
 

 


 

Abstract— Efficient management and coordination of 

distributed energy resources with advanced automation schemes 

requires accurate distribution system modeling and monitoring. 

Big Data from smart meters and PV micro-inverters can be 

leveraged to calibrate existing utility models. This paper presents 

computationally efficient distribution system parameter 

estimation algorithms to improve the accuracy of existing utility 

feeder radial secondary circuit model parameters. The method is 

demonstrated using a real utility feeder model with AMI and PV 

micro-inverters, along with alternative parameter estimation 

approaches that can be used to improve secondary circuit models 

when limited measurement data is available. The parameter 

estimation accuracy is demonstrated for both a 3-phase test 

circuit with typical secondary circuit topologies and 1-phase 

secondary circuits in a real mixed-phase test system. 

 

Index Terms-- Load Modeling, Parameter Estimation, Power 

Distribution, Power System Modeling, Power System 

Measurements, Power System Simulation, Regression Analysis, 

Smart Grids 

I. INTRODUCTION 

FFICIENT management of distributed energy resources 

(DER), especially renewable energy sources, with 

advanced Volt/VAr optimization and other distribution system 

automation schemes requires accurate and reliable distribution 

system modeling, monitoring, and coordination [1], [2]. This 

can be realized by exploiting the large amounts of emerging 

data from advanced metering infrastructure (AMI) and micro-

inverters.  

Due to the large number of parameters, system changes, 

and load conditions involved in a distribution system model, 

there is a large degree of uncertainty with respect to the 

accuracy and quality of current utility models. Stored circuit 

model including the model parameter values may be incorrect 

as a result of unknown data, human errors, inaccurate 

manufacturing data, network changes, etc. [3]. Improving the 

accuracy of feeder parameters is important to allow higher 

penetrations of DERs and reliable control of the devices. 
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It is particularly important to improve the models of the 

distribution system secondary (low voltage) networks where a 

large share of the distributed energy resources are located. 

Moreover, the secondary networks are typically modeled with 

a lower level of detail compared to the well-modeled primary 

(medium-voltage) networks, and a significant portion of per-

unit voltage drop/raise occurs over the service transformers 

and lines that have large impedances and low X/R-ratios. 

Automated parameter estimation (PE) procedures for 

improving the secondary circuit model parameters are 

necessary in order to minimize manual inspections that are 

costly and hard to perform in densely populated urban areas 

with wiring underground and in buildings. 

Conventionally, PE methods have been applied to the 

transmission system. In that setting, PE is aimed to refine a 

handful of suspicious parameters and typically assume 

accurate, well time-synchronized and highly redundant set of 

measurements, which has rarely been the situation in 

distribution systems [3], [4]. Moreover, many conventional PE 

approaches for transmission systems either require a residual 

vector from an existing state estimator or involve some 

modifications to the existing state estimator algorithm [3], [5], 

[6]. Due to the limited deployment of state estimators in 

distribution systems, these methods are not readily available. 

The Big Data from AMI and other emerging sensors has 

raised the interest in new methods for distribution system 

parameter estimation (DSPE). A linear optimization method 

for topology error detection and parameter estimation has been 

proposed in [7] but the method only utilizes active powers. In 

[8], the authors utilize a quadratic formulation and a gradient-

based approach to minimize the variance of voltage estimates 

from various smart meters. The approach makes no 

simplifications to the AC power flow equations but results in a 

non-convex optimization problem with quadratic equality 

constraints that with hundreds of required iterations is 

computationally much more intensive to solve than non-

iterative linear regression based methods that require solving a 

simple linear system of equations. Practical methods for meter 

phase identification, meter-to-transformer mapping, and joint 

parameter and topology estimation are shown in [9]. 

This paper focuses on off-line estimation of time-invariant 

service transformer and secondary system line impedances. 

The local measurement redundancy is increased by utilizing a 

large number of historical measurement samples to reduce the 

impacts of the lower measurement granularity and accuracy of 

AMI and emerging measurement sources. This paper is a 
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natural continuation on our previous work on the distribution 

system parameter estimation in [10] and the preliminary 

results, on refining the Georgia Tech campus distribution 

system model parameters in [11], and [12]. 

The key contribution of this paper are two-fold: 

1) Present a practical and computationally efficient method 

for estimating 3-phase or 1-phase secondary circuit model 

series impedance parameters with fully available Big Data 

from AMI voltage and power (or current) measurements. The 

method is also shown for handling some meters not reporting 

voltage measurements. This method is validated for a 3-phase 

test circuit with various real secondary circuit topologies. 

2) Show a novel practical and computationally efficient 

method for generating secondary circuit model with limited 

available PV microinverter data. This method is demonstrated 

for 1-phase real U.S. utility feeder secondary circuits. 

The second method for limited available PV microinverter 

data is novel. The first method for fully available Big Data 

from AMI measurements presents several extensions over [7], 

[9] including the parallel branch estimation formulation (9)-

(11), the upstream node voltage estimation with (12), and the 

linearly constrained least squares estimation (8) for bounding 

parameter values. This paper also presents an optimal linear 

regression model (13)-(16) for typical secondary circuit 

topologies and different levels of measurement error. The 

approach to handle some meters with missing voltage 

measurements is novel. 

This paper addresses the need for utilities to improve the 

analytical and operational modeling accuracy for future smart 

distribution systems with DER. The work also provides further 

use cases for smart meter and DER data. 

This paper has the following structure. Section II presents 

the utilized branch series impedance parameter estimation 

method, and Section III expands the method to estimating the 

series impedance parameters of entire radial secondary 

circuits. Optimal linear regression model is also discussed. 

Section IV presents a modified parameter estimation algorithm 

when only a limited set of PV inverter measurements are 

available. Section V discusses parameter estimation 

implementation in utility Big Data environment. Section VI 

demonstrates the performance of the parameter estimation 

algorithms on a three-phase test circuit, and Section VII shows 

parameter estimation results for utility feeder with single-

phase secondary circuits. Section VIII concludes the paper. 

II. ESTIMATING BRANCH SERIES IMPEDANCE PARAMETERS 

The presented parameter estimation is based on the well-

known (see e.g. [13], [14]) linear approximation of voltage 

drop magnitude over a series impedance shown in Figure 2 on 

the right 

 Δ𝑉 = 𝑉1 − 𝑉2 ≈ (𝑅𝑃 + 𝑋𝑄) 𝑉2⁄ = 𝑅𝐼𝑅 + 𝑋𝐼𝑋, (1) 

where 𝑉1 and 𝑉2 are voltage magnitudes, 𝑅 and 𝑋 are the 

series resistance and reactance between two buses (positive 

sequence for balanced 3-phase branches and phase impedance 

for 1-phase branches). The current resistive and reactive 

components are given with 

 𝐼𝑅 = 𝑃 𝑉⁄ = 𝐼(𝑃𝐹) and 𝐼𝑋 = 𝑄 𝑉⁄ = 𝐼√1 − (𝑃𝐹)2, (2) 

where (𝑃𝐹) is the power factor. For transformers, all values 

must be referred to the same voltage level. In 3-phase systems, 

line-line voltages and 3-phase powers are used whereas in 1-

phase systems, line-to-neutral voltages are utilized. 

The accuracy of the linearized voltage drop approximation 

equation (1) is shown to be good in most typical situations 

[10], [14]. However, the equation increasingly underestimates 

the voltage drop magnitudes for impedances with high X/R-

ratios, e.g., service transformers [10]. As a result, without 

measurement error the resistances tend to over-estimated and 

reactances under-estimated especially for components with 

high X/R-ratios. This bias may also be present in transformer 

parameters estimated with noisy measurements. On the other 

hand, since measurement noise can be a considerable fraction 

of service line voltage drop, the estimation bias is less likely to 

be seen in service line R and X parameter estimates whose 

accuracy is more driven by the characteristics of the 

measurement error. It is possible to counteract the 

approximation error of equation (1) by adding higher order 

predictor terms to the linear regression model or by filtering 

parameter estimation samples with higher expected 

approximation error. However in practice, equation (1) 

approximation error is expected to be insignificant compared 

to measurement error and modeling simplifications and 

inconsistencies [10]. 

The goal of the branch (positive sequence) series 

impedance parameter estimation problem is to find the most 

likely parameters 𝑅 and 𝑋 that provide the best fit of the 𝑀 

measurement samples to the linear model 

 Δ𝑽 = 𝑽1 − 𝑽2 = 𝑅𝑰𝑅 + 𝑋𝑰𝑋 + 𝝐, (3) 

where ϵ ∈ ℝ𝑀 captures the model and measurement error and 

all the bold letters indicate vectors (or matrices) through time. 

Denoting the response vector y ∈ ℝ𝑀, the design matrix 

𝓧 ∈ ℝ𝑀×2, and the unknown parameter vector 𝜷 ∈ ℝ2 

 𝒚 = 𝑽1 − 𝑽2, 𝓧 = [𝑰𝑅 𝑰𝑋], and 𝜷 = [𝑅 𝑋]T (4) 

respectively, gives 

 𝒚 = 𝓧𝜷 + 𝝐. (5) 

An estimate for the unknown parameters, �̂�, can be obtained 

by, e.g., minimizing the p-norm of the model residuals over 

the measurement samples 

 �̂� = min
𝑅,𝑋

‖𝒚 − 𝓧𝜷‖𝑝. (6) 

If 𝑝 = 1, (6) becomes a linear programming problem. With 

𝑝 = 2, (6) is a linear unconstrained least squares problem 

whose solution is the ordinary least squares (OLS) estimator 

given by 

 �̂� = (𝓧T𝓧)−1𝓧T𝒚. (7) 

Sometimes it is desirable to set bounds on the impedance 

parameter estimates. This can be done by utilizing linearly 

constrained least squares formulation 



 

 

 
�̂� = min

𝜷
 𝜷T𝓧T𝓧𝜷 

subject to 𝑪𝜷 ≤ 𝒅. 

 
(8) 

This is a quadratic programming problem that can be 

effectively (in polynomial time) solved to a global (but 

possibly not unique) optimum with any open-source or 

commercial solver. In this paper, the linearly constrained least 

squares solution is used when the OLS estimator results in 

non-physical, e.g., negative or too high, parameter values. 

III. DSPE ALGORITHM 

A.  DSPE Problem Definition 

This section generalizes the branch series impedance 

parameter estimation method to estimation of the series 

impedance parameters of entire radial secondary circuit [10]. 

The objective of the method is to find the most likely values of 

resistance (𝑅) and reactance (𝑋) parameters shown in red in 

Figure 1. The method assumes that historical voltage (𝑉), 

active power (𝑃), and reactive power (𝑄) measurements 

shown in blue in the figure are available at all the leaf nodes of 

the secondary circuit tree. To estimate the service transformer 

parameters, the method requires measured or simulated 

service-transformer medium-voltage values. 

 

 
Figure 1. Secondary circuit tree for parameter estimation 

 

The proposed method relies on the following four 

assumptions. 

1. The secondary circuit topology is assumed to be known. 

If the topology is unknown, it can be estimated following the 

approach we have shown in [12]. 

2. The secondary circuit is assumed to be radial (i.e. a tree) 

like most real secondary circuits [13]. 

3. The active and reactive power (or current and power 

factor) and the voltage measurements are assumed to be 

available at all leaf nodes of the tree. In practice, this 

assumption is valid since most secondary circuit tree leaf 

nodes have either a load and/or a distributed generation (DG) 

unit with the respective measurements. Handling cases where 

some meters report no voltage measurements is discussed in 

[10]. 

4. The secondary circuit is assumed to be either balanced 3-

phase or single-phase. This assumptions is often invalid since 

in practice many distribution system secondary circuits are 

split-phase, i.e., a single-phase where a center-tapped 

transformer connects to a triplex cable with both 120V and 

240V service to the loads. Although it is possible to model the 

split-phase secondary circuits in detail [15], parameter 

estimation is limited by the available measurement data, which 

typically consists of the customer total power and/or current as 

well as voltage measurement across the 120V (or the 240V) 

connection. As long as the power, current and voltage 

measurements for both the 120V and 240V loads are not 

included in the MDMS, it may be desirable to model split-

phase secondary circuits with single-phase transformers, lines, 

and loads. Using this modeling approach, typical measurement 

meter data can be readily utilized to estimate the secondary 

circuit transformer and line parameters utilizing the approach 

introduced below. 

B.  DSPE Algorithm 

The distribution system secondary circuit parameter 

estimation (DSPE) algorithm processes one secondary circuit 

tree at a time, hierarchically proceeding from the tree leaf 

nodes towards the tree root node. At a given iteration the 

algorithm estimates the branch impedances for a subsection of 

the secondary circuit as follows. First, the algorithm searches 

for a circuit subsection, whose parameters shown in red in 

Figure 2 have not been estimated yet, that consists of either A) 

a branch that has known (measured or estimated at previous 

iteration) upstream and downstream node voltages and 

downstream node currents shown in blue in Figure 2 on the 

right, or B) a set of parallel branches with known downstream 

node voltages and currents shown in blue in Figure 2 on the 

left. Once a suitable circuit subsection has been identified, the 

algorithm first estimates the branch impedance parameters and 

then in case of the parallel branch case, estimates the upstream 

node voltages using the measurements and the estimated 

branch parameters. These steps are listed in Algorithm 1. 

The linear regression formulation for circuit sections 

without parallel branches in Algorithm 1 is given in (4)-(5). 

The linear regression formulation for the case with 𝑁 ∈
{2,3, … } parallel branches and 𝑀 measurement samples in 

Algorithm 1 is given by (5) where ϵ ∈ ℝ𝑀 is the error vector, 

𝜷 ∈ ℝ(𝑀+2𝑁) is the parameter vector given by 

 𝜷 = [𝑉0,1, … , 𝑉0,𝑀, 𝑅1, 𝑋1, … , 𝑅𝑁 , 𝑋𝑁]
T

, (9) 

and 𝒚 ∈ ℝ𝑀𝑁 is the response vector is given by 

 𝒚 = [𝑉1,1, … , 𝑉1,𝑀, … , 𝑉𝑁,1, … , 𝑉𝑁,𝑀]
T

. (10) 

Finally, the design matrix 𝓧 ∈ ℝ(𝑀𝑁)×(𝑀+2𝑁) is given by 

 𝓧 = [
I [−𝑰𝑅,1 −𝑰𝑋,1] ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
I 𝟎 ⋯ [−𝑰𝑅,𝑁 −𝑰𝑋,𝑁]

], (11) 

where I ∈ ℝ𝑀×𝑀 are identity matrices, 𝑰𝑅,𝑖 , 𝑰𝑋,𝑖 ∈ ℝ𝑀×1, 𝑖 ∈

{1, … , 𝑁} are the branch current measurements, and the zero 

submatrices have suitable sizes. This formulation has (𝑀 +
2𝑁) unknowns (excluding the error terms) and 𝑀𝑁 equations. 

In practice, large sample size 𝑀 is used and thus, 𝑀 ≫ 𝑁. 

Once the impedances, currents, and downstream node 

voltages of the 𝑁 parallel branches are known, the voltages of 

the upstream node of the branches can be estimated as an 

average of the upstream node voltage estimates of the 𝑁 

branches with 

 𝑽0 =
1

𝑁
∑ ‖𝑽𝑖 + (𝑅𝑖 + 𝑗𝑋𝑖)(𝑰

𝑅,𝑖
+ 𝑗𝑰𝑋,𝑖)‖ 𝑁

𝑖=1 . (12) 
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Figure 2. Secondary circuit section with N parallel branches (left) and no 

parallel branches (right) 

 

Algorithm 1: DSPE Algorithm 

Input:  List of all secondary circuit branches, ℒ, with fields 

   upstream and downstream node, # parallel branches, 

   branch current measurements 𝑰𝑅 , 𝑰𝑋, branch node 

   voltage measurements 𝑽 

Output:  Secondary circuit branch estimation results with 

   fields 𝑅𝑒𝑠𝑡 , 𝑋𝑒𝑠𝑡 , 𝑅𝑝𝑣𝑎𝑙 , 𝑋𝑝𝑣𝑎𝑙 , 𝑅2,and, 𝑀𝑆𝐸. 

1. If ℒ is empty, STOP. 

IF ℒ has only one branch, set ℓ, the list of active branches, 

 equal to the last branch and remove the last branch from ℒ. 

ELSE Find a branch 𝑖 whose all parallel branches 𝑗1, … , 𝑗𝑁−1 

 have downstream node voltage measurements or estimates. 

 Set ℓ = {𝑖, 𝑗1, … , 𝑗𝑁−1}. 

ENDIF 

IF ℓ has only one branch, estimate the impedance parameters 

 of the branch in ℓ with the single-branch regression  

 formulation (3)-(5). 

ELSE Estimate the impedance parameters of the branches in ℓ 

 with the parallel branch regression formulation (9)-(11) and 

 estimate the voltages of the upstream node of the 𝑁 parallel 

 branches with (12). 

ENDIF 

2. Go to Step 1. 

 

C.  Optimal Linear Regression Model 

The linear regression models (3)-(5) and (9)-(11) are based 

on the linearized voltage drop equation (3) and thus, the 

predictors and unknown parameters have direct physical 

meanings in both formulations. However, linear regression 

allows models with higher order terms, cross-couplings, or 

any other functions of the predictor variables 𝐼𝑅 and 𝐼𝑋. Unlike 

𝑅 and 𝑋 in (4) and (11), the coefficients of other terms do not 

have a direct physical meaning, but including them in the 

regression models may better capture the intrinsic nonlinear 

relationship between the response variables and the predictor 

variables thus, leading to better estimates for 𝑅 and 𝑋. The 

best regression model depends, among other things, on the 

characteristics of the data and on the values of the true 

parameters. More complicated models can better estimate true 

impedance values under conditions of low measurement noise 

levels. On the other hand, the higher the measurement error 

level is or the lower the true impedance magnitudes (and the 

voltage drop) are, the simpler regression models should be 

used. A detailed analysis of different regression models and 

their accuracy can be found [10]. 

Good parameter estimation accuracy is obtained when 𝐼𝑅
2, 

the second order term of the resistive (real power) current is 

added to regression problems that include one or more 

transformers [10]. Thus, single transformer parameters are 

best estimated by utilizing design matrix 𝓧 and parameter 

vector 𝜷 are given by 

 𝓧 = [𝑰𝑅1, 𝑰𝑋1, 𝑰𝑅1
2 ] (13) 

 𝜷 = [𝑅1, 𝑋1, 𝛽𝑅𝑠𝑞,1]
T
, (14) 

where parameters 𝛽𝑅𝑠𝑞,1 and 𝛽𝑋𝑠𝑞,1 do not have a direct 

physical meaning. The response vector 𝒚 is the same as in (4). 

Similarly, the parameters of N parallel branches, 𝑖𝑡ℎ of which 

is a transformer, are best estimated by utilizing design matrix 

𝓧 and parameter vector 𝜷 are given by 

 𝓧 = [
I [−𝑰𝑅,1 −𝑰𝑋,1] ⋯ 𝟎 𝟎
⋮ ⋮ ⋱ ⋮ ⋮
I 𝟎 ⋯ [−𝑰𝑅,𝑁 −𝑰𝑋,𝑁] −𝑰𝑅,𝑖

2
] (15) 

 𝜷 = [𝑉0,1, … , 𝑉0,𝑀, 𝑅1, 𝑋1, … , 𝑅𝑁 , 𝑋𝑁 , 𝛽𝑅𝑠𝑞,𝑖]. (16) 

The response vector 𝒚 is the same as in (10). 

These selected regression models are optimized for the 

practical setting where the measurement error dictates the 

parameter estimation accuracy. Without measurement error, 

parameters can be estimated with a smaller error by using 

regression models with additional higher-order terms of the 

predictor variables. 

IV. SDSPE ALGORITHM WITH LIMITED PV MEASUREMENTS 

Ideally, secondary circuit parameters are estimated using a 

large set of synchronized historical voltage, active power, and 

reactive power measurement samples available from all the 

secondary circuit loads and distributed generation. In practice 

however, not all loads and DG units are metered and not all 

metered values are stored into a historical database. Moreover, 

some (especially older) meters may provide power (or current) 

measurements but no voltage measurements. A modified 

DSPE algorithm, that can handle some meters that do not 

transmit voltage measurements, is shown in [10]. Although the 

modified algorithm has good accuracy when some meters do 

not report voltage measurements, any meter without voltage 

measurements reduces the accuracy and observability of the 

(secondary circuit) parameter estimation and thus, it is 

desirable to have high-quality voltage measurements from all 

smart meters. 

This section presents a simplified distribution system 

secondary circuit parameter estimation (SDSPE) algorithm for 

creating secondary circuit models when no (or very limited) 

AMI measurements are available but when a historical 

database of PV system measurements is available. Figure 3 

illustrates the simplified secondary circuit type that has a 

customer with a PV system connected to the service 

transformer secondary over a service line. The secondary 

system also has other customers with loads (but no PV 

systems) connected to the service transformer with potentially 

several service lines. 

We make the following assumptions and simplifications. 

1. Each secondary circuit (of interest) has one or more PV 

systems (or other sensor) measuring voltages and active and 

reactive powers 𝑉𝑃𝑉 , 𝑃𝑃𝑉 , 𝑄𝑃𝑉 shown in blue in Figure 3. The 
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discussion here focuses on one PV system in each secondary 

circuit but generalization to multiple PV systems is trivial. 

2. Total SCADA feeder power measurements are available. 

3. The secondary circuit loads 𝑃1, 𝑃2, 𝑄1, 𝑄2 shown in green 

in Figure 3 are estimated from the feeder total load with load 

allocation, e.g., based service transformer rating and the 

number of customers in each secondary circuit. 

4. The feeder primary (medium-voltage) system is well-

modeled including the service transformer connection. 

5. The customer with the PV system is assumed to be 

connected to the service transformer secondary over a separate 

service line but the rest of the secondary circuit topology, 

component types, and component parameters are unknown. 

6. Transformer primary side voltage referred to the low-

voltage side, 𝑉0, is estimated with time-series power flow 

simulation. Due to primary circuit modeling inconsistencies 

and the simplifications of load allocation, the simulated 

voltages may not be very accurate. 

 

 
Figure 3. Simplified secondary circuit model with a PV system: available 

measurements are in blue, values that can be roughly estimated are in green, 

and unknown values and parameters are in red 

 

Since the “rest of the secondary circuit” has no voltage 

measurements, it is not possible to estimate the impedances 

𝑅2, 𝑋2, … , 𝑅𝑁, 𝑋𝑁 or any impedances in the “rest of the 

circuit”. Thus, the circuit in Figure 3 can be simplified to the 

circuit shown in Figure 4.  

The objective is to estimate the unknown parameters 

𝑅0, 𝑋0, 𝑅1, 𝑋1 shown in red in Figure 4 by utilizing the 

available measurements 𝑉𝑃𝑉 , 𝑃𝑃𝑉, 𝑄𝑃𝑉  shown in blue in Figure 

4 and the estimated measurements 𝑉0, 𝑃1, 𝑄1, 𝑃2, 𝑄2 shown in 

green in Figure 4. This can be achieved by utilizing 𝑀 

synchronous measurement samples in the linear regression 

formulation 

 𝑽0 − 𝑽𝑃𝑉 = 𝑅0𝑰𝑅0 + 𝑋0𝑰𝑋0 + 𝑅1𝑰𝑅1 + 𝑋1𝑰𝑋1 + 𝝐. (17) 

The currents are 

 𝑰𝑅0 = (𝛿1𝑷𝑆𝑆 − 𝑷𝑃𝑉) 𝑽𝑃𝑉⁄ + 𝛿2𝑷𝑆𝑆 𝑽12⁄ , (18) 

 𝑰𝑋0 = (𝛿1𝑸𝑆𝑆 − 𝑸𝑃𝑉) 𝑽𝑃𝑉⁄ + 𝛿2𝑸𝑆𝑆 𝑽12⁄ , (19) 

 𝑰𝑅1 = (𝛿1𝑷𝑆𝑆 − 𝑷𝑃𝑉) 𝑽𝑃𝑉⁄ , and (20) 

 𝑰𝑋1 = (𝛿1𝑸𝑆𝑆 − 𝑸𝑃𝑉) 𝑽𝑃𝑉⁄ , (21) 

where 𝑽12 are the service transformer secondary voltages, 

𝑷𝑆𝑆, 𝑸𝑆𝑆 are the feeder total power measurements, 𝛿1 and 𝛿2 

are the load allocation factors for the load at the PV and the 

other loads, respectively. If no reliable measurements for the 

feeder total reactive power are available, 𝑸𝑆𝑆 can be estimated 

from the feeder total active power measurements 𝑷𝑆𝑆 with a 

constant power factor (𝑃𝐹) with 

 𝑸𝑆𝑆 = √1 (𝑃𝐹)2⁄ − 1𝑷𝑆𝑆: = 𝛾𝑷𝑆𝑆 . (22) 

𝑽12 is unknown because none of the other loads on the 

secondary circuit had voltage measurements. For simplicity, 

the approximation of 𝑽12 ≈ 𝑽𝑃𝑉 is used since the voltage drop 

over the service line is relatively small, and in practice, the 

errors resulting from generic load allocation without power 

measurements introduces much more error. Moreover, PV 

systems often operate at unity power factor (𝑸𝑃𝑉 = 0). As a 

result, the currents in (18)-(21) are 

 𝑰𝑅0 = 𝛿1𝑷𝑆𝑆 𝑽𝑃𝑉⁄ − 𝑷𝑃𝑉 𝑽𝑃𝑉⁄ + 𝛿2𝑷𝑆𝑆 𝑽𝑃𝑉⁄ , (23) 

 𝑰𝑋0 = 𝛿1𝛾𝑷𝑆𝑆 𝑽𝑃𝑉⁄ + 𝛿2𝛾𝑷𝑆𝑆 𝑽𝑃𝑉⁄ , (24) 

 𝑰𝑅1 = 𝛿1𝑷𝑆𝑆 𝑽𝑃𝑉⁄ − 𝑷𝑃𝑉 𝑽𝑃𝑉⁄ , and (25) 

 𝑰𝑋1 = 𝛿1𝛾𝑷𝑆𝑆 𝑽𝑃𝑉⁄ . (26) 

 

 
Figure 4. Simplified secondary circuit with a PV system for the SDSPE 

algorithm: available measurements are in blue, values that can be roughly 

estimated are in green, and unknown values and parameters are in red 

 

Since no reactive power measurements 𝑸𝑆𝑆 are available and 

since the PV system operates at unity power factor (𝑸𝑃𝑉 = 0), 

(23)-(26) are linear combinations of two measurements 

vectors 𝑷𝑆𝑆 𝑽𝑃𝑉⁄ , 𝑷𝑃𝑉 𝑽𝑃𝑉⁄ , only two parameters can be 

estimated from (17), (23)-(26) as follows. If the line per-unit-

length resistance 𝑟 and reactance 𝑥 and the transformer X/R-

ratio (𝑋 𝑅⁄ )0 are assumed to be known, transformer 

resistance, 𝑅0 and the line length, 𝑙1, can be estimated with 

 𝑽0 − 𝑽𝑃𝑉 = 𝑅0𝑰0 + 𝑙1𝑰1 + 𝝐, (27) 

where the currents are given by 

 𝑰0 = 𝑰𝑅0 + (𝑋 𝑅⁄ )0𝑰𝑋0, (28) 

 𝑰1 = 𝑟1𝑰𝑅1 + 𝑥1𝑰𝑋1, (29) 

and 𝑰𝑅0, 𝑰𝑋0, 𝑰𝑅1, 𝑰𝑋1 are given in (23)-(26). Now, predictors 

𝑰0, 𝑰1 are linearly independent provided that 𝑷𝑃𝑉 ≢ 0. Once 

𝑅0 and 𝑙1 have been estimated, the transformer reactance can 

be calculated with 𝑋0 = 𝑅0(𝑋 𝑅⁄ )0 and the line impedances 

with 𝑅1 + 𝑗𝑋1 = 𝑙(𝑟1 + 𝑗𝑥1). 

V. BIG DATA IMPLEMENTATION FOR DISTRIBUTION SYSTEM 

PARAMETER ESTIMATION 

DSPE has an important role of validating and refining the 

existing utility feeder models and thus, preparing them for 

increased situational awareness and operational tasks in the 

future smart distribution systems. Figure 5 illustrates the flows 

of Big Data for distribution system parameter estimation. 

The current model components, parameters and permanent 

connectivity will be fetched from GIS to build the distribution 

system model. SCADA will transmit the historical device 
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measurements and states. AMI/MDMS will provide the load 

profiles, and DER the generation profiles, as an input to time 

series power flows that simulate the service transformer 

primary voltages. By leveraging the simulated service 

transformer voltages and distributed voltage and power (or 

current) measurements from the AMI and DER as well, the 

parameter estimator will estimate the (secondary system) 

component parameters. The estimated parameters are passed 

back to the distribution system model to simulate time series 

power flows with the estimated parameters. After passing a 

manual validation, the estimated component parameters are 

passed to GIS and the distribution system model. 

The Big Data challenge is efficiently managing the data 

flows through advanced data analytics, optimized database 

queries, and rapid time series analysis. For distribution system 

parameter estimation to be practical, data processing and 

analyses must be automated as much as possible with limited 

human intervention to perform the manual validation of 

results. Moreover, to allow rapid manual validation of results, 

primary circuit gross modeling errors, suspected bad 

parameter estimates, and bad measurement data must be 

automatically identified. 

As parameter estimation is performed offline, measurement 

system delays are not an issue but poorly synchronized 

measurement data must be re-synchronized, e.g., using a 

simple linear (or other) interpolation. Any inaccuracy resulting 

from the measurement re-synchronization can be counteracted 

by utilizing historical Big Data with large sample sizes, which 

the proposed methods can effectively handle. 

Measurement data must also be preprocessed to identify 

and clean bad and missing data. A meter can have gross errors 

in some or in all of its measurement samples. Since the 

proposed parameter estimation methods can easily utilize 

thousands of samples, some measurement samples with gross 

errors do not have a high influence on the parameter 

estimation results. Some bad measurement samples of a meter 

can be identified with typical methods for detecting outliers in 

the linear regression response variable or the predictor 

variables [16]. On the other hand, many cases when all 

measurements of a meter have gross errors can be easily 

identified with simple checks such as the ones we have 

discussed in [11]. Moreover, if all loads in a secondary circuit 

have smart meters, it may be possible to identify meter (or 

model) gross errors from poor parameter estimation linear 

regression model fit (low R-squared values, high RMSE, 

insignificant parameter p-values). However as discussed in 

section VI, these metrics are not always effective at 

distinguishing between good and bad regression models. In 

some cases it can be very hard to identify meters with gross 

errors, e.g., when a load, which is small compared to the other 

loads in a secondary circuit, has a meter with gross errors. 

Once missing and bad data samples have been identified, 

they must be imputed to allow the two time-series power 

flows that require full set of measurement data. Since bad or 

missing data always results in lost information, the samples 

during which any secondary circuit meter has missing or bad 

data should not be used for the actual linear regression 

parameter estimation but only for running the time-series 

power flows. 

 

 
Figure 5. Big Data for distribution system parameter estimation 

 

The high-level secondary circuit parameter estimation 

algorithm is shown in Figure 6. The existing utility feeder 

model is compiled and time series power flow is solved 

utilizing load active and reactive power (or current and power 

factor) measurements, substation voltage measurements, and 

PV generation as inputs. In this paper, the distribution system 

power flow is solved with OpenDSS, and all parameter 

estimation algorithms are implemented in MATLAB [17], 

[18]. The output from the time series power flows solutions 

are the service transformer MV-side voltages, which are 

needed to estimate the service transformer impedance. 

Next, the algorithm proceeds one secondary circuit at a 

time, estimating the secondary circuit branch impedances with 

the approaches shown in Sections III-IV. After all the 

secondary circuits have been processed, another time series 

power flow simulation is run with the estimated parameters to 

compare measured voltages to the simulated voltages. In the 

manual verification step, the user needs to compare the 

estimated parameter values and how closely they align with 

physically expected values. The manual verification of the 

parameter estimation results is very important in order to 

avoid any possibilities of replacing previously accurate 

impedance parameters with poorer estimates. This step is also 

useful for detecting any data or topology problems based on, 

e.g., physically impossible parameter estimates or poor linear 

regression fits. 

It should be emphasized that the presented methods do not 

require modifying any existing utility software. Moreover, the 

presented methods are computationally highly efficient since 

no iterative power flow solutions are required during the 

parameter estimation. Instead, the linear regression parameter 

estimation only requires solving a linear system, which can be 

done in a fraction of a second even when thousands of 

measurement samples are leveraged to counteract the 

accuracy, granularity, and time-synchronization issues related 

to AMI and DER measurements. Moreover, the presented 

methods allow processing each secondary circuit individually 

thus, making it possible to divide large and complicated feeder 
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models to smaller sub problems. This divide and conquer 

approach significantly reduces the amount of input and output 

data that needs to be handled simultaneously and thus, allows 

utilizing large sample sizes for the parameter estimation. Since 

typical distribution feeder models consist of thousands of 

lines, hundreds of distribution transformers, and thousands of 

customers, it is very attractive to perform parameter estimation 

for one secondary circuit at a time. Moreover, since typical 

distribution system operators have hundreds or thousands of 

distribution feeders, the computational time per feeder model 

must remain modest in order for distribution system parameter 

estimation to be a practical and cost-effective approach for 

model calibration. 

 

 
Figure 6. Parameter estimation algorithm 

VI. THREE-PHASE TEST CIRCUIT RESULTS 

A 66-node three-phase test circuit (3PTC) was created to 

demonstrate the parameter estimation performance [10]. The 

circuit has a 3-phase 12kV L-L backbone feeder and ten 3-

phase 240V L-L secondary circuits each with a different 

topology. Each of the 36 loads was assigned a real AMI active 

power profile from [19] and a random power factor profile: 

(PF)~Unif(0.9,1.0). Typical primary and secondary line and 

transformer parameters were used. Figure 7 shows the test 

circuit topology with line contouring showing per-unit 

voltages and line widths showing current magnitudes. The 

service transformer MV side voltages were assumed to be 

accurately simulated (accurate primary system model) from a 

timeseries powerflow. The secondary network topologies were 

assumed to be known, and the hourly active power, reactive 

power, and voltage measurements of all loads are available 

from the AMI. 

 

 
Figure 7. Three-phase 66-node test circuit contouring showing per-unit 

voltages and line widths showing current magnitudes 

 

A.  3PTC Results with Full AMI Data 

The 3PTC secondary circuit impedances were estimated 

with the DSPE algorithm both with 8759 measurement 

samples, first without and then with a practical level of 1% P, 

1% Q, and 0.2% V measurement error. The average (longest) 

parameter estimation execution time for the 10 secondary 

circuits was 0.13 seconds (0.33 seconds). The average and 

maximum errors of the estimated R and X parameters without 

and with the measurement error are summarized in Table I. 

Without measurement error, all the parameters are estimated 

with a very low relative error. With the measurement error, the 

average errors of the estimated R and X parameters are still 

low while some parameters have higher relative errors. 

TABLE I . THE AVERAGE RELATIVE ERRORS OF THE ESTIMATED R AND X 

Meas. Error? 𝑹𝒆𝒓𝒓,𝒂𝒗𝒈 [%] 𝑿𝒆𝒓𝒓,𝒂𝒗𝒈 [%] 𝑹𝒆𝒓𝒓,𝒎𝒂𝒙 [%] 𝑿𝒆𝒓𝒓,𝒎𝒂𝒙 [%] 

No 0.69 0.60 2.64 2.78 

Yes 2.46 3.11 13.67 13.18 

 

Figure 8 shows the relative errors of the line R and X 

parameters estimated with 8759 historical measurement 

samples without and with measurement error. Excluding 

parameters of L3-4 and L9-2, all the parameters are estimated 

with a reasonably good accuracy. Due to space constraints, 

Figure 7 omits similar transformer parameter results that can 

be found in [10]. 

 

 
Figure 8. Relative Errors of line R and X parameters estimated with 8759 

measurement samples with 1% P, 1% Q, and 0.2% V measurement error 

 

Despite the higher relative errors of the estimated 

parameters of L3-4 and L9-2, the absolute errors of the 

estimated parameters of these components are not 

considerably higher than those of other parameters [10]. The 

higher relative errors of L3-4 and L9-2 estimated parameters 

can be explained by the relatively small impedance of branch 

L3-4 and the relatively high X/R-ratio of branch L9-2 

compared to the other branches in the test circuit. The higher 

relative errors of these parameters may also be explained by 

these branches’ downstream load characteristics. However as 

discussed in [10], there is no general metric or rule for 

identifying poor estimates of unknown parameters. 

Insignificant parameter p-values are a clear indicator of poor 

regression model fit but also inaccurate parameter estimates 

can have significant p-values. On the other hand, even highly 

accurate parameter estimates can have low R-squared values. 
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Similarly, other typical regression model quality metrics do 

not seem to accurately identify inaccurate parameter estimates 

[10]. 

Figure 9 shows the relative errors of the simulated per-unit 

voltage drops from the transformer primary winding to the 

load buses. The errors are calculated between the voltages 

simulated with the true parameters and the voltages simulated 

with the estimated parameters. In both cases, the voltages were 

simulated with the true P and Q values. All the errors are so 

small that in real circuits, they can be hard to distinguish from 

measurement noise and other modeling inconsistencies. In 

particular, the higher relative errors of estimated parameters of 

branches L3-4 and L9-2 do not result in considerably higher 

errors of simulated branch downstream buses 3-4 and 9-2. 

 

 
Figure 9. Boxplots of the errors of simulated voltage drops from the 

service transformer primary (medium-voltage) to the load buses when the 

parameters are estimated with 8759 measurement samples with 1% P, 1% Q, 

and 0.2% measurement error 

VII. UTILITY FEEDER RESULTS 

This section presents the results for a model of urban 12kV 

7km-long California utility feeder that serves 3800 mainly 

residential customers and has the peak load of 8MW. The full 

OpenDSS feeder model has 5057 buses (6818 nodes), 5070 

lines, 1 substation LTC, 324 service transformers, 3785 loads, 

and 36 PV systems each in a distinct secondary system. The 

feeder model was reduced using the approach shown in [20] 

down to 685 buses, 645 lines, 1 substation LTC, 36 service 

transformers, 725 loads, and 36 PV systems. 

The available feeder measurement data consists of 12-

months of 15-min substation SCADA active power 

measurements that have been allocated to the loads based on 

service transformer sizes. Additionally, the 36 PV systems are 

assumed to provide hourly voltage, active power, and reactive 

power measurements. The goal was to analyze the potential of 

improving the feeder voltage simulation accuracy at these PV 

systems by generating simplified secondary circuit models by 

utilizing the PV system measurements. Next, the accuracy of 

the DSPE algorithm is first shown when full AMI data is 

available and then, SDSPE algorithm is utilized to generate 

simplified secondary circuit models based on the PV system 

measurements. 

A.  Full Secondary Circuit Models with Full AMI Data 

First, perfect active power, reactive power, and voltage 

measurements were assumed to be available at all loads and 

the primary system was assumed to be perfectly modeled 

providing an accurate estimate of the primary side voltages of 

the service transformers. With these assumptions, the line and 

transformer impedance parameters of the 36 full (not 

simplified) secondary circuit models with PV systems were 

estimated with the DSPE algorithm using 744 measurement 

samples without measurement error. The average (longest) 

parameter estimation execution time for the 36 secondary 

circuits was 0.17 seconds (0.37 seconds). The average and 

maximum absolute relative errors of the estimated line and 

transformer parameters are shown in TABLE II. Figure 10 

shows the relative errors of the estimated line and transformer 

R and X parameters. Clearly, the DSPE algorithm estimates all 

the parameters with a very good accuracy. 

TABLE II . THE AVERAGE AND MAXIMUM ABSOLUTE RELATIVE ERRORS OF 

THE ESTIMATED R AND X 

 𝑹𝒆𝒓𝒓,𝒂𝒗𝒈 [%] 𝑿𝒆𝒓𝒓,𝒂𝒗𝒈 [%] 𝑹𝒆𝒓𝒓,𝒎𝒂𝒙 [%] 𝑿𝒆𝒓𝒓,𝒎𝒂𝒙 [%] 

Lines 0.004 0.027 0.029 0.309 

Transformers 0.132 0.283 0.551 1.052 

 

 
Figure 10. The relative errors of the line R (top left), line X (bottom left), 

transformer R (top right), and transformer X (bottom right) parameters 

estimated with 744 samples without measurement noise. Full secondary 

circuit models with fully available AMI measurements. 

 

B.  Simple Secondary Circuit Models with Full AMI Data 

Next, the models of the 36 secondary circuits with PV 

systems were converted to the simple format shown in Figure 

4 where each secondary circuit had its original transformer, 

one generic service drop to the PV system (and the load at the 

PV system), and the rest of the secondary circuit loads were 

lumped at the service transformer secondary. All the loads 

were assigned the total feeder active power profile with a 

constant power factor. Then, the simple secondary circuit 

transformer resistance 𝑅 and the PV system service drop 

length 𝑙 from (27) were estimated with the SDSPE algorithm 

assuming that the load allocation was perfect, i.e., all loads 

follow the substation profile exactly. The transformer X/R-

ratio and the line per-unit-length impedances 𝑟 and 𝑥 were 

also assumed to be perfectly known. The average (longest) 

parameter estimation execution time for the 36 secondary 

circuits was 0.07 seconds (0.24 seconds). The average 

(maximum) error of the estimated line length and transformer 

R parameters were 0.343% (2.347%) and 0.530% (1.394%), 

respectively.  The relative errors of the line lengths and 

transformer resistances estimated with 744 samples without 

measurement error are shown in Figure 11. 
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Figure 11. The relative errors of the line length (top) and transformer R 

(bottom) parameters estimated with 744 samples without measurement noise. 

Simple secondary circuits with loads modeled through perfect load allocation. 

 

The higher overall errors in Figure 11 compared to Figure 

10 can be mainly explained by the smooth profile of the 

allocated loads and the poorer condition of regression 

problems (high 𝑰0/𝑰1, high correlation of 𝑰0 and 𝑰1). Since the 

parameter estimation predictor variables between different 

secondary circuits differ only by the PV current injection, the 

parameter estimation errors are very similar between 

secondary circuits. All transformer R parameters are estimated 

with an error less than 1% except for one secondary circuit 

where the difference of PV generation and its load were too 

small compared to the load at the transformer secondary 

leading to almost perfectly collinear predictor terms 𝑰0 and 𝑰1. 

All line parameters are estimated with an error less than 1% 

except for four lines that similar to the transformers, have 

highly correlated predictor terms 𝑰0 and 𝑰1 due to small PV 

generation and load relative to the other loads at the 

transformer secondary. Overall, these results indicate the 

theoretical feasibility of the SDSPE algorithm given that 

accurate load profiles or measurements are available. 

C.  Utility Feeder Results with Limited PV Measurements 

Finally, the simple secondary circuit transformer resistance 

𝑅 and the PV system service drop length 𝑙 from (27) were 

estimated with the SDSPE algorithm assuming that the loads 

are modeled through feeder total active power profile 

allocated to the loads based on service transformer rating. The 

average (longest) parameter estimation execution time for the 

36 secondary circuits was 0.20 seconds (1.43 seconds). The 

average (maximum) error of the estimated line length and 

transformer R parameters were 45.94% (318.0%) and 60.63% 

(91.05%), respectively. The estimated line length and 

transformer R parameters are shown in Figure 12. In order to 

force the parameters to remain positive, the linearly 

constrained least squares estimation (8) was utilized to 

estimate the parameters in several secondary circuits. 

These results show that such typical load allocation 

approach does not sufficiently capture the load characteristics 

in individual secondary circuits and loads to be useful for 

distribution system parameter estimation. Modeling secondary 

circuit loads through load allocation, which is based on 

substation SCADA measurements and service transformer 

rating (or similar metric), significantly simplifies the impacts 

on the secondary circuit level [21], [22]. In general, using load 

allocation tends to underestimate the voltage drops and losses 

in the secondary circuits. The response variable 𝑽0 − 𝑽𝑃𝑉 in 

the simplified secondary circuit parameter estimation (27)-

(29) depends on the measured PV voltages 𝑽𝑃𝑉 and 𝑽0, the 

simulated (with allocated loads) service transformer medium-

voltages referred to the secondary. Due to the load allocation, 

𝑽0 tends to have a very smooth profile over time and tends to 

overestimate the true voltages (since the load allocation 

underestimates the secondary circuit voltage drops). On the 

other hand, 𝑽𝑃𝑉 can have a highly varying profile. As a result, 

the estimated voltage drop 𝑽0 − 𝑽𝑃𝑉 tends to vary more than 

it does in reality. Similarly, due to load allocation modeled 

loads, the predictor term 𝑰0 = 𝑰𝑅0 + (𝑋 𝑅⁄ )0𝑰𝑋0 tends to have 

a relatively smooth profile compared to the predictor term 

𝑰1 = 𝑟1𝑰𝑅1 + 𝑥1𝑰𝑋1, which varies much more over time due to 

the varying PV generation. Since the response variable 

𝑽0 − 𝑽𝑃𝑉 is better correlated with the 𝑰1 than with the 

predictor variable 𝑰0, the line length 𝑙1 tends to be 

overestimated and the transformer parameter 𝑅0 tends to be 

underestimated. 

While previous research [10] has shown that parameter 

estimation can be achieved when certain meters do not report 

voltage measurements, these results demonstrate that generic 

load allocation from substation data cannot be used for 

parameter estimation and that all injection points in the 

secondary network should have meters, such as AMI, in order 

to estimate the impedances. 

 

 
Figure 12. The relative errors of the line length (top) and transformer R 

(bottom) parameters estimated with 744 samples without measurement noise. 

Simple secondary circuits with loads modeled through imperfect load 

allocation. 

VIII. CONCLUSIONS 

This paper presents practical computationally efficient 

distribution system parameter estimation methods to improve 

the accuracy of secondary circuit parameters in existing utility 

feeder models. On average, both methods are executed in a 

fraction of a second per secondary circuit even when 

thousands of measurement samples are leveraged to counteract 

the accuracy, granularity, and time-synchronization issues 

related to AMI and DER measurements. 

The first presented method accurately estimates the 

transformer and line series impedance parameters in 3-phase 

and 1-phase secondary circuits when full AMI active power, 

reactive power, and voltage measurements are available. The 



 

 

method can also handle some measurement error in the meters 

and conditions where some meters do not report voltage 

measurements. 

The second method presented in this paper can be used for 

generating simplified secondary circuit models based on 

limited available PV system (or other sensor) power and 

voltage measurements. When accurate load profiles are 

available, the method accurately estimates the transformer 

impedance magnitude and the PV service drop length. 

However, loads modeled through conventional service 

transformer rating based load allocation are not sufficiently 

accurate to be used for parameter estimation. 

The future work will utilize the proposed methods for 

parameter estimation of real utility feeder models with AMI 

and DER measurements. 
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