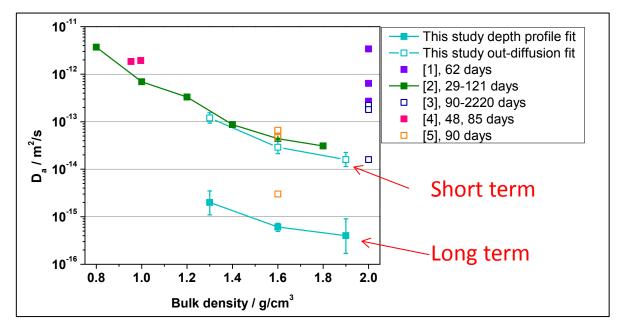
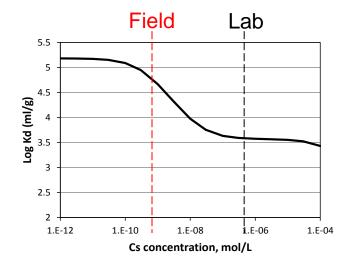

Argillite/Crystalline WPs

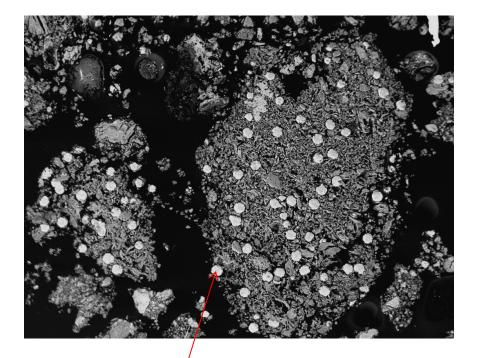
- R&D nature
 - Support other WPs
 - Crosscutting
 - Clay thermal limit studies
 - Thermodynamic data
 - Fuel degradation
- Tangible results
 - Colloid facilitated transport
 - DFN-FCM comparison
- International collaboration
 - Data exchanges: DECOVALEX, KURT
 - Exchange of materials: FEBEX
- Integration with GDSA
 - Reference cases
- Highlights


Experimental & modeling activities to support process model development and GDSA

Surface Complexation Modeling Blind prediction of Atmospheric P_{CO2} Data


Long-term U D_a about two orders of magnitude lower than Short-term D_a values

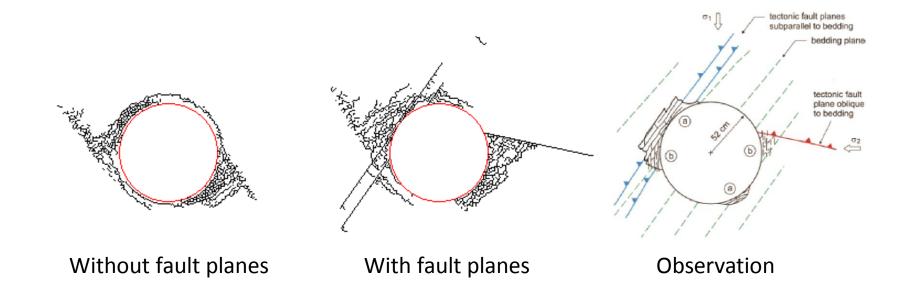
- [1] Torstenfelt et al. (1986), *SKB Technical Report 86-14*. SKB, Stockholm.
- [2] Idemitsu et al. (1996), *Mater. Res. Soc. Symp. Proc.* **412**, 683.
- [3] Ramebäck et al. (1998), *Radiochim. Acta* **82**, 167.
- [4] Wang et al. (2005), *Radiochim. Acta* **93**, 273.
- [5] Glaus et al. (2012), Clays in Natural & Engineered Barriers for Radioactive Waste Confinement 22.-25. Oct. 2012, Montpellier; Andra.
- The D_a values of the out-diffusion fit are in very good agreement with literature data [2, 5].
- > The D_a values of the in-diffusion fit are two orders of magnitude lower.


Cs sorption: Reconciling Lab and Field Results

Parameter	Lab	Field (CFM 12-02)	
Sorption rate constant, 1 st site (ml/g-hr)	29600		Good Agreement
Desorption rate constant, 1 st site (1/hr)	8		
Max. site capacity, 1 st site (mol/g)	1e-3		
Sorption rate constant, 2 nd site (ml/g-hr)	59200	30000	
Desorption rate constant, 2 nd site (1/hr)	0.4	0.17	
Max. site capacity, 2 nd site (mol/g)	6e-8	Unlimited	
K _d value, 1 st site	3700		
K _d value, 2 nd site	148000	176000	

~95% of Cs predicted to be sorbed to colloids; 97-98% was reported for field test

Pollucite created from bentonite clay at high P,T


Pollucite

SiO ₂	56.64
Al ₂ O ₃	18.63
FeO	0.68
MnO	0.01
MgO	0.05
CaO	4.95
Na ₂ O	1.27
K ₂ O	0.05
Cs ₂ O	13.56
Cl	0.2
F	0.01
O=Hal	-0.05
TOTAL	96.01

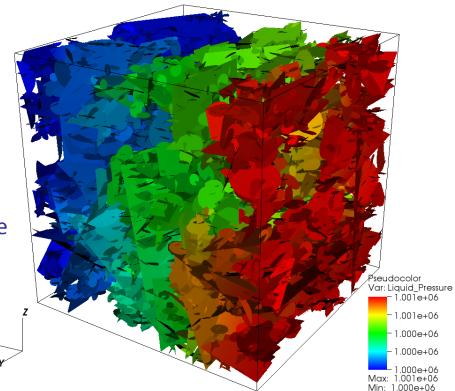
Average of 30 EMP analyses

 $\operatorname{An}_{18.3}\operatorname{Wrk}_{39}\operatorname{Pol}_{42.7}$

• Simulation of fracture pattern formation in DRZ

Comparison of two modeling approaches for fractured media

Flow direction: West-East


Pressure gradient: 10³ Pa

Compare Effective Permeability of Discrete Fracture Network (DFN) and Fracture Continuum Model (FCM):

Effective permeability of 5 realizations is in the range:

DFN 3.347 e-17 - 4.242 e-17 m² FCM 3.68 e-17 - 4.67 e-17 m²

