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Abstract—The uncontrolled intermittent availability of renew-
able energy sources makes integration of such devices into
today’s grid a challenge. Thus, it is imperative that dynamic
simulation tools used to analyze power system performance are
able to support systems with high amounts of photovoltaic (PV)
generation. Additionally, simulation durations expanding beyond
minutes into hours must be supported. This paper aims to identify
the path forward for dynamic simulation tools to accommodate
these needs by characterizing the properties of power systems
(with high PV penetration), analyzing how these properties affect
dynamic simulation software, and offering solutions for potential
problems. In particular, the system eigenvalue configuration of
representative power system models is examined and how this
configuration influences numerical integration scheme selection
is discussed.

I. INTRODUCTION

In the quest for a clean and sustainable future, there exists
a large push towards incorporating substantial amounts of re-
newable energy sources such as photovoltaic (PV) generation.
The uncontrolled intermittent availability of renewable energy
sources makes integration of such devices into today’s grid
very challenging. Technical issues include energy and power
balancing, voltage regulation and stability, frequency regu-
lation, transient stability, and small-signal stability. Another
challenge is that the characteristics of a grid with high PV
penetration, e.g. 100% of load, will have dynamics signifi-
cantly different from the grid of today. Currently, transient
simulations capture the electro-mechanical response of the
grid to various disturbances. A grid dominated by inertia-less
generation (e.g. renewables with inverters) will potentially be
more responsive to disturbances. The goal of this study was
to develop a path forward for dynamic simulation tools that
enable analysis of power system performance (with high PV
penetration) for a period of minutes to hours. Our focus was to
examine the fundamental drivers, the algebraic and differential
equations that model a grid with 100% PV generation, to
identify the path forward for dynamic simulation tools that
support high renewables as well as longer simulation times.

The topic of extended-term time-domain simulation for
electric power systems is beginning to garner increasing atten-
tion in the literature. In [1], the authors proposed an integration
method called Hammer-Hollingsworth 4 (HH-4), which is a
special case of the implicit fourth order Runge-Kutta method
that is A-stable, possesses the same stability domain as the

Trapezoid Rule (2nd-order Adams-Moulton method), and has
a higher order of accuracy than the Trapezoid Rule [2].

A numerical method is said to be A-stable if all of its
solutions to equations of the form

dy

dt
= ky, k ∈ C (1)

where
y(t) = Aekt ∀ Re(k) < 0 (2)

decay to zero as t → ∞ [3]. This means that for differential
equations for which the true solution decays to zero as a
function of time, the numerical solution also decays, rather
than diverging. Equivalently, a method is A-stable if its region
of stability contains all of the left half-plane [3]:

Region of Stability ⊇ {hλ ∈ C | Re(hλ) < 0} (3)

where h represents the simulation step size and λ represents
the continuous-time system eigenvalues.

Because the HH-4 method is implicit, the state update
equations constitute a nonlinear system which must be solved
iteratively. This makes the method much more computationally
intensive than linear multistep methods and predictor-corrector
schemes and dependent on the specific set of differential
equations. Additionally, all fourth order Runge-Kutta methods.
including HH-4, require the calculation of the state derivatives
to be performed four times per integration step. In contrast,
a predictor-corrector scheme based on the Trapezoid Rule
requires the state derivatives to be calculated only twice. The
region of stability of the Trapezoid Rule is ideal because it
includes all of the left half of the complex plane, and none
of the right. However, the Trapezoid Rule is also an implicit
method, which makes it nontrivial to implement in software in
addition to its computational challenges. The integration tech-
niques collectively called predictor-corrector methods serve as
a compromise in which the solution to an implicit method is
approximated using purely explicit formulations [4].

At present, the standard commercial tools for performing
time-domain simulation of large-scale power systems employ
explicit, multistep numerical integration methods with a fixed
step size. The integrator employed by PSLF and PSS/E, the
second order Adams-Bashforth method (AB-2), has a region
of stability that is a subset of the left half of the complex plane.
This means that the currently employed numerical integration



schemes have the potential to exhibit numerical instability for
stable systems [5].

An ideal numerical integration scheme for dynamic simula-
tion purposes would possess a larger region of stability and a
higher order of accuracy than AB-2. An intelligently chosen
predictor-corrector scheme could satisfy both criteria. Since
predictor-corrector schemes are explicit formulations, they
cannot be A-stable like the Trapezoidal Rule [6]. However,
they can possess a significantly larger region of stability than
AB-2, allowing for larger simulation step sizes [7].

The practical implication of this is that the choice of step
size for an explicit integration scheme will impact whether or
not it exhibits numerical instability. However, numerical sta-
bility cannot be the only consideration for integrator selection.
There is an inherent trade-off between numerical accuracy and
computational workload when the step size of a simulation is
modified; in general, simulations run faster at the expense of
accuracy with larger step sizes. For explicit methods, the step
size must be tuned appropriately such that the eigenvalues of
the system reside within the region of stability. Therefore, it
is essential to understand the eigenvalue topology of typical
power system models, possibly with very high PV penetration,
in order to make the best compromise on numerical integrator
selection that makes extended-term simulations viable.

The rest of the paper is organized as follows. Section II
describes how we modeled PV generation and how we deter-
mined the properties of power systems with high penetrations
of PV drive the selection of an numerical integrator. Section
III describes the candidate integrators that we have identified
and the inherent tradeoff among them. Concluding remarks
follow in section IV.

II. CHARACTERISTICS OF SYSTEMS WITH HIGH PV
PENETRATION

We employed Power Systems Toolbox (PST) for MATLAB
[8] as a test and development platform for this effort due
to the ability to modify the code. We implemented different
explicit integrator schemes as well as a custom model for PV
generation based on a current injection model.

A. Modeling PV Generation

To model increasing PV penetration, PV generation models
are co-located with existing traditional generation in a PST
test case. Each bus representing PV generation shares a point
of connection to the rest of the system with its co-located
traditional generation. A solar fraction parameter is used to
shift a fraction of generated power from the original generator
to the photovoltaic generator. The total amount of active power
generated is conserved between the two sources such that
the aggregate active power injected into the common point
of connection is constant across all solar fraction values.
However, only 50% of the reactive power shifted from the
original generator is supplied by the photovoltaic source. For
example, if 20% of power is shifted to solar generation, only
10% of the reactive power is shifted to the reactive power
specified for the photovoltaic generation bus. Machine inertia

specified in the dynamic record is reduced by proportionally
scaling down the mVA base of the synchronous machines.

B. Stiffness Analysis

Initially, it was hypothesized that an increase in PV pene-
tration would increase system stiffness. One way to measure
system stiffness is using the stiffness ratio, defined as:

stiffness ratio =
max |Re(λ)|
min |Re(λ)|

(4)
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Fig. 1: System eigenvalues for a four machine, 16 bus test
case with the region of absolute stability for AB-2 for various
step sizes superimposed.

This property of a system of differential equations roughly
describes the range of dynamics present in the system; a
large stiffness ratio implies that there are modes with very
fast decay rates, very slow decay rates, or a combination
of both. Intuitively, this represents a type of difficulty in
integrating the associated differential equations; both fast and
slow dynamics need to be accounted for. More explicitly, the
system eigenvalues of a dynamical system can be compared
to the region of absolute stability for a given integrator. In
Fig. 1, the system eigenvalues for a four machine, 16 bus test
case are plotted across various solar fraction values. These
system eigenvalues were estimated using small signal stability
analysis tools in PST. The regions of absolute stability for
AB-2 for various step sizes are superimposed; as the step size
increases, the region of absolute stability compresses and the
integrator becomes less accommodating for faster dynamics as
expected.

However, analysis of various test cases showed there to be
no correlation between PV penetration and system stiffness
ratio. Fig. 2 zooms in on the slower, low frequency modes from
Fig. 1. Although many system eigenvalues tend to drift left in
the s-plane as PV penetration increases, it is unlikely that this
will increase system stiffness because these eigenvalues rarely
correspond to the fastest dynamics in the system. Therefore, it
is unlikely that increased PV penetration (as we have modeled
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Fig. 2: System eigenvalues for a 16 bus test case with
region of absolute stability for AB-2 for various step sizes
superimposed.

it), would play a role in numerical integrator selection on its
own.

By utilizing the linearization capabilities of PST, we were
able to identify how different models and their dynamics in
a power system test case stress integrator stability. The mode
shapes and participation factors associated with each estimated
system eigenvalue describe which model components are
responsible for each eigenvalue. For example, from Fig. 1,
the fast, non-oscillatory modes located on the negative real
axis would be the limiting factor in integration selection due
to numerical stability; these eigenvalues were found to be
directly related to excitation system time constants which were
in this case set to 10 ms. Furthermore, these eigenvalues
were observed to remain fixed regardless of PV penetration.
Consequently, since they are typically the modes with the
fastest decay rates in a given system, this is why system
stiffness does not tend to increase with PV penetration.
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Fig. 3: System eigenvalue topology of an archetypical power
system model. (16 machine case)

Fig. 3 shows a system eigenvalue map with a sweep across
a range of solar fraction values up to 90% for a larger, 16 ma-
chine test case. Overlays describing what system components
are primarily responsible for each region of eigenvalues based
on our aforementioned analysis are also included. Notably,
induction motor loads tend to produce higher frequency, faster
modes; we observed that these modes tend to drift left with
increased PV penetration. Therefore, the inclusion of these
loads in a system model would play a significant role in
integrator and step size selection. This figure is discussed in
more depth in the following section.

III. CANDIDATE INTEGRATOR ANALYSIS

In our initial investigations with PST, we learned that the
toolbox relies upon a 2nd-order accurate predictor-corrector
algorithm known as Heun’s method [9]. This integration
scheme uses the forward Euler scheme as its predictor and
the Trapezoid Rule as its corrector. To achieve the goals of
this study, we investigated the behavior of the integration
scheme employed by both PSLF and PSS/E, AB-2. Based
on the analysis of system stiffness and other computational
requirements, we identified the 4th-order accurate Crane-
Klopfenstein (CK-4) predictor-corrector scheme as a candidate
explicit integration scheme [10]. The CK-4 integration scheme
possesses a high order of accuracy and excellent stability
characteristics while being straightforward to implement in
software. As a baseline, we included the simple Forward Euler
integration scheme although it is not a real candidate due to
its limited stability properties and poor accuracy.

A. Computational Considerations

When looking at the computational burden of integration
schemes, we primarily look at the number of “rate” calls and
number of memory storages and calls per time step or iteration.
“Rate” calls are the execution of the routine to compute the
derivatives of the state variables in the system. Typically, this
is only once per iteration for standard explicit integration
schemes but predictor-corrector schemes can include numer-
ous rate calls. Memory access is mostly tied to the order of
the integration scheme but can also increase depending on the
implementation of a predictor-corrector scheme.

Table I: Summarizing the number of memory and rate calls
for candidate integration techniques.

Memory calls Rate calls
Forward Euler 1 1
AB-2 2 1
Heun’s method 3 2
CK-4 13 2

B. Integrator performance benchmark tests

In order to demonstrate how computational differences
among the integrators affect real time performance, we de-
veloped a benchmarking tool in MATLAB. Using a simple,
linear second order differential equation test system with a



single complex eigenvalue pair, we simulated a step response
using each of the integrators of interest. We performed a 100
second simulation for 3 different step sizes; this means that
the number of steps in each simulation varied depending on
the step size. We simulated 100 different systems in which
the eigenvalue pair location each time was randomized but
within the region of absolute stability for all integrators. The
simulations were performed on a computer with an Intel Core
i7-4600U CPU @ 2.1 GHz and 8.00 GB of RAM running
Windows 7. The results, in seconds, are shown in Table II.

Table II: Total time taken to complete 100 simulations for
various step sizes.

Total Time [s]
h = 1

4
cycle h = 1

2
cycle h = 1 cycle

Forward Euler 19.50729 9.320980 4.744207
AB-2 22.70859 10.77197 5.325676
Heun’s method 33.04143 15.54170 7.731683
CK-4 50.57874 23.36001 11.599648

In order to see how average simulation time scaled with
step size/step count, we performed a similar experiment with
a broader range of step sizes. The results are shown in the
Fig. 4. We see that average simulation time scales roughly
exponentially with step count. These results are interesting in
the context of the other factors driving integrator selection.
For example, the commonly used AB-2 has fairly good com-
putational performance for the standard quarter cycle step size
(0.004 s). As discussed in the following section, the candidate
CK-4 has similar, if not more desirable, numerical stability
properties as AB-2 at the full cycle step size (0.016 s). If
we extrapolate from the previous benchmark, CK-4 is faster
than AB-2 when considering the different step size. If the
accuracy is acceptable for CK-4 at this larger step size and
the integrator is numerically stable, it would favor selecting
CK-4 for simulation.
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Fig. 4: Average time per 100 s simulation taken over 50 trials.

C. Numerical Stability Considerations

With numerical stability as the priority criterion for selecting
an integrator due to its “pass/fail” nature, it is vital to under-
stand the eigenvalue topology for the typical power system to
be simulated as we analyzed in Section II. As we observed,
power system models typically contain the same component
dynamic models with associated system eigenvalues in the
same region of the complex plane; there is variation in
eigenvalue location due to actual parameter values. In order
to understand how numerical integrator selection relates to
power system eigenvalue topology, we analyzed where each
integrator’s region of absolute stability lies in relation to the
eigenvalue topology map from Section II.
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Fig. 5: System eigenvalue topology with region of absolute
stabilities for h = 1

60 s overlaid.

Figure 5 shows the resulting illustration for a full cycle step
size. Using the aforementioned methodology for mode iden-
tification and state association, we annotated the eigenvalue
map to indicate what dynamic models are associated with
various regions in the complex eigenvalue plane. As noted
previously, induction motor load models are most likely to
restrict the selection of an integrator due to their fast decaying,
high frequency modes. Most commonly, the time constants
associated with transient and subtransient machine models,
exciters, and PSS will stress the selection of an integrator
and/or step size. The region annotated on the eigenvalue
topology map is directly correlated to these time constants,
which are typically in the 20 ms or smaller range. The
dynamics associated with these time constants are far and
away the fastest dynamics in power system models that do
not contain induction motor loads. Due to region of absolute
stability shapes for typical explicit integration schemes, these
time constants will most likely restrict how large the step size
can be. The other two regions identified are highly unlikely to
affect the choice of integrator and step size; these relatively
slower decaying, low frequency modes will almost surely be
well within the region of absolute stability for any integrator



unless all of the aforementioned time constants happen to be
very large. As noted in Section II, increased PV penetration, as
modeled, has no definite effect on system stiffness. Integrator
selection stress does not directly come from the presence of
PV-related current injections, but rather from the tendency for
system eigenvalues to drift left with increased PV penetration.

D. Integrator Analysis Conclusions

One of the reasons for considering different integrators
for extended-term simulation of power systems with high
PV penetration is that for very long simulation lengths, it
is less feasible to use integrators with the oft-used quarter-
cycle step size due to computation speed and data storage
limitations. Based on our analysis, the AB-2 scheme with a
quarter-cycle step size is very capable for simulating most
power systems and is perfectly suitable for shorter duration
simulations. For simulations of durations in the extended-term
regime, increasing the step size to, e.g., a full cycle would
be a massive improvement in terms of computation time and
data storage management. Because of its unique numerical
stability properties, we recommend CK-4 as an integrator
because it tends to be highly compatible with many power
system models; additionally, it gives more of the s-plane where
it matters in terms of absolute stability for a given step size. As
a result, one is most likely able to reduce the simulation step
size using CK-4 compared to the other candidate integrators.
While this comes at the cost of additional computation time,
based on our analysis, it may actually be faster to use CK-4
than other integrators because other integrators are more likely
to require a smaller step size for numerical stability reasons.

One drawback of using CK-4 is its thinner region of
absolute stability in terms of frequency. From the example of
the system with induction motor loads, this property tends to
be problematic for CK-4 because of the existence of large
decay rate, high frequency modes. The presence of these
modes requires CK-4 to use a larger step size to be numerically
stable when simulating this type of system and eliminates the
advantage of CK-4. For these cases, we recommend using
Heun’s method as it contains much more frequency bandwidth
for a given step size.

IV. CONCLUSION

In this study, we focused on improving the feasibility of
extended-term dynamic simulations of power systems with
very high PV penetration primarily from the perspective of
numerical integration. We saw that moving into the extended-
term regime presented issues such as increased computational
burden and data storage use and proposed modifying how
simulation software performs numerical integration in order
to address these concerns. Since some of the most commonly
used power system simulation software make use of the
explicit second order Adams-Bashforth integration method,
we investigated other explicit integration methods due to their
relative ease of implementation.

Since numerical stability is a primary concern for numerical
integration, we analyzed the dynamic stability properties of

power systems with increased PV penetration. We identified
how different power system dynamic models affect system
modes and what role they play in selecting an integrator.
Based on our investigations, we found that while increased PV
penetration does have an effect on system dynamic behavior,
it is rarely a primary factor in stressing the selection of an
integrator. We found that the presence of certain components,
such as induction motor loads, are most often the driving force
in integrator and step size selection.

We found that the fourth order Crane-Klopfenstein
predictor-corrector scheme to be a viable numerical integrator
because its region of absolute stability shape encompasses the
entirety of typical power system eigenvalues even at increased
step sizes. This potential increase in step size can produce
a lot of computational and storage savings for extended-term
simulations. On the other hand, in terms of numerical stability,
we found that this scheme is incompatible with high frequency,
fast decaying modes associated with induction motor loads.
In such cases, we found that Heun’s method is similarly
accommodating for system eigenvalues at a given step size and
is a safe alternative when the system’s dynamic characteristics
are unknown or problematic for CK-4.
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