Used Fuel Disposition Campaign

D-Repo Performance Assessment: Crystalline Reference Case

Emily Stein, Dave Sevougian, Glenn Hammond,
Jenn Frederick, Paul Mariner
Sandia National Laboratories

2016 UFDC Annual Working Group Meeting Defense Repository Session, June 9, 2016

Las Vegas, NV

Used Fuel

Performance Assessment

Disposition

SNL EBS Concepts

LANL Discrete Fracture Network

SRNL Inventory

Natural Barrier System

- Exposed crystalline basement
- Slope < 1 degree</p>
- Topographically controlled water table
- Consistent with international concepts.

Used

Natural Barrier System

Table 2 Hydrogeological DFN parameters for each fracture domain, fracture set and depth zone

Fracture domain/elevation (m.a.s.l) ^a	set name p	Orientation set pole: (trend, plunge), conc.	Size model, power-law $(r_0, k_{\overline{t}})$ (m, -)	Intensity, (P ₃₂), valid size interval: r ₀ to 564 m (m ² /m ³)	Parameter values for the transmissivity models		
					Semi- correlated (a,b,σ)	Correlated (a,b)	Uncorrelated (μ, σ)
FFM01 and FFM06>—200	NS NE NW EW HZ	(292, 1) 17.8 (326, 2) 14.3 (60, 6) 12.9 (15, 2) 14.0 (5, 86) 15.2	(0.038, 2.50) (0.038, 2.70) (0.038, 3.10) (0.038, 3.10) (0.038, 2.38)	0.073 0.319 0.107 0.088 0.543	6.3 · 10 ⁻⁹ , 1.3, 1.0	6.7 · 10 ⁻⁹ , 1.4	-6.7, 1.2
FFM01 and FFM06 –200 to –400	NS NE NW EW HZ	(292, 1) 17.8 (326, 2) 14.3 (60, 6) 12.9 (15, 2) 14.0 (5, 86) 15.2	(0.038, 2.50) (0.038, 2.70) (0.038, 3.10) (0.038, 3.10) (0.038, 2.38)	0.142 0.345 0.133 0.081 0.316	1.3 · 10 ⁻⁹ , 0.5, 1.0	1.6 · 10 ⁻⁹ , 0.8	-7.5, 0.8
FFM01 and FFM06<-400	NS NE NW EW HZ	(292, 1) 17.8 (326, 2) 14.3 (60, 6) 12.9 (15, 2) 14.0 (5, 86) 15.2	(0.038, 2.50) (0.038, 2.70) (0.038, 3.10) (0.038, 3.10) (0.038, 2.38)	0.094 0.163 0.098 0.039 0.141	5.3 · 10 ⁻¹¹ , 0.5, 1.0	1.0	-8.8, 1.0
FFM02>200	NS NE NW EW HZ	(83, 10) 16.9 (143, 9) 11.7 (51, 15) 12.1 (12, 0) 13.3 (71, 87) 20.4	(0.038, 2.75) (0.038, 2.62) (0.038, 3.20) (0.038, 3.40) (0.038, 2.58)	0.342 0.752 0.335 0.156 1.582	9.0 · 10 ⁻⁹ , 0.7, 1.0	$5.0 \cdot 10^{-9}$, 1.2	-7.1, 1.1
FFM03, FFM04 and FFM05>-400	NS NE NW EW HZ	(292, 1) 17.8 (326, 2) 14.3 (60, 6) 12.9 (15, 2) 14.0 (5, 86) 15.2	(0.038, 2.60) (0.038, 2.50) (0.038, 2.55) (0.038, 2.40) (0.038, 2.55)	0.091 0.253 0.258 0.097 0.397	$1.3 \cdot 10^{-8}, \\ 0.4, 0.8$	$0.6^{1.4 \cdot 10^{-8}}$	-7.2, 0.8
FFM03, FFM04 and FFM05<-400	NS NE NW EW HZ	(292, 1) 17.8 (326, 2) 14.3 (60, 6) 12.9 (15, 2) 14.0 (5, 86) 15.2	(0.038, 2.60) (0.038, 2.50) (0.038, 2.55) (0.038, 2.40) (0.038, 2.55)	0.102 0.247 0.103 0.068 0.250	$1.8 \cdot 10^{-8}, \\ 0.3, 0.5$	7.1 · 10 ⁻⁹ , 0.6	-7.2, 0.8

Surface portion of final repository

600 m

Joyce et al., Hydrogeology Journal (2014) 22:1233-1249

Underground portion of final repository

a Meters above sea level

Used Fuel

Natural Barrier System

Engineered Barrier System

- Stainless steel waste packages
- Log normal distribution on waste package degradation rate
- Bentonite buffer
- 21 drifts w/ 80 SNF WP/drift
- 21 drifts w/ 119 HLW WP/drift
- 5 glass HLW logs/WP

Waste Inventory in 2038

DOE-managed defense-related SNF

Selected glass HLW

DOL-Illallaged deletise-related Sivi					
Decay heat per canister (W)	Cumulative % in 2010	Number of canisters projected in 2035	Number of canisters in simulation		
<50	46.8%	1163	787		
50-100	56.2%	234	158		
100-200	94.1%	940	636		
200-300	94.5%	12	8		
300-500	96.2%	41	28		
500-1000	99.7%	88	60		
1000-1500	99.9%	4	3		
1500 - 2000	99.9%	0	0		
>2000	100.0%	3	0		
Total		2485	1680		

	Average decay heat		
	per canister in 2038	Number of canisters	Number of canisters in
	(W)	projected	simulation
Hanford	22	11079	7425
Savannah River	251	7562	5070
Total		18641	12495

Simulating ~2/3 of selected inventory.

Excludes Savannah River Site SRE fuel, commercial fuel in DOE possession, and Naval fuel.

Waste Inventory in 2038

Waste Inventory in 2038

Deterministic Results: Waste Package Breach

Deterministic Results: Temperature

Deterministic Results: Temperature

Deterministic Results: Temperature

Deterministic Results: Darcy Flux

Deterministic Results: 129 | Concentration

Deterministic Results: 129 | Concentration

Deterministic Results: 129 | Concentration

Fuel Uncertainty due to fracture realization Disposition

Probabilistic: Sampled Parameters

Parameter	Distributio n	Lower Bound	Upper Bound
Glacial k (m ²)	Log uniform	10 ⁻¹⁶	10-13
Waste package tortuosity	Log uniform	0.01	1.0
Mean waste package degradation rate (1/yr)	Log uniform	10-5.5	10-4.5
DRZ porosity	Uniform	0.005	0.05
Buffer porosity	Uniform	0.1	0.4

Example of capability only! Have yet to explore:

- Sensitivity to sampled range
- Sensitivity to K_d, etc.
- Most appropriate metric in fractured rock

Probabilistic Results: Uncertainty due to sampled parameters

Fuel Probabilistic Results: **Sensitivity**Disposition

Fuel Probabilistic Results: **Sensitivity**Disposition

Crystalline PA: R&D Future

How to ensure isolation in a fractured host rock? Generic Performance Assessment can identify:

- Components of the Engineered Barrier System capable of ensuring isolation, e.g., long-lasting copper waste packages with compatible buffer material.
- Features of the Natural Barrier System sufficient and/or necessary to ensure robust isolation from the biosphere, e.g., lack of fracture connectivity, deep unsaturated zone, or thick sedimentary overburden.
- Need-to-know aspects of fractured rock characterization, e.g., spacing of deformation zones.
- Appropriate performance metrics for uncertainty and sensitivity analyses in fractured rock.
- Overly conservative assumptions, e.g. fully saturated system at t = 0.

Backup Slides

Setting up a simulation

Used Fuel Uncertainty due to fracture realization: Comparison to CSNF

