function is quadratic, the formulated OPF problem is a 

quadratized OPF problem. The general expression of the quadratized OPF problem is: 

 

:
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  (2.1) 

The automatically formulated quadratized OPF problem is solved by the OPF solver. The 

optimal power flow solution algorithm used in this report is briefly introduced as follows. The 

algorithm first uses the co-state method to linearize the OPF problem so that the OPF problem is 

converted into a linearized problem in terms of only control variables, i.e. the equality 

constraints (power flow) are used to eliminate the state variables. Subsequently, the linearized 

problem is converted into a linear program in standard form and it is solved with a simplex type 

algorithm. The computed control variables are inserted to the equality constraints which are 

solved to determine the new operating condition of the system. This is equivalent to a solution of 

the power flow problem. If the updated operating point violates any new constraints, then the 

violated constraint is added to the OPF problem and the process is repeated until convergence. 

The end result of the OPF solver is the optimal controls which are send to the appropriate 

devices. 

The proposed OPF solution algorithm is robust and highly efficient. Robustness is achieved by 

virtue of starting from a feasible but not optimal solution and at each iteration the solution moves 
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the operating point in the feasible region while approaching the optimality. Therefore, at each 

iteration of the algorithm the solution iterate represents a feasible solution. High efficiency 

implies less runtime compared with traditional solution methods for the OPF problem. The 

reasons are as follows. Firstly, the algorithm models the OPF problem as a quadratic problem for 

fast convergence. Secondly, the algorithm identifies the active constraints gradually and adds 

them to the modeled constraint set if needed. These features of the algorithm ensure that at each 

iteration, the dimension of the problem is the smallest possible for the specific distribution 

system. 
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Section 3: Object-Oriented Device Modeling 
 

This section describes a high-fidelity standardized modeling approach for power devices that 

enables object-oriented analysis in electric power systems. 

As shown in Figure 3.1, the modeling approach starts from physical based models of power 

devices referred as compact device models. Any existing model can be used as a compact device 

model. In general, these models are in terms of states and control variables. A quadratization 

procedure is then applied to the compact model. This procedure consists of introducing 

additional variables to reduce higher order terms to nonlinear terms of highest order two. In case 

the compact model is linear or quadratic, this procedure is not needed. The end result is a 

quadratized device model which in general is also in terms of states and controls. The 

quadratized device model is integrated for the purpose of converting it into an algebraic model. 

We have selected the quadratic integration method for the integration. The reason for this 

selection is that the quadratic integration method has better properties than the popular 

trapezoidal integration method and it is also reasonably manageable (from the complexity point 

of view). The integration process transforms the state and control quadratized device model 

(SCQDM) into a state and control algebraic quadratic companion form (SCAQCF). 
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Equations

&
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Figure 3.1: Object-Oriented Modeling Approach 

It is also important to note that the models are in quasi-dynamic domain, where the compact 

models typically ignore fast electromagnetic transients but include differential terms for only 

slow dynamics such as those arising from electromechanical oscillations or controller actions. 
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This section is organized as follows: the quasi-dynamic domain SCQDM is described in Section 

3.1, the quasi-dynamic domain SCAQCF device model is described in Section 3.2; and an 

example to illustrate the object-oriented modeling is described in Section 3.3. 

 

Section 3.1: Quasi-Dynamic Domain State and Control Quadratized 

Device Model 
 

The quasi-dynamic domain state and control quadratized device model (SCQDM) is used to 

represent the physical model and it is a preliminary step to obtain the quasi-dynamic State and 

Control Quadratic Companion Form (SCAQCF) device model. All the terms in SCQDM are at 

most second order. The specific syntax of the model is provided below with the following 

selections/requirements: (a) list all the linear equations for through variables first; (b) list all the 

remaining linear equations; (c) all differential terms only appear in the linear equations; (d) list 

all the remaining quadratic equations; (e) the equations containing through variables must be 

listed first; (f) the highest order of the model is second order. The requirements are always easily 

met by introduction of additional state variables. Note that the phasors are divided into real and 

imaginary parts in quadratized device model and that all the elements in the matrices are real 

values. The general expression for SCQDM is: 
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where: 

( )I t : the through variables of the device model; 

( )tx : external and internal state variables of the device model; 
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( )tu : control variables of the device model, i.e. transformer tap, etc.; 

1eqxY : matrix defining the linear part for state variables in linear through variable equations; 

1equY : matrix defining the linear part for control variables in linear through variable equations; 

1eqxdD : matrices defining the differential part for state variables in linear through variable 

equations; 

1eqcC : constant vector of the device model in linear through variable equations; 

2eqxY : matrix defining the linear part for state variables in linear virtual equations; 

2equY : matrix defining the linear part for control variables in linear virtual equations; 

2eqxdD : matrices defining the differential part for state variables in linear virtual equations; 

2eqcC : constant vector of the device model in linear virtual equations; 

3eqxY : matrix defining the linear part for state variables in the remaining quadratic equations; 

3equY : matrix defining the linear part for control variables in the remaining quadratic equations; 

3eqcC : constant vector of the device model in the remaining quadratic equations; 

eqxxF : matrices defining the quadratic part for state variables in the remaining quadratic equations; 

equuF : matrices defining the quadratic part for control variables in the remaining quadratic 

equations; 

equxF : matrices defining the quadratic part for the product of state and control variables in the 

remaining quadratic equations; 

TerminalNodeName: terminal names defining the connectivity of the device model; 

StateNormFactor: Normalization Factors for the states; 

ThroughNormFactor: Normalization Factors for the through and zero variables; 

ControlNormFactor: Normalization Factors for the controls; 

min max( , )¢ ¢h h x u h : operating constraints; 

min max,u u : lower and upper bounds for the control variables; 

 

fxY : constraint matrix defining the linear part for state variables; 

fxF : constraint matrices defining the quadratic part for state variables; 

fuY : constraint matrix defining the linear part for control variables; 

fuF : constraint matrices defining the quadratic part for control variables; 

fuxF : constraint matrices defining the quadratic part for the product of state and control variables; 

fC : constraint history dependent vector of the device model. 

 

Section 3.2: Quasi-Dynamic State and Control Algebraic Quadratic 

Companion Form 
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The next step is to integrate the quasi-dynamic domain SCQDM model to derive an algebraic 

equivalent model. For this purpose the quadratic integration method is used. The end result is the 

quasi-dynamic domain State and Control Algebraic Quadratic Companion Form (SCAQCF). 

Note that this modeling standard can be applied to any device in the power system. The 

advantages of the SCAQCF device model are (a) it does not contain differential terms, it is 

algebraic, the dynamics are expressed in terms of past history terms, (b) the highest order is 

second order, and (c) it is easily cast into a standard syntax so that the utilization of the model 

can be performed by object oriented algorithms. The final expression for the quasi-dynamic 

domain SCAQCF device model is: 

( )

0

0

( )

0

0

T i T i T i

eqx equ eqx equ equx eq

m

t

Y Y F F F B
t

ë û
î î
î î ë û ë û ë û
î î î î î î î î

= + + + + -ì ü ì ü ì ü ì ü
î î î î î î î î

í ý í ý í ýî î
î î
í ý

I

x u x x u u u x
I

 

( ) ( ) ( )eq eqx equ eq eqB N t h N t h M t h K=- - - - - - -x u I  

( , ) T i T i T i

feqx fequ feqx fequ fequx feqY Y F F F C

ë û ë û ë û
î î î î î î

= + + + + +ì ü ì ü ì ü
î î î î î î
í ý í ý í ý

h x u x u x x u u u x  

   Connectivity: TerminalNodeName 

  
min max

min max

 :           ( , )

                                

subject to ¢ ¢

¢ ¢

h h x u h

u u u
 

 Normalization Factor: StateNormFactor, ThroughNormFactor, ControlNormFactor 

where 

( )  ( )mI t and I t : the through variables of the device model; 

x : external and internal state variables of the device model, [ ( ), ( )]mt t=x x x ; 

u : control variables of the device model, [ ( ), ( )]mt t=u u u ; 

eqxY : matrix defining the linear part for state variables; 

eqxF : matrices defining the quadratic part for state variables; 

equY : matrix defining the linear part for control variables; 

equF : matrices defining the quadratic part for control variables; 

equxF : matrices defining the quadratic part for the product of state and control variables; 

eqB : history dependent vector of the device model; 
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eqxN : matrix defining the last integration step state variables part; 

equN : matrix defining the last integration step control variables part; 

eqM : matrix defining the last integration step through variables part; 

eqK : constant vector of the device model; 

TerminalNodeName: terminal names defining the connectivity of the device model; 

StateNormFactor: Normalization Factors for the states; 

ThroughNormFactor: Normalization Factors for the through and zero variables; 

ControlNormFactor: Normalization Factors for the controls; 

min max( , )¢ ¢h h x u h : operating constraints; 

min max,u u : lower and upper bounds for the control variables; 

 

feqxY : constraint matrix defining the linear part for state variables; 

feqxF : constraint matrices defining the quadratic part for state variables; 

fequY : constraint matrix defining the linear part for control variables; 

fequF : constraint matrices defining the quadratic part for control variables; 

fequxF : constraint matrices defining the quadratic part for the product of state and control 

variables; 

feqC : constraint history dependent vector of the device model. 
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Section 3.3: Object-Oriented Modeling Example 
 

In this subsection, an IGBT-based converter average model with a P-Q controller is presented as 

an example of object-oriented device modeling. The compact model of the physical circuit, the 

quadratized model and the SCAQCF model are described respectively. 

The diagram of the converter with a P-Q controller is demonstrated in Figure 3.2. The control 

variables of the system are the desired output active and reactive power (
refP  and 

refQ ) of the 

converter. This can be achieved by controlling the modulation index of the converter and the 

phase angle difference between internal voltage 
aE  and terminal voltage 

aV . The parameters of 

the converter model are the resistance on the DC side and the inductance on the AC side. 

Controller

DC-AC Converter

refP

refQ

P Q m a

aV

bV

cV

ADV

KDV
 

Figure 3.2: P-Q Control Converter 
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aE

bE

cE

aV

bV

cV

aI

bI

cI

sL

r

r

+

-

ADV

KDV

ADI

KDI

DCE

 

Figure 3.3: Circuit Diagram of the DC-AC Converter 

A summary of this model in the standard form is as follows. First, the states are listed below. 

State Index Description of States States Units 

0 Real part of ADV  ADrV  kV 

1 Imaginary part of ADV  ADiV  kV 

2 Real part of KDV  KDrV  kV 

3 Imaginary part of KDV  KDiV  kV 

4 Real part of aV  arV  kV 

5 Imaginary part of aV  aiV  kV 

6 Real part of bV  brV  kV 

7 Imaginary part of bV  biV  kV 

8 Real part of cV  crV  kV 

9 Imaginary part of cV  ciV  kV 

10 Real part of DCE  DCrE  kV 

11 Imaginary part of DCE  DCiE  kV 

12 Real part of aE  arE  kV 

13 Imaginary part of aE  aiE  kV 

14 Real part of bE  brE  kV 

15 Imaginary part of bE  biE  kV 
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16 Real part of cE  crE  kV 

17 Imaginary part of cE  ciE  kV 

18 Real power output acP  MW 

19 Reactive power output acQ  MVAr  

20 Modulation index m  No unit 

21 Voltage magnitude of aV  amagV  kV 

22 
Additional variable (modulation 

index times DC link voltage) 
DCmE  kV 

23 
Additional variable ( DCmE  over 

amagV ) 
DCmE OverV No unit 

24 

Additional variable (sine function 

of the angle difference between aE  

and aV ) 

1s  No unit 

25 

Additional variable (cosine 

function of the angle difference 

between aE  and aV ) 
2s  No unit 

 

The control variables are: 

Control Index Description of controls Controls Units 

0 
Reference real power for P-Q 

controller 
refP  MW 

1 
Reference reactive power for P-Q 

controller 
refQ  MVAr  

 

The parameters are: 

Parameter 

Index 
Description of Parameters 

Parameter 

Variable 
Default Setting 

0 
Converter equivalent 

resistance 
r  0.03 ohm 

1 
Converter equivalent 

inductance 
L  0.08 mH 

2 

Proportional coefficient of 

PQ controller for real 

power 

pPK  1.0 
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3 
Integral coefficient of PQ 

controller for real power 
IPK  200.0 

4 

Proportional coefficient of 

PQ controller for reactive 

power 

pQK  1.0 

5 

Integral coefficient of PQ 

controller for reactive 

power 
IQK  200.0 

 

The final equations for the model are listed below. The detailed derivation of this model is 

provided in Appendix A. 

Equation Set 1 (linear through equations): 

2

ADr KDr DCr
ADr

V V E
I

r

- -
=     (3.1) 

2

ADi KDi DCi
ADi

V V E
I

r

- -
=     (3.2) 

2

ADr KDr DCr
KDr

V V E
I

r

- + +
=     (3.3) 

2

ADi KDi DCi
KDi

V V E
I

r

- + +
=     (3.4) 

( )
1

ar ai ai

s

I V E
Lw

= -      (3.5) 

( )
1

ai ar ar

s

I V E
Lw

=- -     (3.6) 

( )
1

br bi bi

s

I V E
Lw

= -      (3.7) 

( )
1

bi br br

s

I V E
Lw

=- -      (3.8) 

( )
1

cr ci ci

s

I V E
Lw

= -      (3.9) 

( )
1

ci cr cr

s

I V E
Lw

=- -      (3.10) 

Equation Set 2 (linear internal equations): 
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1 3
0

2 2
ar ai brE E E=- + -    (3.11) 

3 1
0

2 2
ar ai biE E E=- - -    (3.12) 

1 3
0

2 2
ar ai crE E E=- - -    (3.13) 

3 1
0

2 2
ar ai ciE E E= - -    (3.14) 

( ) 1
1 10 ac

P I ref ac

dP ds
K K P P

dt dt
=- + - -   (3.15) 

( )2 20 ac
P I ref ac

dQ dm
K K Q Q

dt dt
=- + - -  (3.16) 

 

Equation Set 3 (quadratic equations): 

( )21
0

2
ADr DCr KDr DCr DCr acV E V E E P

r
= - - -  (3.17) 

0 DCiE=       (3.18) 

( )
1

0 ar ai ai ar br bi bi br cr ci ci cr ac

s

V E V E V E V E V E V E P
Lw

= - + - + - + + (3.19) 

( )2 2 2 2 2 21
0 ar ar ar ai ai ai br br br bi bi bi cr cr cr ci ci ci ac

s

V V E V V E V V E V V E V V E V V E Q
Lw

= - + - + - + - + - + - + 

           (3.20) 

0 DC DCm E mE= Ö -      (3.21) 

2 2 2

,0 ar ai a magV V V= + -      (3.22) 

,0 DC a mag DCmE V mE OverV= - Ö    (3.23) 

2 1

1
0

2 2
DC ar ar aimE OverV V E s E s= Ö - Ö - Ö  (3.24) 

2 1

1
0

2 2
DC ai ai armE OverV V E s E s= Ö - Ö + Ö  (3.25) 

2 2

1 20 1.0s s= + -      (3.26) 
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Operation Constraints: 

   
,max ,max

1 1 1

2 2 2
DC ADr KDr DCr DCI V V E I

r r r
- ¢ - - ¢    (3.c1) 

 2 2 2 2 2

,max2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 2 2
0 ar ai ar ai ar ar ai ai AC

s s s s s s

V V E E V E V E I
L L L L L Lw w w w w w

¢ + + + - - ¢ (3.c2) 

  

 2 2 2 2 2

,max2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 2 2
0 br bi br bi br br bi bi AC

s s s s s s

V V E E V E V E I
L L L L L Lw w w w w w

¢ + + + - - ¢ (3.c3) 

  

 2 2 2 2 2

,max2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 2 2
0 cr ci cr ci cr cr ci ci AC

s s s s s s

V V E E V E V E I
L L L L L Lw w w w w w

¢ + + + - - ¢ (3.c4) 

     0.0 1.0m¢ ¢       (3.c5) 
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Section 4: Automated Construction of Measurement 

Models 
 

This section introduces the computational procedure which enables data from sensors to be 

steamed and used by the distributed quasi-dynamic state estimation. With increasing deployment 

of smart meters and other grid sensors in distribution systems, the amount of available 

measurements is growing. These measurements as well as the other measurements proposed in 

Section 4.1 form the DS-DQSE measurement set that enables the estimation of the distribution 

system operating state. Given the measurement set and all the device models in a distribution 

system section, the DS-DQSE creates the measurement models at device-level, i.e. the 

measurements are expressed as a function of the device states. Then, a network formation 

algorithm creates the mapping between the states of individual devices to the state of the network. 

Using the mapping, each measurement model is transformed into a model in terms of the 

network states. In this form, the measurements are used to perform a dynamic state estimation 

and provide the best estimate of the network states. The dynamic state estimation basically 

quantifies the consistency between the measurements and the network model. The estimated 

states and the validated model for the whole distribution system section together with a 

quantitative confidence level for the validity of the model and states is provided to the 

distribution management system. This output information from the DS-DQSE can be used for 

any application that requires the real time model and operating conditions of the VPP. 

The organization of this section is as follows. Section 4.1 describes the measurement definition 

set for DS-DQSE. Section 4.2 introduces an object-oriented way to create the device-level 

measurement model. Section 4.3 describes the network-level measurement model creation. And 

Section 4.4 illustrates the algorithm of distributed quasi-dynamic state estimation. 

 

Section 4.1: Measurement Definitions 
 

With increasing deployment of smart meters and other grid sensors in distribution systems, the 

amount of available measurements is growing. These measurements enable implementation of 

distribution system state estimators to provide real-time models and operating conditions of the 

distribution network. To further increase redundancy and accuracy of the estimated states, we 

propose the state estimator measurement definition set where the measurements are classified 

into four types:  

(a) actual measurements: measurements from actual measurement channels, i.e., any 

measurements from any IEDs (relays, meters, FDR, PMUs, etc.);  

(b) derived measurements: measurements derived from actual measurements based on topology. 

Figure 4.1 shows an example of creating a derived measurement in a distribution system section. 

In the figure, three-phase current measurements from B13 to B14 and three-phase current 
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measurements of the capacitor bank at B25 are available. Thus, as shown in equation (4.1), the 

three-phase current from B13 to B12 is computed by applying Kirchhoffôs current law (KCL), 

which is treated as a derived measurement. 

   ( )B13_B12,abc B12_B13,abc B25,abcI I I=- +      (4.1) 

 

Figure 4.1: Example of a Derived Measurement 

 (c) virtual measurements: mathematical quantities defined by physical laws, such as KCL, 

model internal equations, etc. Figure 4.2 shows an example of creating a virtual measurement in 

a distribution system section. In the figure, three-phase current measurements from B301 to 

B300 and three-phase current measurements from B301 to B302 are available. According to 

KCL, the sum of these two three-phase current measurements at B301 is zero, which is treated as 

a virtual measurement as shown in equation (4.2). 

   
B301_B300,abc B301_B302,abc0 I I= +      (4.2) 

 

Figure 4.2: Example of a Virtual Measurement 

(d) pseudo measurements: not directly measured, represent quantities for which their values are 

approximately known, such as missing phase measurements, neutral/shield voltage 

measurements, neutral currents, etc.  
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Section 4.2: Construction of the Measurement Model at Device Level 
 

The construction of the network measurement model consists of two steps. The first step is to use 

the given device model file and the measurement definition file to create the SCAQCF 

measurement models associated with each device. These device-level measurement models 

contain device-level actual, derived, pseudo and virtual measurements. The second step is to 

construct the network SCAQCF measurement model from device-level measurement models. 

This step is achieved by first using the given device model file and the network interface node 

name list to create the network SCAQCF model and the mapping lists. Then we create the 

network measurement model from device-level measurement model via mapping lists while 

adding additional virtual measurements (network KCL equations) from the network SCAQCF 

model. The whole procedure is shown in Figure 2.2. 

This subsection introduces the procedure to create the device-level SCAQCF measurement 

models from measurement definitions as described in Section 4.1. The problem is stated as 

follows. Given all the devices in the network and all the measurement definitions from each 

device, construct the device measurement model in SCAQCF syntax. The construction must be 

performed automatically. The construction of the device measurement model is illustrated below. 

 

Actual Across Measurement: 

An actual across measurement of one device is a linear combination of state variables of this 

device, i.e. 

( ) ( )z t A t h= +x , 

where ( )z t  is the measurement, A  is the linear coefficient matrix, x(t) is the device state vector, 

and h is the noise error provided by the meter.  

 

Actual Through Measurement: 

The actual through measurement equation is obtained from the device model. For instance, if 

there is a current measurement at the jth terminal of a device, then the measurement model is the 

equation corresponding to the jth terminal in this device model, i.e. 

( ) ( ) ( ) ( ) ( ) ( )T i T i T i

zx zu zx zu zux zx zu z zz t Y t Y t F F F N t h N t h M i t h K h

ë û ë û ë û
î î î î î î

= + + + + + - + - + - + +ì ü ì ü ì ü
î î î î î î
í ý í ý í ý

x u x x u u u x x u

where ( )z t  is the measurement, zxY  is the linear coefficient matrix for state variables, zuY  is the 

linear coefficient matrix for control variables, i
zxF  is the quadratic part for state variables , i

zuF  is 
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the quadratic part for control variables , i

zuxF  is the quadratic part for the product of state and 

control variables , zxN  is the linear coefficient matrix for past history state variables, zuN  is the 

linear coefficient matrix for past history control variables, zM  is the linear coefficient matrix for 

past history through variables, zK  is the constant value, and h is the noise error provided by the 

meter. 

 

Derived States Measurements: 

A derived state measurement of one device is a linear combination of state variables of this 

device, i.e. 

( ) ( )z t A t h= +x , 

where ( )z t  is the measurement, A  is the linear coefficient matrix, x(t) is the device state vector, 

and h is the noise error provided by the meter.  

 

Derived Functional Measurements: 

The derived functional measurement equation is obtained from the device model. For instance, if 

there is a derived current measurement at the jth terminal of a device, then the measurement 

model is the equation corresponding to the jth terminal in this device model, i.e. 

( ) ( ) ( ) ( ) ( ) ( )T i T i T i

zx zu zx zu zux zx zu z zz t Y t Y t F F F N t h N t h M i t h K h

ë û ë û ë û
î î î î î î

= + + + + + - + - + - + +ì ü ì ü ì ü
î î î î î î
í ý í ý í ý

x u x x u u u x x u

where ( )z t  is the measurement, zxY  is the linear coefficient matrix for state variables, zuY  is the 

linear coefficient matrix for control variables, i
zxF  is the quadratic part for state variables , i

zuF  is 

the quadratic part for control variables , i

zuxF  is the quadratic part for the product of state and 

control variables , zxN  is the linear coefficient matrix for past history state variables, zuN  is the 

linear coefficient matrix for past history control variables, zM  is the linear coefficient matrix for 

past history through variables, zK  is the constant value, and h is the noise error provided by the 

meter. 

 

Virtual Measurements: 

Virtual Measurements are those that express physical or mathematical laws such as Kirchhoff 

Current Law. For instance, the zero sum of the currents at a common node is a virtual 

measurement. 
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0 ( ) ( ) ( ) ( ) ( )T i T i T i

zx zu zx zu zux zx zu z zY t Y t F F F N t h N t h M i t h K h

ë û ë û ë û
î î î î î î

= + + + + + - + - + - + +ì ü ì ü ì ü
î î î î î î
í ý í ý í ý

x u x x u u u x x u  

where zxY  is the linear coefficient matrix for state variables, zuY  is the linear coefficient matrix 

for control variables, i

zxF  is the quadratic part for state variables , i

zuF  is the quadratic part for 

control variables , i

zuxF  is the quadratic part for the product of state and control variables , zxN  is 

the linear coefficient matrix for past history state variables, zuN  is the linear coefficient matrix 

for past history control variables, zM  is the linear coefficient matrix for past history through 

variables, zK  is the constant value, and h is the noise error. 

Pseudo State Measurements: 

A pseudo state measurement of one device is a linear combination of state variables of this 

device, i.e. 

( ) ( )z t A t h= +x  

where ( )z t  is the measurement, A  is the linear coefficient matrix, x(t) is the device state vector, 

and h is the noise error of this pseudo measurement.  

Pseudo Functional Measurements: 

The pseudo functional measurement equation is obtained from the device model. For instance, if 

there is a pseudo current measurement at the jth terminal of a device, then the measurement 

model is the equation corresponding to the jth terminal in this device model, i.e. 

( ) ( ) ( ) ( ) ( ) ( )T i T i T i

zx zu zx zu zux zx zu z zz t Y t Y t F F F N t h N t h M i t h K h

ë û ë û ë û
î î î î î î

= + + + + + - + - + - + +ì ü ì ü ì ü
î î î î î î
í ý í ý í ý

x u x x u u u x x u

where ( )z t  is the measurement, zxY  is the linear coefficient matrix for state variables, zuY  is the 

linear coefficient matrix for control variables, i

zxF  is the quadratic part for state variables , i

zuF  is 

the quadratic part for control variables , i

zuxF  is the quadratic part for the product of state and 

control variables , zxN  is the linear coefficient matrix for past history state variables, zuN  is the 

linear coefficient matrix for past history control variables, zM  is the linear coefficient matrix for 

past history through variables, zK  is the constant value, and h is the noise error of this pseudo 

measurement. 

The measurement models at the device-level can be expressed as a vector function with the 

following general expression. Note that the general expression below becomes a part of the 

device object (the SCAQCF object). 
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, , , , ,( ) ( ) T i T i T i

devm x devm u devm x devm u devm ux devmY t Y t F F F C

ë û ë û ë û
î î î î î î

= + + + + + +ì ü ì ü ì ü
î î î î î î
í ý í ý í ý

z x u x x u u u x ɖ

, ,( ) ( ) ( )devm devm x devm u devm devmC N t h N t h M t h K= - + - + - +x u i  

   Measurement noise error: dMeterScale, dMeterSigmaPU 

where: 

z : measurement variables at both time t and time tm, [ ( ),  ( )]mt t=z z z ; 

x : external and internal state variables of the measurement model, [ ( ), ( )]mt t=x x x ; 

u : control variables of the measurement model, i.e. transformer tap, etc. [ ( ), ( )]mt t=u u u ; 

,devm xY : matrix defining the linear part for state variables of the device-level measurement model; 

,devm xF : matrices defining the quadratic part for state variables of the device-level measurement 

model; 

,devm uY : matrix defining the linear part for control variables of the device-level measurement 

model; 

,devm uF : matrices defining the quadratic part for control variables of the device-level measurement 

model; 

,devm xuF : matrices defining the quadratic part for the product of state and control variables of the 

device-level measurement model; 

devmC : history dependent vector of the device-level measurement model; 

,devm xN : matrix defining the last integration step state variables part of the device-level 

measurement model; 

,devm uN : matrix defining the last integration step control variables part of the device-level 

measurement model; 

devmM : matrix defining the last integration step through variables part of the device-level 

measurement model; 

devmK : constant vector of the measurement model of the device-level measurement model; 

dMeterScale: the scale that meters use (in metric units); 

dMeterSigmaPU: the standard deviation for the measurements (in per. unit). 

 

Section 4.3: Construction of the Measurement Model at Network Level 
 

This section introduces the procedure to create the network-level SCAQCF measurement model. 

This task is achieved by two subtasks: (1) Create the network model of this distribution system 

section and the mapping lists from devices to this network; (2) Use the mapping lists to create 

the network-level SCAQCF measurement model from device-level SCAQCF measurement 

models and add the network KCL equations as additional virtual measurements to the network 
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measurement model. Figure 2.2 shows the flow chart of network-level SCAQCF measurement 

model construction. And the general procedure is described here. 

The first task is to form the network SCAQCF model. The purpose of the network formation is to 

(1) provide the mapping lists (states, equations, controls, and constraints) from devices to the 

network, and (2) provide the network KCL equations at the common nodes. Notice that the 

formation procedure is object-oriented, in other words, given all the device SCAQCF models in 

this network and the network interface node name list, the results are the automatically 

constructed network SCAQCF model and the mapping lists. Appendix B illustrates the detailed 

object-oriented algorithm for constructing the network SCAQCF model and its SCAQCF 

expression. 

The next step is to form the network SCAQCF measurement model. This task is achieved by 

using the mapping information to transform the measurement model from device-level to 

network-level. Specifically, given the network SCAQCF model and the mapping lists, the 

network SCAQCF measurement model is automatically constructed. It is accomplished by the 

following two subtasks: (1) Use the mapping lists (device states to network states, device 

equations to network equations, and device controls to network controls), the states and controls 

in the device-level measurement models are replaced with network-level states and controls; (2) 

Add network KCL equations as additional virtual measurements to the network-level SCAQCF 

measurement model. The detailed object-oriented algorithm for construction of network 

SCAQCF measurement model appears in Appendix C. 

 

Section 4.4: Distribution System Distributed Quasi-Dynamic State 

Estimator (DS-DQSE) 
 

This section introduces the architecture and the algorithm of DS-DQSE. As a distribution system 

section with a cluster of controllable loads and resources, VPP acts as a critical role in the 

distribution system operation and control. To optimal control the VPP, the accurate operating 

condition and accurate distribution system model are required. And DS-DQSE is able to solve 

this problem. 

DS-DQSE has following characteristics to fit and support the VPP: (a) State estimation and data 

validation: DS-DQSE provides real-time estimated states, validated measurements. and validated 

models through distributed dynamic state estimation. Notice that in addition to the actual data 

collected from IEDs, several other types of measurements are defined, resulting in high 

measurement redundancy. Such high redundancy guarantees the accuracy of the estimated states 

and the network model of VPP. (b) Anomalies detection and root cause identification: the hidden 

failures such as blown fuses, cut wires, etc. or human errors such as incorrect entry of system 

parameters such as CT and VT ratios, incorrect instrument transformer connection (delta/wye) 

can be detected and identified. (c) Missing data creation: the missing data can be estimated and 

created in case of temporary loss of data.  
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As shown in Figure 4.4, the DS-DQSE is implemented in a distributed architecture. This is a 

novel approach compared to present available state estimation applications that are based on a 

centralized architecture and are executed in the control center. The distribution system (feeders) 

can be partitioned into several sections while each section containing some controllable loads 

and resources (i.e., each section is a VPP). Each section installs a DS-DQSE to perform Quasi-

Dynamic State Estimation (QSE) for this local section. QSE incorporates slow dynamics (e.g., 

electromechanical transients of rotating electrical machines, controls of power electronics, etc.) 

while neglecting fast electromagnetic transients. The advantage of the distributed architecture is 

numerous. First of all, the DS-DQSE is implemented using only local measurements to estimate 

the states of the local distribution section. Thus, the data traffic is confined, and the state 

estimator works on a small dimension of the system compared to the one processed by a 

centralized state estimator. Secondly, since the dimensionally of the problem solved by DS-

DQSE is significantly decreased, the execution time of the state estimator is fast (i.e. at each 

cycle). Thirdly, the relative small dimension of the system allows very detailed power system 

models (three-phase dynamic models, instrumentation inclusive). The three-phase, 

instrumentation channel inclusive model can eliminate the estimation errors from the imbalanced 

operations and asymmetric system, as well as the measurement errors introduced by the 

instrumentation channels. In addition, because of the proposed measurement set, we increase the 

measurement redundancy of the distribution system section and therefore more accurate 

estimation results. Last but not least, only the states and validated models of each section are sent 

to the distribution energy management system (DEMS). This feature dramatically reduces the 

data communications and makes the whole state estimation system more efficient. 

Local DS-DQSE

Local DS-DQSE

Local DS-DQSE

Distribution System

Local DS-DQSELocal DS-DQSE

Distribution 

Management System 

(DMS)

 

Figure 4.4: DS-DQSE for a Distribution System 
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The DS-DQSE works as follows. Firstly, a data concentrator collects all the data from all IEDs in 

a specific section and converts and synchronizes these data into a C37.118 data stream. A local 

DS-DQSE is installed in this section and only uses all the measurements from this section for the 

purpose of avoiding the requirement of obtaining and transmitting measurements via 

communication channels from other sections. Note that for this approach, data from at least one 

GPS-synchronized device is required in each section in order to time tag the estimation results 

with GPS accuracy. After the state estimation, the estimated states, validated measurements, and 

validated models for each section are sent to the DMS where the system wide estimated states 

and model are synthesized.  

The estimator is defined in terms of models, states, measurement sets and estimation methods. 

The quasi-dynamic state estimation algorithm is object-oriented, i.e. all the models in the system 

are expressed in SCAQCF syntax (described in Section 3) and the DS-DQSE operates directly on 

these object models. The local state estimator uses the generated network-level SCAQCF 

measurement models (see previous section) to perform QSE and outputs the estimated states, 

validated measurements, and validated models. This approach allows efficient bad data detection 

and identification, alarm analysis and root cause identification. The advantage comes from the 

fact that in each local section, the DS-DQSE has greater redundancy of data compared to a 

typical centralized state estimator based on SCADA data alone. 

 

4.4.1: DS-DQSE Algorithm 

 

The DS-DQSE uses three different methods to estimate the states: (a) Unconstrained Least 

Square Method, (b) Constrained Least Square Method, and (c) Extended Kalman Filtering 

Method. The unconstrained weighted least square (UWLS) method is briefly presented below. 

From section 4.3, we have the network measurement model: 
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  (4.3) 

For a given state estimation, it is assumed that the controls do not change during this short period 

and therefore are treated as constants. Therefore the measurements z  are expressed as functions 

of the states:  
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where z  is the measurement vector of the system, 
,netm xY  is the linear coefficient matrix regarding 

to the state vector  x , ,

i

netm xF  is the nonlinear (quadratic) coefficient matrix, netmC  is the history 

dependent vector, 
,netm xN  is the linear coefficient matrix regarding to the last integration step 

state variables, netmM  is the linear coefficient matrix regarding to the last integration step through, 

netmK  is the constant vector of the network measurement model, and ɖ is the measurement error.  

The standard deviation (the measurement error) of each measurement is part of the measurement 

data and depend on the IED from which the data have been obtained. The pseudo-measurements 

are not associated with any physical IED and their standard deviations are set as a relatively high 

value (e.g., 0.1 p.u.). Vi rtual measurements are measurements with zero standard deviation. To 

avoid numerical problems, a relatively small standard deviation is used (e.g., 0.001 p.u.).  

The UWLS method minimizes the sum of the weighted squares of the components of the 

residual vector. Mathematically: 

    ()( ) ()( )( ) ( )Minimize J h h= - -
T

z t x W z t x     (4.5) 

where W  is the weight matrix with the weights defined as the inverse of the squared standard 

deviations: { }2 2 2

1 2
diag 1/ ,1/ , ,1/

n
s s s=W , and is  is the standard deviation corresponding to 

each measurement iz . 

Unknown state vector x  is obtained by the optimal condition: 

         0dJ d =x       (4.6) 

To obtain the solution of the nonlinear optimization problem above, we linearize the nonlinear 

equations (the highest order is the second order in the measurement model) at the point n
x  by 

assuming that an initial guess nx  is very close to the optimal solution: 

 ( )( ) ( ) /h h n

n n= +µ µ -
x=x

r x x x x - x z     (4.7) 

After we set 

  ( ) /h n=µ µ
x=x

H x x ,      (4.8) 

and 

 ( )h n n=-z' x + Hx + z ,     (4.9) 

the equation becomes: 

         r = Hx - z' .      (4.10) 

And the optimization problem is now expressed as: 
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( ) ( )Minimize J=
T

Hx- z' W Hx- z' .    (4.11) 

The optimal condition is when 

      ( )0 2dJ d= = -T
x H W Hx z' .     (4.12) 

The solution is: 

( )
1-

T T
x = H WH H Wz' .     (4.13) 

Upon substitution of the z'  vector, we generalize the solution as an iterative equation: 

( ) ( ) ( )( )hn n-1 -1
ɜ+1 T T T T

x = H WH H Wz' = x - H WH H W x - z .   (4.14) 

After calculating the solution, we apply the chi-square test. The chi-square test provides a 

mathematical method of evaluating whether the measurements fit the system model. The 

procedure is as follows: 

First, we compute the chi-square value as 
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h z
x

s
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= æ ö
ç ÷
ä

x
.     (4.15) 

Then we apply the confidence level: 

     P 1 Pr( , )x u= - ,      (4.16) 

where u is the degree of freedom, which is the difference between the number of measurements 

and states. If the confidence level remains 100%, it turns out that the measurements match the 

system model, and if it is 0, the system must contain bad data or hidden failures, and the bad data 

identification procedure is initiated. The state estimator will identify the bad data and remove 

them from the measurement set. At the end, the computed best estimate of the state of this 

section will be best for the given measurements. 

The computed best estimate of this section and the network model are utilized to compute the 

best estimate of the bad data, if any, and the best estimate of missing data, if any: 
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where the model equations for the bad data and missing data are denoted with the subscript ñbadò 

and ñmissò, Ĕx  is the best estimate of this network. 

If  the confidence level remains high, then the measurements are consistent with the network 

model. In this case, the network model is validated, and the network model as well as the 

estimated operating conditions are transmitted to the distribution management system (DMS) for 

optimal control application. 
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Section 5: Optimal Power Flow Formation 
 

One of the applications of DS-DQSE output is the full state feedback control of the distribution 

system. The DS-DQSE is able to continuously monitor the distribution network operating 

condition, validate the models, and deliver the information to the controller in less than two 

cycles. The accurate operating conditions as well as the validated models enable optimal use of 

distributed energy resources (DER) to achieve an objective such as voltage control. For this 

purpose on Optimal Power Flow is formulated using the validated model from the DS-DQSE as 

well as the operating conditions from the DS-DQSE. Note that the equality and inequality 

constraints of the OPF are constructed from the device-level and network-level models as 

described in Appendix D. This section introduces the details of the definition and formation of 

this OPF problem. 

The OPF problem is formed using the quadratized model from DS-DQSE. By construction it is a 

quadratized OPF problem of the following mathematical form: 
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   (5.1) 

In this report, the objective is to improve the voltage profile across the network.  

The formation of the OPF problem is achieved automatically by simply using the object-oriented 

SCAQCF distribution network model. The problem is stated as follows. Given the network 

model in SCAQCF syntax, define and form the various components in the OPF problem. 
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Section 5.1: Definition/Formation of Equality Constraints 
 

This section introduces the definition and formation of equality constraints in the quadratized 

OPF problem. Since the equality constraints are obtained from the network model, they are also 

in the SCAQCF form and their general expression is:  

   
( )g ,

                ( ) ( ) ( )

T i T i T i
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0 x u x u x x u u u x

x u

.  (5.2) 

   Connectivity: TerminalNodeName 

 Normalization Factor: StateNormFactor, ThroughNormFactor, ControlNormFactor 

where 

I : the through variables of the network model; 

x : external and internal state variables of the network model,[ ( ), ( )]mt t=x x x ; 

u : control variables of the network model, [ ( ), ( )]mt t=u u u ; 

eqxY : matrix defining the linear part for state variables; 

eqxF : matrices defining the quadratic part for state variables; 

equY : matrix defining the linear part for control variables; 

equF : matrices defining the quadratic part for control variables; 

equxF : matrices defining the quadratic part for the product of state and control variables; 

eqB : history dependent vector of the network model; 

eqxN : matrix defining the last integration step state variables part; 

equN : matrix defining the last integration step control variables part; 

eqM : matrix defining the last integration step through variables part; 

eqK : constant vector of the network model. 

TerminalNodeName: terminal names defining the connectivity of the network model; 

StateNormFactor: Normalization Factors for the states; 

ThroughNormFactor: Normalization Factors for the through and zero variables; 

ControlNormFactor: Normalization Factors for the controls; 

 

As shown in Figure 5.1, three components in the network SCAQCF model construct the equality 

constraints of the OPF problem. These three components are: (1) power flow equations, (2) 

network node names, and (3) state, through and control variables normalization factors. Notice 

that the formation procedure is object-oriented. In other words, given these three components as 
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inputs, we construct the equality constraints of the quadratized OPF problem as the output. The 

formation procedure first initializes the arrays defined for equality constraints, then copies the 

corresponding arrays from the network model to the equality constraints. The detailed object-

oriented algorithm of equality constraints formation is illustrated in Appendix E. 

(1)

(2)

(3)

 

Figure 5.1: Three Components in Network SCAQCF Model for Constructing Equality 

Constraints 

 

Section 5.2: Construction of Inequality Constraints at Network Level 
 

This section introduces the definition and formation of inequality constraints in the quadratized 

OPF problem. Since the inequality constraints are obtained from the network model, they are 

also in the SCAQCF syntax and their general expression is:  

      ( ), 0T i T i T i

ineqx inequ ineqx inequ inequx ineqch Y Y F F F C
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î î î î î î
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x u x u x x u u u x .  (5.3) 

where 

ineqxY : constraint matrix defining the linear part for state variables; 
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ineqxF : constraint matrices defining the quadratic part for state variables; 

inequY : constraint matrix defining the linear part for control variables; 

inequF : constraint matrices defining the quadratic part for control variables; 

inequxF : constraint matrices defining the quadratic part for the product of state and control 

variables; 

ineqcC : history dependent vectors for the inequality constraints. 

 

As shown in Figure 5.2, two components in the network SCAQCF model construct the inequality 

constraints of the quadratized OPF problem. These two components are: (1) network functional 

constraint equations, and (2) upper bound and lower bound vectors of these functional 

constraints. Notice that the formation procedure is object-oriented. In other words, given these 

two components as inputs, we construct the inequality constraints of the quadratized OPF 

problem as the output. The formation procedure first initializes the arrays defined for inequality 

constraints, then transform the bilateral inequalities in the network model to the unilateral 

inequalities in the OPF problem. The detailed object-oriented algorithm of inequality constraints 

formation is illustrated in Appendix F. 

(1)

(2)

 

Figure 5.2: Two Components in Network SCAQCF Model for Constructing Inequality 

Constraints 
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Section 5.3: Construction of Control Constraints at Network Level 
 

This section introduces the definition and formation of control constraints in the quadratized 

OPF problem. The control constraints in the OPF problem are directly obtained from the control 

constraints in the network model, and their general expression is: 

      ¢ ¢
min max

u u u .      (5.4) 

where 

minu : lower bound vector for the control variables; 

maxu : upper bound vector for the control variables. 

 

The formation procedure is object-oriented, i.e., given the control constraints from the network 

model as the input, we compute the control constraints of the quadratized OPF problem as the 

output. The detailed object-oriented algorithm of control constraints formation is illustrated in 

Appendix G. 

 

Section 5.4: Construction of Objective Function at Network Level 
 

This section introduces the definition and formation of the objective function in the quadratized 

OPF problem. The objective function is defined as the minimization of the sum of the squares of 

the difference between the voltage magnitudes at selected nodes and the targeted voltage values. 

Since the voltage phasors are in Cartesian coordinates, the magnitude of a voltage phasor is not 

quadratized, but in a square root form. To solve this problem, we create a voltage magnitude 

model where the voltage magnitude is a state with ñ_MGò in its node name. Wherever it is 

desirable to control the voltage, a voltage magnitude model is placed at that node. Notice that the 

network model is formed by considering all the voltage magnitude models. Therefore, if a node 

name with ñ_MGò occurs in the network node name list, it is detected and automatically 

included. In this way, the objective function is expressed as: 

    
{ }

2

, ,target

i selected nodes/phases ,target

minimize :  
i mag i

i i

V V
J

VaÍ

å õ-
= æ öæ ö

ç ÷
ä ,    (5.5) 

where 
,i magV  is a state of the network, which is the voltage magnitude of the selected nodes/phase 

to neutral voltage, 
,targetiV  is the corresponding targeted voltage value, and ia is a user defined 

tolerance value (e.g., 4%). Note that 
,i magV  is identified by the corresponding node name with 

ñ_MGò, while 
,targetiV  and ia  are the parameters obtained from the corresponding voltage 

magnitude model. 
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The formation procedure is to expand the objective function and store the coefficients from 

different parts into corresponding arrays. The general quadratized format of the objective 

function is: 

           : T T

objx obju objxx objuu objux objcMinimize J Y Y F F F C= + + + + +T T T
x u x x u u u x ,  (5.6) 

where 

T

objxY : coefficients of the linear state variables in the objective function; 

T

objuY : coefficients of the linear control variables in the objective function; 

objxxF : coefficients of quadratic state variables in the objective function; 

objuuF : coefficients of quadratic control variables in the objective function; 

objuxF : coefficients of the production of state and control variables in the objective function; 

objcC : constant value in the objective function. 

 

The objective function formation procedure is object-oriented, i.e., given the network node name 

list and its network index from the network model as inputs, we construct the arrays defined for 

the objective function as outputs. The detailed object-oriented algorithm is illustrated in 

Appendix H.  
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Section 6: Optimal Power Flow Solution Algorithm 
 

This section introduces the optimal power flow solution algorithm after the OPF problem is 

defined and formed in Section 5. Given the defined optimization problem and the current 

operating point 
0 0( , )x u , the algorithm first applies the co-state method to linearize the OPF 

problem so that the OPF problem becomes a linearized problem represented in terms of control 

variables only. The number of linearized operational constraints is only the inequality constraints 

that are close to their limits (modeled constraints). Operational constraints that are not near the 

limits do not need to be part of the OPF solution (un-modeled constraints). The control 

constraints are the physical upper and lower bounds of the control variables from those 

controllable devices. Then the algorithm computes the optimal values of the control variables 

using linear programming and solves the state variables by power flow equations. If the updated 

operating point violates the original quadratic modeled constraints, then the OPF solver modifies 

the b vector in the set of inequality constraints in linear programming, retrieves the operating 

point from the last iteration, and resolves the linearized optimization problem. If the updated 

operating point violates some of the un-modeled constraints, then the OPF solver adds these 

constraints, retrieves the operating point from the last iteration, linearizes the new constraints, 

and solves the linearized optimization problem again. The end result of the OPF solver is the 

optimal control output, i.e. the optimal values of the control variables. Figure 6.1 shows the flow 

chart of the algorithm. 
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Figure 6.1: Flow Chart of the Algorithm 
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The proposed OPF solution algorithm is robust and highly efficient. The robustness means that 

the algorithm starts from a feasible but not optimal solution and moves the operating point in the 

feasible region while approaching the optimality. Therefore, the output of the algorithm is 

always a feasible solution. High efficiency means - less runtime compared to traditional solution 

methods for the OPF problem. The reasons are as follows: (1) The algorithm models the OPF 

problem as a quadratic problem for fast convergence; (2) The algorithm identifies the active 

constraints gradually and adds them to the modeled constraint set if needed. These features of the 

algorithm ensure that at each iteration, the dimension of the problem is the smallest possible for 

the specific distribution system section. 

 

Section 6.1: Linearization 
 

This subsection introduces the linearization of the quadratized OPF problem using the co-state 

method. The reason of using linearization techniques is: (1) The quadratized OPF problem 

consists of both state variables and control variables. To simplify the problem, we apply the co-

state method so that the OPF problem becomes a linearized problem represented by only control 

variables; (2) After the linearization, the problem is transformed into a LP in standard form 

which is solve with a linear programming solver. A brief introduction of the linearization 

procedure is as follows. The detailed procedure is given in Appendix H. 

Recall that the general expression of the OPF problem is: 
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            (6.1) 

The formulated OPF problem is quadratic and in a standard format, so the linearization 

procedure is implemented as an object oriented program. Note that the objective function, 

inequality constraints, and control variables are the three components that will be linearized, 

while the equality constraints are taken into consideration during the linearization procedure. The 

algorithm is applied only to the modeled inequality constraints. Non-modeled inequality 

constraints need not to be linearized. 
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The final expression of the linearized objective function is: 

      JJ d= D +T
c u ,      (6.2) 

where Du  is the increment of the control variable u , 
0D = -u u u , 0

x  and 
0

u  are the current 

operating point, c  is the linear coefficient vector of Du , 

( ) ( ) ( )0 0 0 0 0 0, , ,
ĔT

dJ J g

d

µ µ
= = -

µ µ
j

x u x u x u
c x

u u u
,    (6.3) 

Ĕ
jx  is the co-state vector regarding to the objective function, 
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and Jd  is a constant value, ( )0 0,Jd J= x u . 

The final expression of the linearized inequalities is: 

         0D + ¢a u d ,      (6.5) 

Where a  is the linear coefficient matrix of Du , 
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Ĕ
h

x  is the co-state vector regarding to the inequalities, 
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and d  is the constant value vector, ( )0 0,=d h x u . 

The constraints of the control variable are also changed to the constraint of the increment of 

control variable in the following way: 

Substitute 0= +Du u u  into the control variable constraint ¢ ¢
min max

u u u , we have: 

 0¢ +D ¢min maxu u u u .   (6.8) 

Thus, the constraint of increment of control variable is: 

         0 0- ¢D ¢ -min maxu u u u u .     (6.9) 
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After the linearization of the quadratized OPF problem, we have the linearized problem with 

respect to Du  only, and its expression is: 

0 0

:

: 0

JMinimize J d

subject to

= D +

D + ¢

- ¢D ¢ -

T

min max

c u

a u d

u u u u u

.    (6.10) 

 

Section 6.2: Solution of the Linearized Problem 
 

This subsection introduces the procedure to solve the linearized optimization problem defined by 

equation set (6.10) by a standard linear programming (i.e., simplex method) solver. Recall that 

the linearized problem consists of inequality constraints, and all its variables are free variables. 

Simplex method solvers require that all variables be non-negative as shown in equation set (6.11). 

:

:

                      0

TMinimize c

subject to A B=

²

x

x

x

      (6.11) 

In order to (1) transform the inequality constraints in the linearized problem to the equality 

constraints in the standard form, and (2) transform the free variables in the linearized problem to 

the non-negative variables in the standard form, we need to introduce non-negative variables to 

the linearized optimization problem.  

First, we introduce non-negative variables 
is
+ and 

is
- into the objective function: 

    ,  i i ii u s s+ -" D = -,      (6.12) 

where 0is
+²  and 0is

-² . 

Denote 1

T

ns s+ + +è ø=ê ús , and 1

T

ns s- - -è ø=ê ús , where n is the total number of the control 

variables. 

Then, the objective function is in the following form: 

      : T TMinimize J
+

-

è ø
è ø= - é ùê ú

ê ú

s
c c

s
.    (6.13) 

The constraints are then changed into the standard form. For each inequality constraint

0irow i iu dD + ¢a , a non-negative variable iy  is introduced. And the inequality constraint is 

transformed into the equality constraint: 

           ( ) 0irow i i i is s y d+ -- + + =a ,     (6.14) 
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where 0iy ² . 

For each control variable constraint
min 0 max 0

i i i i

i iu u s s u u+ -- ¢ - ¢ -, non-negative variables ip  and 

iq  are introduced, so that 
min 0

i i

i is s u u+ -- ² - is transformed to  

           
min 0 0i i

i i is s p u u+ -- - - + =.     (6.15) 

And 
max 0

i i

i is s u u+ -- ¢ - is transformed to  

          
max 0 0i i

i i is s q u u+ -- + - + =.     (6.16) 

Thus, the inequality constraints are changed to: 

      

[ ]

[ ]

[ ]

0

0

0

, , , , 0

I I

I I

+

-

+

-

+

-

+ -

è ø
- + + =é ù
ê ú

è ø
- - - + =é ù
ê ú

è ø
- + - + =é ù
ê ú

²

0

min

0

max

s
a a y d

s

s
p u u

s

s
q u u

s

s s y p q

,     (6.17) 

And the problem is now in the following standard form: 

          

:

:

                      0

Minimize J C d

subject to A B

= +

=

²

T
z

z

z

,     (6.18) 

where 0

0

0

C

è ø
é ù
-
é ù
é ù=
é ù
é ù
é ùê ú

c

c

, 

+

-

è ø
é ù
é ù
é ù=
é ù
é ù
é ù
ê ú

s

s

z y

p

q

, 

0 0

0 0

0 0

I

A I I I

I I I

-è ø
é ù
= - -
é ù
é ù-ê ú

a a

, and 
0

0

B

-è ø
é ù
= -
é ù
é ù-ê ú

min

max

d

u u

u u

. 

The solution of the linearized optimization problem is obtained by a standard linear 

programming solver (i.e., simplex method). The solution provides the variables ,+ -
s s  and Du . 

The updated optimal values of the control variables are: 0= +Du u u . 
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Section 6.3: Equality Equations Solution (Power Flow Problem) 
 

Once the new control values are obtained, the network states need to be updated accordingly. As 

the state and control variables obey the power flow equations ( ), 0g =x u , we use power flow 

equations to solve for the updated states by substituting the new control values into the control 

variables. The details are illustrated below. 

Recall that the power flow equations ( ), 0g =x u  is: 

( )0 g , 0

( ) ( ) ( )

T i T i T i

eqx equ eqx equ equx eq

eq eqx equ eq eq

Y Y F F F B I

B N t h N t h M I t h K

ë û ë û ë û
î î î î î î

= = = + + + + - -ì ü ì ü ì ü
î î î î î î
í ý í ý í ý

=- - - - - - -

x u x u x x u u u x

x u

.(6.19) 

 

The updated states are solved by the Newton-Raphson method. And the detailed procedure is as 

follows. 

(1) Let 0n=  and n=x x , where n is the iteration number to obtain the states x  in the 

Newton-Raphson method. 

(2) Substitute nx  and u  into the power flow equation ( )g ,nx u , and compute ( )g ,nx u . If 

( )g ,n e¢x u , n
x  is the solution and the procedure is terminated, where e is a user-

defined small value that is used to determine whether the solution is converged. 

Otherwise, go to step (3). 

(3) Compute the Jacobian matrix: 
( )g ,nµ

µ

x u

x
. The Jacobian matrix can be easily achieved as 

illustrated in Section 6.1. 

(4) Compute 
( )

( )
1

1
g ,

g ,

n

n n n

-

+
å õµ
æ ö= -
æ öµ
ç ÷

x u
x x x u

x
. 

(5) 1n n= +. If maxn n¢ , go to step (2); otherwise, return nonconvergence. (maxn  is the user-

defined maximum number of iterations allowed to compute the states x , and maxn  is set 

to be 15 in this algorithm.) 

The new operating point (x  and u ) is formed from the above computed values. 
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Section 6.4: Iterative Linearization/Solution Method 

 

Since the new operating point is computed from the linearized optimization problem, it may 

overshoot and violate some of the original quadratic inequality constraints because of 

linearization errors. Some of these modeled operational constraints may be out of their bounds, 

especially for those constraints reaching upper bounds in the linearized optimization problem. 

Therefore, we need to check whether the active constraints ( ), 0¢h x u  still hold at the new 

operating point.  

If any modeled constraint is violated, the algorithm updates its corresponding constant item b in 

the linearized optimization problem, retrieves the previous solution, and solves the updated 

linearization problem and the power flow problem again. 

Note that for each linearized inequality constraint, we have: ( )
( )0 0

0 0
,

, 0
dh

h
d

+ D ¢
x u

x u u
u

, and 

the constant item b is: 
( )

( )
0 0

0 0
,

,
dh

h b
d

D ¢- =
x u

u x u
u

. 

The details of modifying the constant item b are as follows. 

( )0 0,h x u
( )0 0,x u

0

( ),h x u

( )0 0,h- x u

( )
( )0 0

0 0
,

,
h

h
µ
+ D

µ

x u
x u u

u

( ) ( )
( )0 0

0 0
,

, ,
h

h h
µ

- + + D
µ

x u
x u x u u

u

h

( ),h- x u

Overshoot

Du

u

A

B

C

D
E

F

 

Figure 6.2: Linearization Update Method 

As shown in Figure 6.2, the inequality constraint violation is caused by the linearization error of 

the control variable u. Firstly, the LP result is Du , and point B is the operating point for the 
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linearized problem and point A is the operating point for the nonlinear problem. Although point 

B still does not violate the constraint, point A is above the upper bound. And the overshoot is 

( ) ( ), 0 ,h h- =x u x u . To solve this problem, the overshoot ( ),h x u  is subtracted from the upper 

bound. The solution of the linearized optimization problem moves from point B to point D in the 

figure, and the solution point for the nonlinear problem moves from point A to point C. The 

constraints will then be satisfied in most cases. However, in the situation as shown in Figure 6.2, 

the point C still violates the constraint. Therefore, ( )
( )0 0

0 0
,

,
h

h
µ

- - D
µ

x u
x u u

u
 shall also be 

subtracted from the constant item b, and the new operating points move from square points to the 

triangular points (point E and F). In this way, both the operating points of the linearized problem 

and the nonlinear problem satisfy the constraints. Thus, the constant item b is modified as: 

( )0 0,h- x u , if ( ), 0h ¢x u  is not violated or 

( )
( )0 0,

,
h

h
µ

- + D
µ

x u
x u u

u
, if ( ), 0h ¢x u  is violated. 

 

Section 6.5: Determining Convergence or Addition of New Constraints 
 

Once the modeled constraints are all satisfied, the algorithm will check all the remaining un-

modeled constraints. Since the linearized problem does not include all the operating constraints, 

the new operating point may not satisfy some of them. 

If the updated operating point satisfies all the un-modeled constraints, the algorithm has 

converged. The current iterate operating point (x  and u ) is the optimal operating point of the 

system. Otherwise, i.e. if one or more un-modeled operating constraints is violated, the algorithm 

stores the current operating point and proceeds to the next iteration. 

In this case, the algorithm adds the un-modeled violated constraints into the OPF, linearizes the 

newly added constraints, and solves the updated linearized optimization problem and power flow 

equations. This is achieved by the following two steps. 

Step 1: Check violations for all constraints and add new violated constraints to the linearized 

optimization problem model. 

This step checks all the operating constraints defined in the OPF problem. If any un-modeled 

constraint is not satisfied, the algorithm adds this constraint and continues to check whether the 

violation exists in the rest of the operating constraints. 

Step 2: Linearize the new constraints and retrieve the previous operating point. 

This step is to linearize the new constraints and add the new linearized constraints to the 

linearized optimization problem. The OPF performs another iteration considering all the modeled 

constraints (including the newly added ones). The linearization technique is introduced in 



53 

Section 6.1. The procedure of solving the updated operating point is introduced from Section 6.2 

to Section 6.4. 
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Section 7: Description of Example System 
 

This section describes the proposed distribution system. Figure 7.1 shows the proposed 

distribution system consisting of three substations and two feeders. Feeder A contains three 

sections while feeder B contains two sections. Each section has several IEDs and a DS-DQSE, 

while a master state estimator monitors the whole system and processes the output data from the 

local state estimator in each section. The details of each section are given in the following 

paragraphs. 

 

Figure 7.1: Proposed Distribution System 

Figure 7.2 shows the feeder A, section 1 that consists of four distribution lines (13.8kV), one 

capacitor bank, one delta-wye transformer, and five loads. Four IEDs are installed in this section. 

IED_1 monitors the three-phase voltage and current phasors at high voltage side of the 

transformer (B12), IED_2 collects the data from the capacitor bank (B25), IED_3 and IED_4 

measure the three-phase voltage and current phasors of the distribution lines (B13 and B16). 

Besides, one local state estimator is installed to collect the data from all IEDs and performs 

quasi-dynamic state estimation. 
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Figure 7.2: Distribution Feeder A, Section 1 

 

Figure 7.3 shows the distribution feeder A, section 2 containing two distribution lines (13.8) kV, 

two reclosers, one capacitor bank, three single-phase lines, two single-phase transformers with 

secondary center-tap, two loads (residential loads), one battery, one converter and one three-

phase transformer. Six IEDs are installed in this section: IED_1 and IED_3 monitor three-phase 

voltage and current phasors at the breakers (B111 and B205); IED_2 collects the data at the 

transformer (B200); IED_4 and IED_5 measure the single-phase voltage and current phasors at 

B201 and B206. IED_6 collects the data from the capacitor bank (B205). Besides, there is one 

local state estimator collecting the data from all IEDs and performing quasi-dynamic state 

estimation in this section. 
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Figure 7.3: Distribution Feeder A, Section 2 

Figure 7.4 shows the distribution feeder A, section 3 consisting of one distribution line (13.8kV), 

one recloser, one capacitor bank, one single-phase line, one single-phase transformer with 

secondary center-tap and one load (residential load). Three IEDs are installed in this section: 

IED_1 monitors the three-phase voltage and current phasors at a breaker (Bus209), IED_2 

collects the data from the capacitor bank (Bus210), and IED_3 measures the single-phase voltage 

and current phasor at Bus211. As same as sections 1 and 2 of feeder A, there is one local state 

estimator in charge of collecting the data from all IEDs and performing quasi-dynamic state 

estimation in this section. 
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Figure 7.4: Distribution System, Feeder A, Section 3 

Figure 7.5 shows the distribution feeder B, section 1 that contains three distribution lines 

(13.8kV), two reclosers, one capacitor bank, one delta-wye transformer and one load (induction 

motor, industrial load). Four IEDs are installed in this section: IED_1 and IED_3 monitor three-

phase voltage and current phasors at breakers (Bus301 and Bus305); IED_2 collects the data 

from the capacitor bank (Bus302); IED_4 monitors three-phase voltage and current phasors at 

Bus303. Besides, one local state estimator collects the data from all IEDs and performs quasi-

dynamic state estimation in this section. 

 

Figure 7.5: Distribution System, Feeder B, Section 1 

Figure 7.6 shows the distribution feeder B, section 2 containing one distribution line (13.8kV), 

one recloser, one capacitor bank, one single-phase line, one single-phase transformer with 

secondary center-tap and one load (residential load). Three IEDs are installed in this section: 
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IED_1 monitors the breaker at Bus400, IED_2 collects the data from the capacitor bank 

(Bus401), and IED_3 measures the single-phase voltage and current phasors at Bus402. Besides, 

one local state estimator collects the data from all IEDs and performs quasi-dynamic state 

estimation in this section. 

 

Figure 7.6: Distribution System, Feeder B, Section 2 

In this report, Feeder A, Section 1 is investigated and analyzed. The local state estimator in 

Feeder A, Section 1 runs a 60-second event to test its performance. The figure of Feeder A, 

Section 1 is shown in Figure 7.2. The parameters of this section are as follows. 

Distribution line 1 (B12 to B13), distribution line 2 (B13 to B14), distribution line 3 (B14 to B15) 

and distribution line 4 (B15 to B16) are 0.5 miles, 0.2 miles, 0.2 miles, and 0.3 miles, 

respectively, and they are all operating at 13.8 kV.  

The three-phase delta-wye transformer (13.8kV to 0.48kV) is rated at 36.0 MVA with 0.002 p.u. 

winding resistance and 0.05 p.u. leakage reactance. 

A capacitor bank is located at B25 for reactive power compensation. The rated voltage is 13.8 

kV and the rated reactive power is 600kVAR. 

Three-phase loads are located at B10, B09, and B08, respectively. These loads are considered as 

residential loads with 0.48kV rated voltage. The load at B10 is rated at 1600kW real power and 

400kVar reactive power, while the loads at B09 and B08 are with 800kW real power and 

200kVAR reactive power consumption. 

Besides, there are two loads with the same ratings (0.24 kV, 10kW, 3kVAR) at B14 and B15, 

respectively. 

Four IEDs are installed in this section. IED_1 is SEL-734 and IED_2, IED_3, IED_4 are GE-

D60. IED_1 measures three-phase voltage phasors at B12 and three-phase current phasors from 

B12 to B11. IED_2 at B25 measures three-phase voltage and current phasors for the capacitor 

bank. IED_3 measures three-phase voltage phasors at B13 and three-phase current phasors from 

B13 to B14. IED_4 at B16 measures three-phase voltage phasors at B16 and three-phase current 

phasors from B16 to B15. The meter scales for the voltage and the current are 13.8kV and 400A, 

respectively.  


















































































































































