
Photovoltaic System Fault Detection and Diagnostics using Laterally
Primed Adaptive Resonance Theory Neural Network

C. Birk Jones, Joshua S. Stein, Sigifredo Gonzalez, and Bruce H. King

Sandia National Laboratories, Albuquerque, NM, 87185, U.S.A

Abstract—Cost effective integration of solar photovoltaic (PV)
systems requires increased reliability. This can be achieved with
a robust fault detection and diagnostic (FDD) tool that auto-
matically discovers faults. This paper introduces the Laterally
Primed Adaptive Resonance Theory (LAPART) artificial neural
network to perform this task. The present work tested the
algorithm on actual and synthetic data to assess its potential
for wide spread implementation. The tests were conducted on
a PV system located in Albuquerque, New Mexico. The system
was composed of 14 modules arranged in a configuration that
produced a maximum power of 3.7kW. The LAPART algorithm
learned system behavior quickly, and detected module level faults
with minimal error.

Index Terms—photovoltaic faults, fault detection, fault di-
agnostics, artificial neural network, laterally primed adaptive
resonance theory

I. INTRODUCTION

Solar energy provides 0.3% of the total energy consumed in
the U.S. However, the total on-grid photovoltaic (PV) capacity
nearly doubled in 2011 [1]. In 2014 alone, PV systems
contributed about 0.43 quads of energy [2]. These systems
are typically equipped with fault protection and isolation
devices. However, faults such as ground fault, line-to-line
faults, arc faults, shading, and hot spot formation can occur
undetected [3]. In many cases these faults create hazardous,
damaging, or inefficient conditions. Implementing reliable and
automatic fault detection and diagnostics (FDD) tools will not
only mitigate safety concerns, but also improve the operations
and maintenance costs associated with PV systems.

Related literature has tested various FDD tools, including
rule-based expressions [4], decision trees [5], and feed-forward
neural networks [6]. Past research efforts have also inves-
tigated automatic monitoring and FDD of systems through
remote communications [7]. The present work introduces a
Laterally Primed Adaptive Resonance Theory (LAPART) neu-
ral network algorithm that is designed to detect and diagnose
PV faults automatically. The LAPART neural network is a
unique learning algorithm that can learn system behavior
quickly and effectively [8].

The LAPART neural network can act as a FDD tool by first
learning from defined set of data to develop knowledge of
system behavior. When the learning is complete, the knowl-
edge is used to evaluate previously unseen data. During this
testing phase, the algorithm determines whether the behavior
is normal or if there is a fault condition. The intent of this
paper was to expose the algorithm to data from an actual PV

system and define its ability to detect faults throughout the
month of May 2015.

The PV system used in the present work is composed of two
strings arranged in a parallel configuration. Each module can
produce a maximum power of 200W and the entire system
provides about 3.7 kilowatts (kW) of electricity. Similar to
other PV arrays, the modules used in the present work are
susceptible to failures that can be caused by shading, cell
damage, diode failures, etc. Module failures cause a mismatch
in the string that reduces the voltage and current thus reduc-
ing the overall power output. These faults can also lead to
expedited module degradation. For example, hot spots, which
degrade the integrity of module performance, can be created in
a partial shading situation [9]. Therefore, quick and accurate
identification of mismatch issues can help to maintain PV
system performance.

The present work used actual data that was collected over
a 4 day period to train the LAPART algorithm. This data
was categorized as normal system behavior and the algorithm
learned how to detect fault conditions. After training was
complete the algorithm was presented with a single day of
normal data and 3 fault data points. This initial test was
successful, however the amount of data used was not statis-
tically significant to prove that the algorithm could provide
accurate results over an entire month. Therefore, synthetic
data, produced by a PV simulation package called PV LIB
(available at the pvmc.sandia.gov website), was calibrated and
used to produce 30 days of normal and fault data points.
This data was presented to the LAPART algorithm to evaluate
its performance over a statistically significant data set that
represented the entire month of May.

II. METHODOLOGY

PV systems can experience faults that often go unnoticed.
These faults decrease electrical power output as well as
degrade module properties. Real-time identification of faults
that is accurate and reliable can improve overall operations.
The present work investigated the potential detection of a
module failure in an array using the LAPART neural network
algorithm. The algorithm does not require any knowledge of
the system’s physical properties. Instead it requires historical
or past data to learn system performance characteristics. There-
fore, two experiments were conducted that used (1) actual data
and (2) component-based modeled data from a 3.7kW system
that is currently operational in Albuquerque, New Mexico to
train and test the algorithm.



The two experiments evaluated the accuracy of the LAPART
algorithm to detect faults within intermittent and smooth PV
behavior. The accuracy of the LAPART algorithm depends
on its ability to provide a high probability of detection while
maintaining a low rate of false alarm. The probability of
detection considers the number of true positive produced by
the FDD process in relation to the total number of actual
positive values as described by Eqn. 1.

Prob. of Detection =
True Positive

True Positive + False Normal
(1)

Prob. of False Alarm =
False Positive

False Positive + True Normal
(2)

The probability of false alarm (Eqn. 2) is based on the number
of false positives compared to the total number of normal data
points.

The intent of the present work is to describe the probability
of detection and false alarm for the LAPART algorithm based
on weather conditions in the month of May. The significance
of the probability computations is based on the sample size of
the test data. To produce FDD results that had a confidence
interval of 95% and a margin of error less than 5%, a
sample size of 465 fault points would be required. The first
experiment, which used measured data from the actual system,
had a total of 3 faults. A total of 3 data points was considered
a statistically insignificant sample size. Experiment 2, how-
ever, had over 10,000 fault data points, and was considered
statistically significant.

A. System Layout & Data Collection

The system was composed of two strings, each with seven
modules, arranged in a parallel configuration as shown in
Fig. 1. The modules were mounted facing south at tilt angle
of 35◦. Each of the modules had a maximum power of 200
watts, a short circuit current of 3.83 amps, an open circuit
voltage of 67.7 volts, maximum power current of 3.59 amps,
and a maximum power voltage of 55.8 volts. The entire system
produced around 3.7kW with a maximum power current and
voltage of 7.6 amps and 480.9 volts respectively.

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

1A 2A 3A 4A 5A 6A 7A

1B 2B 3B 4B 5B 6B 7B

Inverter

Combiner 
Box

Fig. 1: PV array composed of two strings in a parallel
configuration. Each of the strings has seven modules. The
maximum power output is about 3.7kW.

The amount of data that accumulated throughout a single
day was overwhelming for a person to manage and process
on one’s own. Therefore, monitoring and flagging anomalies
in an accurate and reliable manner required standard data
logger software capable of collecting data points in one minute
intervals and applying the LAPART algorithm.

B. Laterally Primed Adaptive Resonance Theory

Artificial neural networks (ANN) are a form of machine
learning that function like a simplified version of an animal’s
nervous system to acquire and store knowledge. ANNs can
learn system behavior during a training process. Then the
algorithms can evaluate new data and provide system perfor-
mance predictions. The predictions can be generalized, which
means that the ANN can provide reasonable outputs for inputs
not encountered during training. The ANN can solve complex
problems such as linear and nonlinear systems. One such
algorithm is the LAPART neural network.

The LAPART algorithm was introduced by Healy and
Caudell for logical inference and supervised learning [8]. The
algorithm can be used as a prediction tool and has been
shown to provide accurate weather forecasts [10]. It has also
been applied successfully to solar micro-forecasting to predict
solar irradiance [11]. The LAPART algorithm can converge
rapidly towards a clear solution because it does not depend
on the gradient descent method that is used in many popular
algorithms such as the multi-layer perceptron. The gradient
descent approach is susceptible to issues that include slow
and/or incorrect convergence to the optimal solution [12].

The LAPART architecture couples two Fuzzy Adaptive
Resonance Theory (ART) algorithms to create a mechanism
for making predictions based on learned associations. The
underlying equations for the single Fuzzy ART algorithm
include category choice (Eqn. 3), match criterion (Eqn. 4),
and learning (Eqn. 5) [13]:

Cj =
|I ∧ w|
α+ |w|

(3)

|I ∧ w|
|I|

≥ ρ (4)

wnew = I ∧ wold (5)

The intent is to develop the best template (w) matrix that
represents the input data set. The algorithm uses Eqn. 3 to
find the existing w that the given input (I) best matches. Also,
the free parameter α is often set to 10−7 for fast learning
applications. Then Eqn. 4 checks to see if the I and w being
compared meet the given vigilance parameter (ρ) criterion that
is defined by the user. The vigilance free parameter can vary
from 0 to 1 depending on the degree of complexity desired.
For instance, a high vigilance parameter of 0.9 provides high
complexity and low generality, while a low parameter of 0.5
provides the opposite. Finally, if it passes, then the template,
w, is updated based on Eqn. 5.

The coupling of the two Fuzzy ARTs to create the LAPART
algorithm is described graphically in Fig. 2. The A and
B Fuzzy ARTs are connected through the L matrix that
associates the A and B templates. Each Fuzzy ART has its
respective vigilance parameters ρA and ρB, and during the
learning process inputs are presented to the A and B side
simultaneously. The A and B side create and update templates
while at the same time producing links between one another.



After training is complete, testing inputs are only applied to
the A side and allowed to resonate with the previously learned
templates. Then the associations in the L matrix are used to
connect with the B side and provide the prediction outputs.

Fuzzy
ART A

ρA

L Matrix
Associator

Fuzzy
ART B

ρB

Training
Data Input

Testing
Data Input

Testing
Data Output

Fig. 2: LAPART algorithm training uses two Fuzzy ART (A&B)
algorithms connected by an associator matrix (L). During training
inputs are applied to both the A and B sides. The algorithm produces
A and B templates. It also produces an L matrix that link the
templates in the A and B side to one another. During testing the
B side learning is turned off and only A side inputs are applied. The
inputs resonate with the stored weights in the A, and through an
association in the L propagate to the B side template that provides
the prediction output.

C. Experiment 1: Actual Data

The actual data experiment used sensor data from the
field as inputs into the LAPART algorithm. Training of the
LAPART algorithm involved the presentation of four days of
one minute data from April 29, 2015 to May 2, 2015 as shown
in Fig. 3. The LAPART algorithm used the training data to gain
knowledge of the system. The knowledge was then stored as
memory and accessed during the testing process. The testing

Training Data

(4 days)
April 29 May 2

Normal
Behavior

Testing Data

May 3
(1 day)

Normal
Behavior

May 19
(1 hour)

Fault
Behavior

Fig. 3: Actual data experiment includes four days, at one
minute intervals, of training data from April 29, 2015 to May
2, 2015. The testing data included normal and fault data points
collected on May 3, 2015 and May 19, 2015 respectively. Data
collected on May 3, 2015 contained all normal data points, and
May 19 data had normal data as well as 3 fault conditions.

process involved the presentation of previously unseen data.
In the present experiment, normal behavior data on May 3,
2015, and fault behavior on May 19, 2015 were presented to
the trained algorithm. The LAPART algorithm then determined
if the particular data instance was normal or a fault condition.

The testing data that was measured on May 19, 2015
included a fault condition. In this case, PV module 2A was
completely covered with an opaque material. This caused a
mismatch in the modules connected in series. A mismatch of
PV modules in series is often due to a non-uniform distribution

of irradiance or temperature [4]. In this case, module 2A
was completely covered, reducing the overall DC power,
current, and voltage. This fault condition was duplicated in
the component-based model used in Experiment 2.

D. Experiment 2: Component-based Model Data

A component-based model of the PV array was created
to represent system components and provide 30 days of one
minute data for both normal and fault conditions. The model
outputs allowed the experiment to perform a statistically sig-
nificant review of the LAPART algorithm’s abilities to detect
anomalies during the month of May. The model accepted

Total Number Samples (43,200)

1 Test
(10,800)

Train
(10,800)

Train
(10,800)

Train
(10,800)

2 Train Test Train Train

3 Train Train Test Train

4 Train Train Train Test

Fig. 4: K-Fold method where K = 4. The method splits the modeled
normal and fault data into training and testing sections or folds.
Throughout the process the method loops through the different folds
so that each data point is eventually used for both training and testing.

actual weather data collected throughout the month of May
and included solar irradiance, ambient temperature, and wind
speed. The fault, simulated in the model data was the same
condition evaluated in Experiment 1. It represented the case
where a single module failed to produce a desired voltage
or current. The development of the component-based model
involved a calibration that considered the three outputs: DC
voltage, DC current, and DC power. The output values where
compared with actual over the five day period from April 29
to May 3, 2015. Similar to Riley and Venayagamoorthy, the
performance of the model was based on the coefficients of
determination (R2) and the evaluation of the intercept and
slope of the linear fit equation [14].

The results for the entire 30 day period produced by the
component-based model were used as inputs to train and
test the LAPART algorithm. In this case a review of the
algorithm over multiple vigilance scenarios was conducted to
define the probability of detection and false alarm for different
parameter scenarios. The process was performed using the K-
Folds method. The K-Folds method is a common form of
parameter tuning and was used successfully by Duan et. al
to implement a support vector machine algorithm [15].

The K-Folds process began with randomly distributing
10,000 fault condition data points throughout the data set; the



data was then split into K equal parts or folds. This division
of the data for K = 4 is shown in Fig. 4. For each fold k ∈
{1,2,..,K} the model was trained on the data that was located
in all of the folds except for the kth. Then the algorithm used
the data in the kth fold for testing [16]. This process was
conducted in a round-robin manner until each of the folds was
used for training and testing. The probability of detection and
false alarm was computed for each free parameters scenario.
Results from this experiment and Experiment 1 describe the
effectiveness of the LAPART algorithm to perform FDD of a
single module failure within an array.

III. RESULTS

The present work performed two experiments that evaluated
the ability of the LAPART algorithm to detect a single module
failure in a PV system. The first experiment used five days of
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Fig. 5: May 3, 2015 normal behavior testing results show
that the LAPART algorithm was able to represent the PV
system power output accurately during intermittent activity.
The accurate prediction provides for a false detection rate of
zero.

actual data and the second used a month of modeled data.
The 30 days of modeled data was produced from a calibrated
component based model. The actual data was collected over a
five day period from April 28 to May 3, 2015.

A. Experiment 1: Fault Detection Results

The results form the actual data experiment were broken out
into normal and fault behavior tests. Accurate identification
of normal behavior required that the LAPART algorithm
understand smooth and intermittent behavior caused by cloud
cover. Fortunately, the LAPART algorithm was able to predict
normal behavior well and did not flag any false alarms.

The measured data test began with the training of the
LAPART algorithm using 5,760 data points for the four day
period. Then, the algorithm was applied to 1,440 normal
behavior data points collected on May 3, 2015. The output
from the algorithm described a predicted range that is shown
in Fig. 5. The actual power output consistently fell inside
the predicted range. The data point that fell outside of the
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Fig. 6: May 19, 2015 normal and fault behavior. The fault
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range resonated with the stored memory and thus were still
considered normal behavior.
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Fig. 7: Component-based model in comparison to the actual
output of the PV array for May 3, 2015. The actual current
and power outputs match, however the voltage prediction does
not represent actual as well.

The fault conditions, created within PV module 2A, can be
observed in the data as shown in Fig. 6. The actual voltage,
current, and power all dropped at time 14:35. The voltage also
spiked at time 14:45. The trained algorithm was presented with
this data and it correctly defined the normal and fault behavior
as shown in the bottom graph of Fig. 6. The current and power



dropped significantly due to cloud cover at time 14:44, and
was correctly recognized by the LAPART algorithm as normal
behavior. Each of the tests conducted on May 3 and May 19,
2015 produced no false positives or false negatives. Therefore,
the probability of false alarm and detection were equal to 0%
and 100% respectively.

B. Experiment 2: Model & Fault Detection Results

The second experiment used data produced by a component-
based model. The model was able to represent actual opera-
tions well as described in Fig. 7. Fig. 7 compares the voltage,
current, and power outputs for the model and actual system
on May 3, 2015. The model was able to predict current and
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with the ideal y=x line.

power with a high accuracy, but was not able to represent
voltage as well. Additionally, Fig. 7 plots the fault condition
simulated in the model. Similar to the actual sensor data, the
model experienced a drop in voltage, current, and power when
the fault occurred. The accuracy of the model is defined in
more detail within the scatter plots shown in Fig. 8, 9, and 10
for voltage, current, and power respectively. The distribution
of the voltage scatter plot did not match well with the ideal
y=x line and produced a low R2 of 0.47 as shown in Fig. 8.
The current and power scatter plots (Fig. 9 and 10) described
a sufficient match each with an R2 equal to 0.99. In addition

the linear fit line for each matched very close to the ideal y=x
line. The current and power results had an intercept close to
zero at or below 0.19 and a slope that was close to 1 at 0.98
and 1.03 respectively.
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Fig. 11: The probability of detection was greater than 80%
for vigilance scenarios where ρA was greater than 0.8. Addi-
tionally, the probability did not decrease for the different ρB
values.

The voltage output produced by the model was not used as
an input into the LAPART algorithm because of the lack of
correlation between actual and modeled data. Therefore, the
current and power normal and fault condition outputs were
evaluated by the LAPART algorithm only. This meant that the
solar irradiance, wind speed, ambient temperature, current, and
power were inputs on the A-side of the LAPART algorithm.
The B-Side inputs and outputs were the PV array condition
which was either normal or a fault.

The K-Folds method was used to train and test on a
total of 43,200 data points. The data set contained randomly
intermixed normal and fault condition data. The LAPART
algorithm trained on this data set to learn normal and fault
behavior. Then, during testing the LAPART algorithm classi-
fied the new data as either normal or as a fault. The probability
of detection and false alarm results are described in Fig. 11
and Fig. 12 respectively. Fig. 11 shows that the probability
of detection went up as the A side vigilance increased. The
probability of detection reached a very high 85% for ρA values
greater than 0.8. Additionally, the probability of detection was
maintained across the various ρB values. Fig. 12 shows a de-
crease in the probability of false alarm as the A side vigilance
values increase. The probability of false alarm reached a rate
that was less than 10% for ρA vigilance parameter greater than
0.8 at any ρB value. The lowest probability of false alarm was
found to be 7%, and the highest probability of detection was
a very respectable 86%.

The ρB vigilance parameter does not impact the probability
of false alarm or detection. This can be attributed to the
fact that the experiment only included one feature with two



potential classifications on the B-side. The feature was the
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Fig. 12: The probability of false alarm was calculated to be
below 10% for ρA vigilance parameters above 0.8. Similar
to the probability of detection results the ρB values did not
impact probability results.

status of the array which could have a classification of either
a fault or normal. The B side vigilance could have a greater
effect on experiments that involve more than two potential
outputs or with multiple features.

IV. CONCLUSION

The LAPART algorithm was able to accurately identify a
module level fault within the data set produced by both the
actual array and a component-based model. The LAPART
algorithm was able to interpret both smooth and intermittent
normal behavior caused by cloud cover and not signal unnec-
essary false alarms. In addition, each of the faults within the
actual data set were identified by the LAPART algorithm. The
second experiment applied the LAPART algorithm to synthetic
data produced by the component-based model and produced
very good probability of false alarm and detection results. The
lowest false alarm rate and highest probability of detection
were calculated to be 7% and 86% respectively.

The results showed that the LAPART algorithm can quickly
learn PV performance data and provide accurate fault detection
results. It only took four days of one minute data to train the
algorithm to recognize intermittent behavior as normal. Further
studies can expand on this baseline work to consider other fault
scenarios at varying environmental conditions. The approach
can also be compared with other machine learning techniques
such as support vector machines.
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