Used Fuel Disposition Campaign

DREP Crystalline Repository Concepts – Review and Recommendations

E. Hardin & E. Matteo

UFD Working Group Meeting University of Nevada/Las Vegas June 7-9, 2016

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-5241 PE

UsedDisposal Concepts for a DRep in Crystalline Rock:FuelIdentify Candidate Concepts for Evaluation

- Objectives for Review: <u>safety</u>, cost, portability
- Disposal Concept = WF + geologic setting + concept of ops.
 - Waste form:
 - Mostly HLW glass, low heat output, SS pour canisters
 - DSNF of various types, pre-canistered, SS canisters
 - Geologic setting:
 - Competent rock (UCS > excavation stresses), thermally resistant (200°C), conductive faults/fractures, groundwater (or saltwater) saturated
 - Depth 500 m (boiling temp. >>200°C), shaft or ramp accessible
 - Concept of operations?

Used Fuel Disposition Disposition Disposal Concepts for a DRep in Crystalline Rock: Defense Waste Characteristics

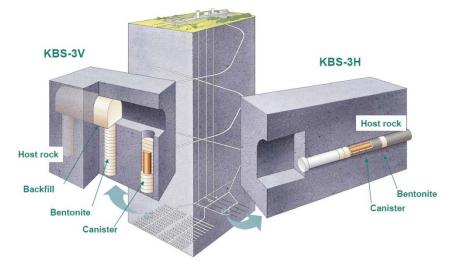
- Low-thermal (up to 1 kW per 3- or 5-m canister)
- Long-lived radionuclides (~10⁶-year assessment)
- Large numbers of canisters (from Carter et al. 2012)
 - 3,542 DSNF (99.4% < 1 kW in 2030)
 - 23,032 HLW glass (SRS, Hanford & Idaho; all < 1 kW)
 - 3,600 Idaho calcine (24-inch dia. × 15 ft long; all << 1 kW)
- Small canisters (mostly 18- and 24-inch diameters)
 - Neglect Naval SNF which is most similar to CSNF
- Relatively lightweight (canister + contents; no overpack)
 - DSNF 5,000 to 10,000 lb
 - HLW 5,512 to 9,260 lb
 - Calcine ~6,000 to 7,000 lb (without HIP)

Material: stainless steel (welded, no heat treat, sensitized)

All require some shielding

Used Fuel Disposition Disposition Disposal Concepts for a DRep in Crystalline Rock: Crystalline Rock Geologic Settings

Competent Rock


- Only minor concrete/shotcrete
- Large openings possible
- Dimensional stability

Brackish/Briny Formation Fluid

- Salinity > seawater \rightarrow ancient?
- Fracture/Fault Permeability
- Hydraulic Gradients Present
 - Even small head gradients (e.g., 10⁻⁴) require low-k backfill

Waste Package Conveyance

Shaft or ramp; supercontainer loads > 100 MT possible with ramp

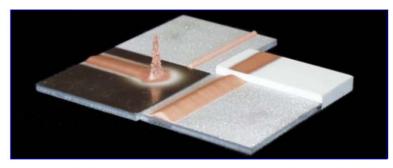
Used Fuel Disposition Disposition Disposal Concepts for a DRep in Crystalline Rock: **Optioneering**" KBS-3 (1/2)

Emplacement mode

- KBS-3V vs. KBS-3H
- WP-Cave and deep borehole
- In-drift emplacement

And the second			And The Longer of Lugicity, and
KBS-3	Very Long Holes	WP-Cave	Very Deep Holes

Source: SKB International Report 166: Spent Fuel Geologic Repository Consultation. Prepared for Savannah River Nuclear Solutions, LLC. Final Report, September, 2013.


Used Disposal Concepts for a DRep in Crystalline Rock: **Fuel "Optioneering" KBS-3 (2/2)**

Canister

- Cu canister with a steel or cast iron insert
- Cu canister made by hot isostatic pressing or cold-spray
- E-beam, friction-stir welding
- Steel, ceramic (Al2O3), or Ti-alloy canister
- Coatings (amorphous metals, ceramic)
- Buffer materials
 - Clay, clay-sand, cementitious, "sandstone"
- Supercontainers

Construction methods

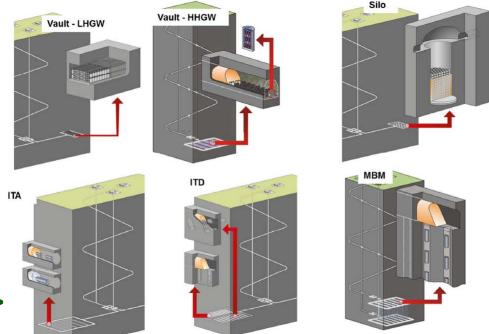
- TBM vs. drill and blast, shaft vs. ramp, buffer/backfill and closure options
- Emplacement equipment
 - Transporters, hoists, water/air bearings, tractor-pushers, shielding
- Filler materials (molten lead, cement, glass beads)
- Rod consolidation

Examples of Materials Successfully Deposited at Sandia

Active Braze Alloy Aluminum Aluminum Bronze Copper 304 Stainless Steel 420 Stainless Steel Fe₃Pt Molybdenum Monel 80Ni/20Cr NiCrAlY NiCr-Cr₃C₂ Polymer StelCar Tantalum Tin Titanium WC-Co (nanophase)

Used Fuel Disposition Disposition Disposal Concepts for a DRep in Crystalline Rock: KBS-3 + Other Crystalline Concepts

Pinawa (AECL, Canada)


- Ti or Cu packaging
- Vertical-borehole emplacement
- Buffer and backfill
- Clay and/or cement-based

Mizunami (PNC, Japan)

- KBS-3H and KBS-3V reference
- Concrete vaults

UK (RWM Ltd.) concepts >>>

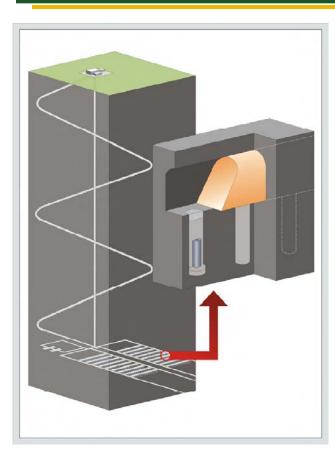
- Vaults, in-drift and borehole
- Pumpable buffer/backfill

Source: Watson, S. et al. 2014. *Disposal Concepts for Multi-Purpose Containers*. QRS-1567G-R7 Version 1. Radioactive Waste Management, Ltd., UK.

Used Disposal Concepts for a DRep in Crystalline Rock: NDA/EPRI Options Studies (1/5)

Table B-2

Key features and variants leading to the UNF and HLW disposal Concepts.

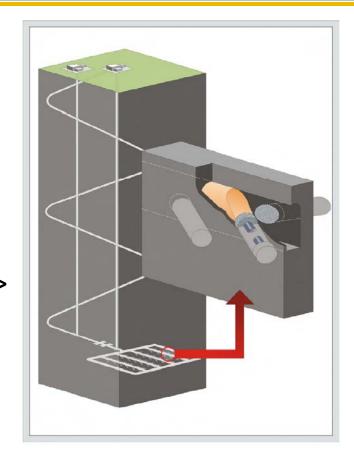

Key Feature	Variants	Concept No.
In-tunnel (borehole)	Vertical borehole	1
	Horizontal borehole	2
In-tunnel (axial)	Short-lived canister	3
	Long-lived canister	4
In-tunnel (axial) with supercontainer	Small working annulus	5
	Small annulus + concrete buffer	6
	Large working annulus	7
Caverns with cooling, delayed backfilling	Steel MPC + bentonite backfill	8
	Steel or concrete/DUCRETE container + cement backfill	9
Mined deep borehole matrix		10
Hydraulic cage	Around a cavern repository	11
Very deep boreholes		12

Sources for this and slides 9 - 13:

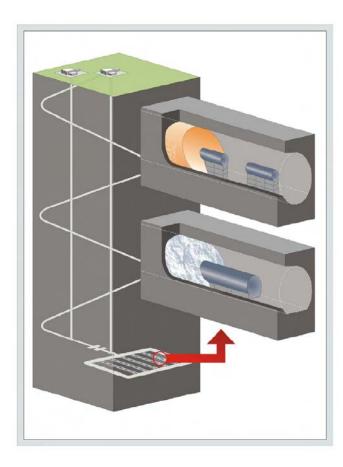
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste Volume III— Review of National Repository Programs. 1021614. December, 2010.

(After Baldwin, T., et al. 2008. *Geological Disposal Options for High-Level Waste and Spent Fuel*. Prepared for the UK Nuclear Decommissioning Authority, January, 2008.)

Used Disposal Concepts for a DRep in Crystalline Rock: NDA/EPRI Options Studies (2/5)



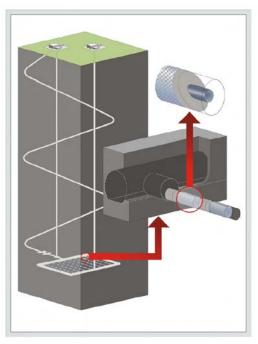
<<< #1


- Vertical borehole, outside DRZ
- Clay-based buffer & backfill
- Long-lived WP (Cu or Ti) for SNF IRF
- Short-lived for glass
- Mature for crystalline (KBS-3V)

#2 >>>

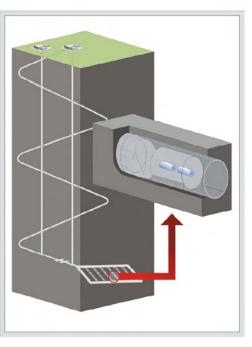
- Slant/horiz. holes
- Clay-based buffer and backfill
- Developed for clay
- Highly retrievable
- Low maturity

Used Disposal Concepts for a DRep in Crystalline Rock: NDA/EPRI Options Studies (3/5)

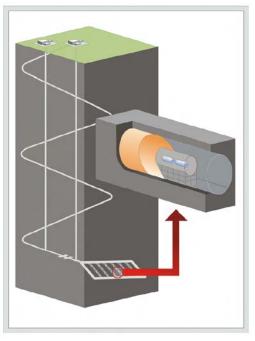

<<< #3

- In-drift axial
- Steel WP
- Thick clay-based buffer
- For relatively dry rock, limited DRZ
- Developed for clay
- Mature for clay, crystalline

<<< #4

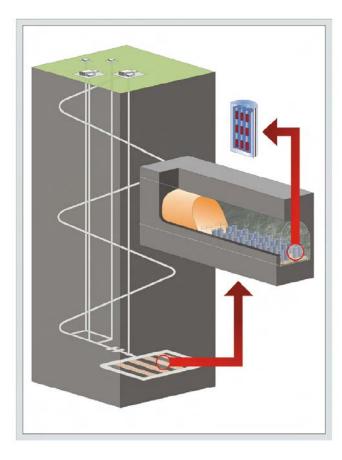

- Ontario Power concept (shown for salt)
- Corrosion resistant WP (Cu or Ti)
- Multi-part buffer/backfill
- Pre-fabricated compacted clay buffer
- Smaller packages may be side-by-side in pairs
- Adapt to highly stressed rock
- Mature for crystalline

Used Disposal Concepts for a DRep in Crystalline Rock: NDA/EPRI Options Studies (4/5)



1 #5

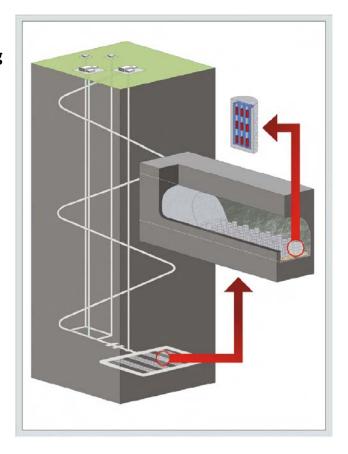
- Supercontainer, small annulus
- Corrosion resistant WP
- Inflow rate critical
- Mature for crystalline (KBS-3H)


- ↑ #6
- Supercontainer with concrete buffer
- Long- or short-lived WP
- Mature for clay
- OPC interactions R&D

↑#7

- Supercontainer, large annulus
- Corrosion resistant WP
- Clay-based buffer and backfill
- Low maturity

Used Disposal Concepts for a DRep in Crystalline Rock: NDA/EPRI Options Studies (5/5)



<<< #8

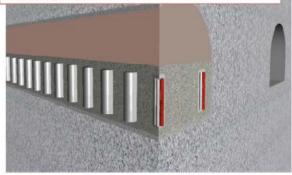
- Steel MPC, self-shielding
- Clay backfill
- Extended cooling
- Small footprint
- Highly retrievable
 (→300 yr)
- Backfilling method?
- Low maturity

#9 >>>

- Steel MPC or concrete/DUCRETE casks, self-shielding
- Clay or cement backfill (pumpable?)
- Highly retrievable
- Low maturity

Used Fuel Disposition Disposition Disposal Concepts for a DRep in Crystalline Rock: Cavern-Retrievable (CARE) Concept

- After McKinley et al. (2008)
- Combine long-term retrievable storage
- Highly competent rock (relatively dry?)
- Self-shielded WPs
- Extended cooling
- Small footprint
- Highly retrievable (→300 yr)



A. Initial Emplacement Phase of storage casks In CARE uses standard technology which can be tele-operated

B. During the extended **Storage Phase**, casks in CARE are fully inspectable and can be easily retrieved for reprocessing or moved to allow cavern refurbishment

C. When a decision is made for a final **Disposal Phase**, the CARE facility can be backfilled and sealed with safety barriers similar to those in a conventional repository

Used Fuel Disposition

Disposal Concepts for a DRep in Crystalline Rock: "2nd Generation" HLW Concepts (McKinley, et al.)

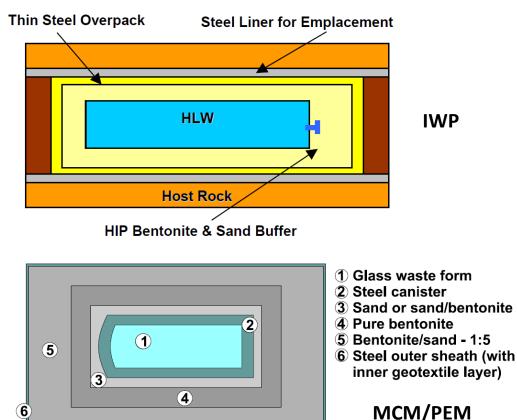
Integrated waste package (IWP)

Pressed buffer in steel overpack

Multi-component module (MCM)

 Use of sand-clay mixtures inside and outside pure clay buffer

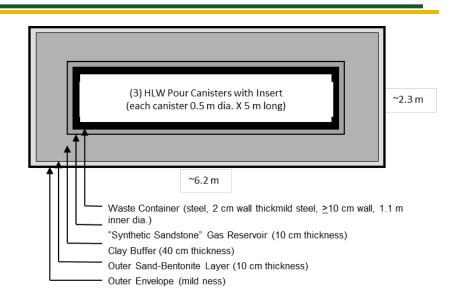
Prefabricated EBS Module (PEM)


Up to 3 HLW canisters, bentonite, steel sheath

Sealants

Inhibit inflow at the tunnel wall

Sandstone Buffers


 Flux diversion, package sinking, gas dispersion

Source: McKinley et al. 2001. "Moving HLW-EBS Concepts into the 21st Century." Mat. Res. Soc. Symp. Proc. Vol. 663.

Used Fuel Disposal Concepts for a DRep in Crystalline Rock: Disposition What if the Host Rock is Unsaturated?

- Natural smectite is a common secondary mineral in many settings, at oxidizing conditions
- Buffer erosion from higher flux, e.g., glacial onset/retreat
- Erosion insignificant (immeasurable) for pore flow velocities < 10⁻⁵ m/sec
- Piping could result from nonuniform initial saturation
 - SR-Can excludes piping for inflow < 0.1 L/min per package
 - Equivalent to 500 mm/yr average flux (very unlikely for UZ settings)

- Total PEM weight ~90 MT depending on insert material
- Inserted into a vertical/horizontal mined/drilled opening

Source: Hardin and Sassani 2011. "Application of the Prefabricated EBS Concept in Unsaturated, Oxidizing Host Media." International High-Level Radioactive Waste Management. SAND2011-2426C.

UsedDisposal Concepts for a DRep in Crystalline Rock:FuelSo How Can We Improve on These EBS ConceptsDispositionFor Crystalline Rock?

Use D-Waste Characteristics

Small, cool canisters & modest shielding

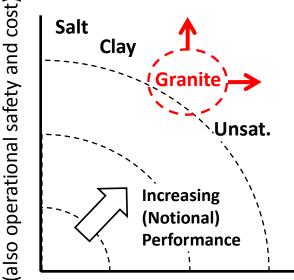
Simplicity & Technical Maturity

- Favorable (generic) site characteristics
- Consider published approaches

Discriminate Final State from

Engineering/Construction Methods

Identify R&D Opportunities:


- Packaging materials (metals, coatings)
- Buffer materials (clay, clay-sand & cementitious)
- Pre-fabrication (buffer density, erosion & piping)

Cautiously Approach Cost Considerations

- Claim constructability and low cost; include engineering R&D cost
- Correct attribution of GDSA performance

attenuation, disruptive events

EBS

Containment, release rate, attenuation (also operational safety and cost)

Used Disposal Concepts for a DRep in Crystalline Rock: Fuel Crystalline DRep Recommendations

Panel Layout by Waste Form*

* Used in current GDSA models

- Corrosion-Resistant Packaging*
 - Use existing HLW and DSNF canisters
 - Corrosion-resistant overpack performance
- Low-Permeability Buffer and Backfill Materials*
 - Clay-based materials
- In-Drift Emplacement (larger packages)*
 - Minimize tunnel volume, characterize inflow conditions
- Borehole Emplacement (smaller DSNF packages)*
 - Short vertical or horizontal boreholes
- Favorable Site Characteristics*

Used Fuel Disposition Disposition Disposal Concepts for a DRep in Crystalline Rock: Summary and Conclusions

Cooler Waste

Clay-based backfill/buffer material

Corrosion-Resistant Packaging

- Cu/Ti/Hastelloy/coatings

Package Size and Emplacement Mode

- Waste segregated in panels, by type

Cost Considerations

Multi-packs for HLW glass

International R&D Recognized

- KBS-3V (NDA/EPRI #1 or #2)
- In-drift emplacement (scaled up KBS-3H; NDA/EPRI #5 or #7 with supercontainer)

Used Disposal Concepts for a DRep in Crystalline Rock: R&D Opportunities

Waste Forms

– Design for instant release fraction?

Package Materials

- Corrosion allowance or resistant?
- Fabrication methods & coatings

Buffer/Backfill

- Mass transport, piping/erosion

Super-Containers

- Pre-fabrication, self-shielding

Moving Heavy Packages

- Conveyances & running surfaces
- Tight drift clearances, water/air bearings

Bulk Material Delivery

- Pellet delivery, pumpable materials

