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Abstract  —  After a PV system is installed, periodic analysis is 
necessary to track how measured performance meets expectations. 
IEC 61724-3 outlines methods to quantify long term performance 
of PV systems. Applying these methods can be challenging due to 
the large quantity and possible quality control issues with 
measured data. In this paper, the methods outlined in IEC 61724-
3 are applied to data collected at PV systems operating in different 
climates. The methods used to process data, run quality control 
tests, and compute performance metrics are described along with 
system performance issues found through the analysis. 

Index Terms — IEC 61724, open source software, system 
performance 

I. INTRODUCTION 

The International Electrotechnical Commission (IEC) has 

developed guidance to measure and analyze energy production 

from photovoltaic (PV) systems. IEC 61724-1, -2, and -3 

[1,2,3] outlines guidance on data collection and evaluation 

methods for short term capacity and long term system 

performance. This paper focuses on the energy evaluation 

outlined in IEC 61724-3. The evaluation compares measured 

energy production to expected energy production given site 

specific weather conditions and system specifications. The 

procedure evaluates system performance over a full range of 

environmental and operating conditions, generally over the 

course of one year.  

The energy performance index (EPI), defined as the ratio 

between measured energy and expected energy, is 

recommended to track long term system health [3,4,5]. A 

system performance model, which can be simple or complex, is 

used to estimate expected energy. While small systems might 

use a simple performance ratio (PR) to model expected energy, 

this method is influenced by seasonal temperature variations. 

Even a temperature corrected PR can have variations which 

skew results due to seasons and geographic locations. More 

complex models, such as the Sandia PV Array Performance 

Model (SAPM) [6], System Advisor Model (SAM) [7], and 

PVsyst [8], take into account measured weather conditions 

along with estimates for soiling and degradation. EPI is 

computed for times when the system is available (in-service 

EPI) and over the entire year (all-in EPI). System availability is 

generally determined using inverter operation or other status 

indicators.  

The guidelines outlined in IEC 61724-3 are designed to be 

flexible, allowing analysts and system operators to define a set 

of requirements to quantify performance for a particular 

system. The requirements can change depending on the system 

size, instrumentation, and intended purpose of the analysis. In 

general, a system performance model must be defined along 

with data filtering methods and thresholds used in data quality 

control tests. These decisions can have a large impact on the 

resulting analysis. For example, it is important to apply data 

quality control tests prior to running a performance model using 

measured data. Poor quality data, related to sensor or human 

error, must be properly filtered out when evaluating system 

performance. Small gaps in data can be filled using a variety of 

methods, including interpolation, using data from duplicate 

sensors, historical data, or data generated using models. 

However, larger data gaps might have to be eliminated from the 

performance analysis. Duplicate sensors can also be used to 

detect sensor drift or compute parameter variability. IEC 

61724-3 includes example data filtering criteria to identify data 

that is outside expected range, missing, associated with a dead 

sensor, or changes abruptly. The filtering criteria should be 

adjusted according to site specific conditions and system 

instrumentation. After running a preliminary analysis, it is 

important to assess the model and other assumptions used to 

define system performance until the analyst and system 

operator agree on a final analysis procedure. These decisions 

can be challenging given the large amount of PV system data, 

systems that collect different types of data, and the wide range 

of possible data quality control issues.  

This paper describes an application of the standards outlined 

in IEC 61724-3 using data collected at identical PV systems 

operating at four sites across the United States. Results are used 

to evaluate system performance and track how data quality 

control tests diagnose faults and system availability. The open 

source software packages Pecos [9] and PVLIB [10] are used 

for the analysis.  

II. DATA 

The data used in this analysis was collected as part of the 

Regional Test Center (RTC) program managed by Sandia 

National Laboratories (SNL). The RTC program collects data 

at several sites across the United States, including Albuquerque, 

New Mexico; Orlando, Florida; Williston, Vermont; and Las 

Vegas, Nevada. Identical ‘baseline’ PV systems and weather 

stations were installed at each site (Fig. 1). These systems are 

used to test sensor operation and maintenance routines. Data 

collection is periodically disrupted due to planned site and 

system upgrades. For this reason, sensor failure and system 

downtime is expected to be higher for these systems, as 



 

 
Fig. 1. PV system at the Nevada RTC site. Identical systems are 

located in New Mexico, Florida, and Vermont. 

 

compared to production-level systems. 

Each PV system is configured with two inverters, each with 

one series-connected string of 12 Suniva Optimus 270 Black 

modules. These modules have the following datasheet electrical 

characteristics: Pmax = 270 W, Vmp = 31.2 V, Voc = 38.5 V,  

Imp = 8.68 A, Isc = 9.15 A. The arrays all face South and are 

tilted at 35˚.  

The weather station collects data for global horizontal 

irradiance (GHI), direct normal irradiance (DNI), diffuse 

horizontal irradiance (DHI), wind speed, wind direction, air 

pressure, and relative humidity. For each string, DC voltage, 

DC current, AC voltage, AC current, AC power, power factor, 

frequency, reference cell irradiance, and reference cell 

temperature are recorded. Module temperature is recorded at 8 

locations per string. Ambient temperature and POA irradiance 

is also recorded at the site. Data collected in 2016 was used for 

the analysis. Data was recorded at a 1-minute time interval, 

resulting in approximately 25 million data points per site. 

III. METHODS 

The following section describes an application of IEC 61724-

3 to compute system performance at the four sites. The analysis 

is carried out using Pecos [9] and PVLIB [10], both open source 

software packages developed by SNL.  

Pecos is used to analyze the quality of time series data, 

subject to a set of quality control tests. Many of the features 

included in Pecos were designed specifically for quality control 

tests outlined in IEC 61724-3, including the ability to identify 

data that is outside expected range, missing, associated with a 

dead sensor, or changes abruptly. Additionally, Pecos includes 

methods to use filters and composite signals in the analysis. 

Filters can be used to smooth data and/or eliminate data 

collected at specific times from quality control tests. Composite 

signals are any type of new data generated using existing data 

or models. Composite signals can be used to include 

performance models or simple relationships in the analysis.  

Time series data can be easily loaded into Pecos from a wide 

range of formats, including from file (i.e. csv, excel) and 

directly from databases (i.e. SQL). For this analysis, a years’ 

worth of data is loaded into Pecos for each site. Similar analysis 

could be run in real-time (or near real-time) to help diagnose 

system performance issues quickly. Daily analysis is 

recommended to ensure systems record high quality data. 

Yearly summary reports can then be performed to track long 

term system health. Pecos can be installed from 

https://github.com/sandialabs/pecos.  

PVLIB is used to model expected system performance based 

on measured weather conditions and to compute a data filter 

based on sun position. Several performance models are 

included in PVLIB, including the SAPM [6], single diode 

model [11], and PVWatts model [12]. PVLIB can be installed 

from https://github.com/pvlib/pvlib-python. 

The following steps are taken to analyze energy production 

for each site: 

Step 1: Check for timestamp issues. When working with 

time series data, it is important to check for and fix timestamp 

issues before proceeding with analysis. Pecos includes methods 

to check for missing timestamps, duplicate timestamps, and 

timestamps out of sequence. These methods correct issues with 

the timestamp and record issues in the final report.  

Step 2: Preliminary data inspection: Visual inspection of 

sensor data can help quickly identify systematic errors, and 

define filters and quality control tests. Sensor data plotted as a 

time-of-day versus day-of-year heatmap can help identify 

shading issues, large data gaps, and upper and lower bounds for 

quality control tests. An example heatmap is shown in Fig. 2. 

This figure shows POA irradiance at the Nevada site. No 

persistent shading issues were noted based on the image and 

missing data is observed in February and November (vertical 

white lines). Pecos includes methods to create time-of-day 

versus day-of-year heatmaps with superimposed time series 

that show sun position or other attributes.  

 

 
Fig. 2. POA irradiance heatmap for the Nevada site.  

 

Step 3: Apply filters. Data collected at night or during low 

irradiance conditions can introduce errors in the performance 

evaluation. For this reason, data that is collected when the sun 

elevation is less than 20 degrees is eliminated from the analysis. 

PVLIB is used to compute sun position as a function of site 

location and date-time. Additional low irradiance filters could 

be added in future analysis. 

Step 4: Add composite signals. Computing relationships 

between different types of measured data and comparing 

measured data to models can help identify issues with system 

performance. The following composite signals are used in the 

https://github.com/sandialabs/pecos
https://github.com/pvlib/pvlib-python


 

analysis: 1) DC power computed from DC voltage and DC 

current, 2) inverter efficiency computed from AC and DC 

power, 3) normalized efficiency computed from DC power and 

POA irradiance, and 4) module temperature deviation defined 

as the difference between each module temperature sensor and 

the median value over all 16 module temperature sensors. When 

multiple sensors are available, comparing a single sensor to the 

median value can help identify sensor drift. An additional 

composite signal, the power performance index, is computed in 

Step 6. These composite signals are used in quality control tests 

to check for anomalous conditions. 

Step 5: Run data quality control analysis. IEC 61724-3 

outlines basic quality control tests to check if data is outside 

expected range, missing, associated with a dead sensor, or 

changes abruptly. The methods in Pecos were designed to run 

these tests. For this analysis, data that is missing for less than 2 

hours was filled using a linear filter. Data that is missing for 

more than 2 hours is flagged as missing. A sensor is flagged as 

recoding data outside an expected range if the threshold 

specified in Table I (column 2) is surpassed for more than 2 

consecutive hours. The thresholds for air pressure are based on 

expected air pressure, calculated from site elevation using 

PVLIB. A sensor is flagged as dead if it changed by less than  

 

TABLE I 

Expected range and threshold values for quality control tests. 

Variable 
Expected 

range 

Dead sensor 

threshold 

Abrupt 

change 

threshold 

DC current and AC 

current (A) 

> 0 and 

< Imp·1.5 
< 0.0001  

DC voltage (V) 
> 0 and 

< Vmp·N·1.2 * 
< 0.0001  

AC voltage (V) 
> 230 and 

< 250 
< 0.0001  

DC power ** and 

AC power (W) 

> 0 and 

< Pmp·N·1.2 * 
< 0.0001  

Power factor > -1 and < 1 < 0.0001  

Frequency (Hz) > 57 and < 63 < 0.0001  

POA, DNI, GHI, 

and ref cell 

irradiance (W/m2) 

> -6 and  

< 1500 
< 0.0001  

DHI (W/m2) > -6 and < 500 < 0.0001  

Wind speed (m/s) > 0 and < 32 < 0.0001  

Wind direction > 0 and < 360 < 0.0001  

Air pressure (mbar) 
> P·0.97 and 

< P·1.03 * 
< 0.0001 > 25 

Relative humidity > 0 and < 100 < 0.0001 > 50 

Ambient 

temperature (oC) 
> -30 and < 50 < 0.0001 > 20 

Module and ref cell 

temperature (oC) 
> -30 and < 90 < 0.0001 > 20 

Inverter efficiency** > 0.5 and < 1  > 0.25 

Normalized 

efficiency ** 
> 0.8 and < 1.2  > 0.25 

Module temperature 

deviation (oC) ** 
> -10 and < 10   

Power performance 

index ** 
> 0.8 and < 1.2   

* N is the number of series connected modules and P is the expected air pressure 

based on site elevation 
** Composite signal 

the threshold specified in Table I (column 3) for 5 consecutive 

hours. A sensor is flagged as changing abruptly if the value 

changes by more than the threshold specified in Table I (column 

4) in a 15-minute timeframe. These thresholds can be adjusted 

to customize analysis. For each test failure, the sensor name, 

along with the start and end time of each failure, and an error 

flag is recorded in the final report. 

Step 6: Compute expected power and energy production. 

Expected energy is computed using actual weather data. If 

weather data is unavailable, or is deemed unreliable given one 

or more quality control tests run in Step 5, it is eliminated from 

the energy calculation. The PVWatts DC model [12] is used to 

compute expected DC power; the model was run using PVLIB. 

Expected DC power is then converted to energy output. An 

additional quality control test is defined to flag times when the 

power performance index, defined as measured power divided 

by expected power, is outside an expected range of 0.8 to 1.2 

for more than 2 consecutive hours. As with the quality control 

tests run in Step 5, test failures associated with the power 

performance index are recorded in the final report. 

Step 7: Compute metrics. IEC 61724-3 recommends 

computing in-service EPI and all-in EPI. For this analysis, 

several additional metrics were computed, including data 

availability (DA), quality control index (QCI), and system 

availability (SA). For each sample time, DA is the percent of 

expected data that is recorded and QCI is the percent of 

available data that passed all quality control tests. The systems 

used in this analysis do not include an inverter status flag that 

indicate when the system is available. For that reason, SA is 

based on the results of quality control tests associated with 

power (AC and DC), inverter efficiency, normalized efficiency, 

and power performance index. For each sample time, SA is 1 if 

the quality control tests associated with these parameters all 

pass and 0 otherwise. In-service EPI is the ratio between 

measured energy and expected energy, computed when the 

system is available. All-in EPI is the same ratio, computed over 

the entire year. SA, in-service EPI, and all-in EPI are computed 

for each string. If data is missing while the system is known to 

be available, energy estimates could be made using historical 

weather data during that time. 

After completing these steps, the analyst and system operator 

should review quality control test failures and performance 

metrics. Adjustments can be made to the quality control 

thresholds and performance model if significant issues are 

identified, otherwise, the analysis should remain stable year-to-

year. Changes in the analysis should be clearly documented. 

The thresholds and model input can be saved in Python scripts 

that are used to run Pecos and PVLIB. These scripts can then 

be rerun to reproduce results and for future analysis. It is noted 

that several procedures recommended in IEC 61724-3 were not 

included in this analysis. For example, historical data was not 

used to compute predicted energy, systematic (bias) and 

random (precision) uncertainties were not analyzed, cleaning 

and calibration schedules along with grid availability was not 



 

included in the analysis, and missing or erroneous data was not 

replaced with data from other sources. These steps could be 

included in future analysis. 

IV. RESULTS 

The RTC data was analyzed using the methods outlined 

above. Preliminary analysis, run on a daily basis, indicated that 

modules at all sites were underperforming by approximately 

5%. This prompted a module flashtest at the New Mexico site. 

The electrical characteristics were subsequently updated to the 

following: Pmax = 255.7 W, Vmp = 30.9 V, Voc = 38.0 V, Imp 

= 8.28 A, Isc = 8.74 A. The discrepancy with datasheet values 

could be caused by light induced degradation or overrating. The 

new values were used to estimate performance for the year.  

For each site, time-of-day versus day-of-year heatmaps were 

generated for each sensor reading. These figures were used to 

identify shading issues, large data gaps, and define thresholds 

listed in Table 1. No persistent shading issues were observed. 

A large gap in the data record was noted in Vermont between 

the middle of April and early May. Other data gaps were 

relatively short (a few days or less). Missing data was attributed 

to sensor failure, system maintenance, and data transfer issues. 

Table II includes annual average data availability (DA), 

quality control index (QCI), system availability per string (SA), 

along with measured energy, expected energy, in-service EPI, 

and all-in EPI for each site. Fig. 3 and 4 illustrate DA, QCI, SA, 

in-service EPI, and all-in EPI throughout the year for the 

Nevada and Vermont site. DA, QCI, and SA are reported as a 

daily average. In-service and all-in EPI are reported as a 

monthly average.  

DA was relatively high at all four sites with a few exceptions. 

In Florida, data was missing periodically, mainly between the 

middle of June and early October. As mentioned above, the 

Vermont site had a large gap in the data record, most of the data 

was missing over a 23-day period in the Spring.  

QCI was also relatively high at all four sites. Note that QCI 

can be greater than DA because it is the percent of available 

data that passed all quality control tests. For example, at the  

 

TABLE II 

Annual DA, QCI, SA (per string), measured energy, expected 

energy production, and EPI. 
  NM NV FL VT 

DA 99% 98% 96% 95% 

QCI 98% 99% 98% 92% 

SA, String 1 98% 86% 83% 72% 

SA, String 2 98% 97% 84% 72% 

In-service measured 

energy (kWh) 
11517 10476 8693 5528 

In-service expected 

energy (kWh) 
11608 10679 9104 5802 

All-in expected 

energy (kWh)  
11696 11390 9911 7305 

In-service EPI 99% 98% 95% 95% 

All-in EPI 98% 92% 88% 76% 

 
Fig. 3. DA, QCI, SA, in-service and all-in EPI for Nevada.  

 

 
Fig. 4. DA, QCI, SA, in-service and all-in EPI for Vermont.  



 

Nevada site, only 13% of the data was available between Feb 

12 and Feb 17. Of the data that is available, 78% passed all 

quality control tests. During that time, DC current sensors were 

flagged as dead, with readings that changed by less than 0.0001 

over 5 consecutive hours. At the Vermont site, QCI is 

consistently around 95% due to unexpected abrupt changes in 

normalized efficiency and a module temperature sensor that is 

out of alignment with other module temperature sensors. In 

April and May, QCI decreases to around 75% due to DC power 

and current readings that are below 0 and several other sensors 

that were flagged as dead. These issues were verified with 

system operators. 

The system is defined as ‘available’ if sensor data associated 

with power (AC and DC), inverter efficiency, normalized 

efficiency, and power performance index pass all quality 

control tests. Using this definition, SA is reported per string. All 

sites, with the exception of Nevada, have very similar 

availability per string. In Nevada, String 1 DC power is very 

close to 0 between April 1 and May 9. The quality control test 

for DC power will not flag this as an error, however bounds on 

normalized efficiency, inverter efficiency, and the power 

performance index all indicate anomalous conditions during 

that time. In Vermont, SA is highly variable in the winter due 

to anomalous conditions in normalized efficiency, inverter 

efficiency, and power performance index. SA at the Florida site 

was similarly noisy, due to occasional low inverter efficiency. 

In service EPI and all-in EPI were computed using measured 

and expected energy. In New Mexico, in-service and all-in EPI 

are both very high. In Nevada, Florida, and Vermont, in -service 

EPI is slightly lower and issues with system availability 

reduced the all-in EPI by 6 to 20%. 

As part of this analysis, quality control tests identified 

numerous issues throughout the year at all four sites. The tests 

were able to accurately identify dead sensors, sensor drift, and 

underperforming inverters. Pecos keeps a record of the sensor 

name, start and end time of each test failure, and an error flag. 

This information can be included in HTML formatted reports, 

saved to a file, or stored in a database. Graphics can be 

generated which help pinpoint the data points that were 

involved in an individual test failure. Examples are shown in 

Fig. 5. Each example shows one day of data along with issues 

found using the quality control tests run as part of this analysis. 

The gray region indicates times when sun elevation is < 20 

degrees. This region is eliminated from quality control tests. 

Green marks identify data points that were flagged as changing 

abruptly, red marks identify data points that were outside 

expected range. The top image shows a spike in normalized 

efficiency at the New Mexico site. The middle image shows a 

sudden drop in inverter efficiency at the Nevada site. The 

bottom image shows a module temperature sensor that is 

oscillating between normal and anomalous conditions at the 

Florida site. 

If a quality control test results in false positives, thresholds 

and moving windows can be adjusted, filters used to eliminate 

data from quality control tests can be modified, the minimum 

number of consecutive failures needed to signal a warning can 

be increased, and data can be smoothed before the quality 

control test is run.  

 
Normalized Efficiency, New Mexico site 

 
 

Inverter Efficiency, Nevada site 

 
 

Module Temperature, Florida site 

 
Fig. 5. Example quality control graphics illustrating quality 

control issues. Green marks indicate data points that were flagged as 

changing abruptly, red marks indicate data points that were outside 

expected bounds. The x-axis is in hours of the day. 

V. DISCUSSION  

System performance was evaluated at identical PV systems 

operating at four sites across the United State using methods 

outlined in IEC 61724-3. Pecos and PVLIB, both open source 

software tools, were used to run the analysis. These tools were 

used to process and filter large quantities of data, run quality 

control tests, compute expected energy production and system 

performance, and generate reports and graphics. The Python 

scripts used to run the analysis can be used to reproduce results 

and to compare year-to-year performance. 

The methodology was able to identify gaps in the data record 

and anomalous conditions. Thresholds used in the quality 

control tests were systematically adjusted based on discussions 

with system operators and visual inspection of system data. 

Future research will compare the method used to estimate data 



 

availability, quality control index, and system availability with 

system logs. While the methods result in similar analysis across 

the four sites, several factors, such as variable system 

availability in Florida and Vermont, require further 

investigation. In addition to the yearly performance evaluation 

discussed in the paper, short term capacity tests and daily 

quality control analysis are recommended to evaluate 

performance, minimize downtime, and ensure the collection of 

high quality data.  
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