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Abstract— A resistive control strategy to optimize pneumatic 
power for a floating OWC device is presented. This strategy 
utilizes a linear, frequency-domain performance model that links 
an oscillating structure to air-pressure fluctuations with a Wells 
Turbine in 3-dimensions. An array of field points defining the 
interior free surface allows hydrodynamic parameters relating to 
the fluctuating air-pressure within the OWC to be calculated 
using reciprocity relations. Device structural parameters for a 
non-optimized BBDB are detailed and the performance model is 
exercised on this device. A new resonance results from coupling 
the floating structure to the air-column that is unique from the 
uncoupled resonance location. An analytic expression for the 
optimal resistive load to link the floating structure and air-
column dynamics is presented. When the optimal resistive load is 
exercised within the model, the natural resonances of the coupled 
system are preserved and additional linked peaks are identified. 
This formulation of the optimal resistive load is shown to 
contribute significantly to the device capture width and power 
performance.  
 
Keywords—wave energy, OWC, moonpool, BBDB, 3-dimensional 
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I. INTRODUCTION 

 An oscillating water column (OWC) is a class of wave 
energy converter (WEC). Essentially this WEC contains a 
moonpool, an opening in a partially submerged structure, with 
an air-chamber covering the free surface. The air-chamber is 
only open to the atmosphere through a turbine. The incident 
waves result in a fluctuating pressure within the air-chamber. 
Bidirectional air flow, caused by the difference in pressure 
within the air-chamber relative to the ambient outside, drives 
the turbine and produces an electrical power output. Often a 
self-rectifying turbine, like the Wells Turbine, is employed so 
that the turbine rotates only in one direction.  
 OWCs can be located offshore (OE Buoy [1], blueWAVE 
[2], Sperboy [3]), nearshore (greenWAVE [2]), or onshore 
(Pico [4], Limpet [5], Mutriku [6]). The deployment location 
strongly affects the requirements on the performance model. 
An offshore OWC will have to float, which uniquely requires 
that both the wave activated body and the OWC are modeled 
in a coupled fashion as each absorbs power from the waves. It 
is the relative motion between the device and the internal free 
surface that produces air flow in this case. Nearshore and 

onshore OWCs only require the pressure fluctuation from the 
internal free surface to be modeled, thus reducing the number 
of independent variables to be considered.   
 The radiated wave pattern (i.e. the wave pattern resulting 
from an oscillating device in still water) strongly influences 
the maximum theoretical power absorption by the device, see 
[7, Sec 6.1] for further discussion. This wave pattern is 
dependent upon both the modes of oscillation as well as the 
symmetry of the device. Thus a non-axisymmetric device 
oscillating in all six rigid body modes is expected to absorb 
power distinctly from an axisymmetric device similarly 
oscillating in all six rigid body modes.  
 In this paper an offshore (floating) OWC terminator is 
studied. The Backward Bent Duct Buoy (BBDB) design was 
first proposed by Masuda [8] in the 1980’s and is one variety 
of floating OWC devices. This design is an L-shape with the 
opening to the ocean downstream from the wave propagation 
direction. The BBDB benefits from the coupled surge, heave, 
and pitch rigid-body modes and the OWC’s resonance to 
expand the frequency range of efficient conversion. The 
natural resonance of the OWC is dependent upon both the 
length and free surface area of the water column [9] [10].   
 There are two approaches to modeling the free surface: a 
rigid weightless piston [11] or calculation of the pressure 
distribution [12] [13]. The first approach is only valid for 
small internal free surface areas and is akin to a 2-body 
treatment in which the oscillating structure and the OWC are 
treated independently. The second approach does not place 
limitations on the size of the internal free surface area and 
utilizes a Boundary Element Method (BEM) solver to model 
the dynamics of the floating body and the fluctuating air-
pressure. Calculation of the internal pressure distribution, 
when using a BEM solver, can be obtained in three ways:  
approximated, solved for explicitly, or solved for implicitly 
[14] [15]. Approximation utilizes the technique of generalized 
modes [14] which expands upon the rigid piston 
approximation to include additional higher order modes. 
Explicit calculation requires determination of the velocity 
potential for the free surface. This is currently possible in 
WAMIT v7.0 [16], however this capability is new and 
uncommon in other potential flow solvers. Implicit calculation 
utilizes reciprocity relations to solve for all of the free surface 
parameters from the oscillating structure potential using an 
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array of field points on the internal free surface. Implicit 
calculation, presented in [15] and [7] and applied by [17], is 
pursued in this paper allowing for the use of standard potential 
flow solvers, such as WAMIT v6.4 [18]. 
 This paper will present the impact on pneumatic power  
through the inclusion of body oscillations in the optimization 
of the OWC turbine control. In order to demonstrate this, a 
general BBDB design is described in Section II so as to 
discuss the 3-dimensional hydrodynamic model with results 
presented in Sections III and IV respectively. Section V 
develops the performance model, linked through a Wells 
Turbine, and presents an analytical solution to optimize 
resistive control. Finally, Section VI presents the results of 
optimizing resistive control of the Wells Turbine considering 
power absorbed by both the oscillating structure and 
fluctuating air-pressure.  

II. FLOATING OWC GEOMETRY 

 The BBDB is modeled to determine both the structural 
parameters, using SolidWorks [19], as well as the 
hydrodynamic parameters, using MultiSurf [20]. Fig. 1 
illustrates the structural design, while Fig. 2 shows the 
hydrodynamic counterpart (note only the wetted surface must 
be modeled for the potential flow BEM solver). The majority 
of the device dimensions were selected based upon the 
conclusions of the following papers [21], [22], and [23]. This 
design profile is not optimized to reduce viscous losses or 
encourage weathervaning as is depicted in [1] and [17].   

 

 
Fig. 1.  Model of the OWC describing dimensions, locations of principal 
components, locations of the COB and COG, and identifying coordinate 
systems  

 The structural design assumes a uniform thickness of A36 
steel, appropriate ballast mass and placement, and an estimate 
of the mass and location of the power conversion chain. An 
average wall thickness of 35.1 mm is applied to the entire 
device [24]. This average thickness was derived from a 
structural design engineered to withstand the hydrostatic 
pressure at a submergence of 25 m [25]. The ballast is 
distributed to obtain the desired draft and ensure that the 
center of gravity and the center of buoyancy are aligned 
vertically. The ballast is assumed to be seawater and is added 
to the buoyancy chambers as shown in Fig. 1. The mass of the 
power conversion chain (drivetrain, generator, power 

conditioning electronics) is approximated [26] and is placed at 
the expected center of the Wells Turbine location, also shown 
in Fig. 1. TABLE I summarizes the structural properties of the 
device that are needed as input into WAMIT.    

Displaced Mass [kg] 2,024,657 

Structural Mass [kg] 1,808,944 

Bow Ballast Mass [kg] 22,072 

Stern Ballast Mass [kg] 123,641 

Power Conversion Mass [kg] 70,000 

COG (x,y,z) [m] 0.00 0.00 -4.29 

COB (x,y,z) [m] 0.00 0.00 -3.31 

Free Surface Center (x,y,z) [m] -5.12 0.00 0.00 

Radius of 
Gyration at 

COG [m] 

x 12.53 0.00 0.00 

y 0.00 14.33 0.00 

z 0.00 0.00 14.54 

TABLE I. Structural properties of the device 

 The global and body coordinate systems adopted for the 
hydrodynamic model are identified in Fig. 1. The global 
coordinate system is identified in blue in Fig. 1 and is at the 
undisturbed water level directly above the body coordinate 
system. The incident wave velocity potential ߮௢ , and hence 
the phases of the exciting forces, are defined relative to the 
global coordinate system. The body panels shown in Fig. 2 are 
defined relative to the center of gravity (COG), which defines 
the location of the body coordinate system identified in gold 
in Fig. 1. The body forces and motions calculated by WAMIT 
are calculated relative to this coordinate system.  

 
Fig. 2.  Wetted surface geometry modeled with cosine spacing in MultiSurf. 
Dipole panels (cyan), conventional body panels (green), interior surfaces for 
irregular frequency removal (gray). Black points illustrate the interior field 
point locations.   

 Panels representing the 3-dimensional wetted surface of the 
BBDB are used by the BEM potential flow solver. Fig. 2 
illustrates the discretization of panels as well as the types of 
panels used to solve for the hydrodynamic parameters. The 
structure panels, green, calculate the wave source potential to 
obtain the velocity potential. The dipole panels, cyan, obtain 
the velocity potential without calculation of the source 
potential. While the grey panels facilitate the removal of 
irregular frequencies resulting from calculation of the source 
potential when there is a large waterplane area. Cosine 
spacing is applied to the panels to increase the accuracy of the 
calculations close to the corners. The higher-order panel 



method is used in WAMIT. Only half of the device is modeled 
due to the device plane of symmetry at ݕ = 0. 
 An array of 231 field points describing the interior free 
surface of the BBDB is defined with respect to the global 
coordinate system. This array is illustrated in Fig. 2 with black 
points. The field points capture the dynamic pressure and 
velocity distributions of the free surface.  

III. HYDRODYNAMIC FORMALISM:  RECIPROCITY RELATIONS 

 Using linear potential flow theory to describe wave structure 
interactions for a floating OWC, the velocity potential of ݅ 
moving bodies oscillating in all rigid body modes ݆  with ݇ 
internal free surfaces is given by:  

 ߶෠ = ߶෠௢ + ߶෠ௗ +෍߮௜௝ݑො௜௝௜௝ +෍߮௞௞  ௞ 1̂݌

following the notation of [7]. The hat, ෡ , indicates complex 
amplitudes. The total velocity potential given in Eq. 1 is 
composed of the incident ߶෠௢  and diffracted ߶෠ௗ  potentials as 
well as the body ∑ ߮௜௝ݑො௜௝௜௝  and free surface ∑ ߮௞௞  ௞̂݌
radiation potentials where ݑො  is the oscillation velocity and ̂݌ is 
the pressure. The device treated in this paper contains only 
one body and one free surface, as shown in Fig. 1, thus ݇ = ݅ = 1. From this point forward the velocity potentials, 
hydrodynamic terms, incident wave amplitude, body velocity, 
and pressure above the free surface are treated with angular 
frequency (߱) dependent complex amplitudes and sinusoidal 
time-dependence ݁௜ఠ௧  with time given by ݐ . Thus hat’s, ෡ , 
will no longer be employed to indicate complex amplitudes. 
 Given that the state of the floating oscillating water column 
shown in Fig. 1 must be specified by two parameters, the 
velocity of the moving body and the pressure in the air 
chamber, it is clear that there are two coupled hydrodynamic 
equations relating the total force acting on the body and the 
total volume flow resulting from air-pressure fluctuations. 
Each of these equations will be composed of the superposition 
of the excitation solution found from the incident and 
diffracted potentials, the radiation solution found from the 
radiation potentials, and a coupling term uniting them together. 
 Hence, the total hydrodynamic force, ்ܨு, acting on the ݆௧௛ 
mode of the body is given by the combination of the 
excitation force ௝݂  found by holding the body fixed in that 
direction (ݑ௝ = 0 ), the radiated force ∑ ௝ܼ௝ᇲݑ௝ᇲ௝ᇲ  found by 
unit-oscillation velocity ݑ௝ᇲof the body without altering the 
pressure (݌ = 0), and a coupling force ܪ௝௣  that accounts for 
unit-fluctuation of the air-pressure inducing body oscillations:    

ு,௝்ܨ  = ௝݂ܣ −෍ ௝ܼ௝ᇲݑ௝ᇲ௝ᇲ − ݌௝௣ܪ 						݆ = 1,… , 6. 2 

In Eq. 2, ܣ is the incident wave amplitude at the global origin 
and ௝ܼ௝ᇲ  is the radiation impedance of the ݆௧௛  mode due to 
unit-oscillation in one of the six ݆ᇱ rigid body modes.   
 The total hydrodynamic volume flow, ்ܳு, resulting from 
air-pressure fluctuations is given by the excitation volume 
flow ݍ  found by venting the air-chamber to atmosphere 
( ݌ = 0 ), the radiated volume flow ܻ݌  found by unit-

fluctuation of the pressure ݌  in the air-chamber without 
allowing the body to oscillate (ݑ௝ = 0), and a coupling force ܪ௝௨  that accounts for unit-oscillation velocities inducing air-
pressure fluctuations:   

 ்ܳு = ܣݍ − ݌ܻ −෍ܪ௝௨ݑ௝௝ . 3 

In Eq. 3 ܻ is the radiation admittance of the free surface, and 
is analogous to the radiation impedance of the oscillating 
structure.   
 As will be shown below, each of the hydrodynamic terms 
identified above can be obtained from a potential flow code 
without explicitly solving for the radiation potential of the free 
surface. In this paper WAMIT v6.4 [18] is used to obtain the 
frequency and directionally dependent hydrodynamic terms.   

A. The Floating Body  

 The hydrodynamic terms relating to a freely oscillating 
structure are derived using portions of the velocity potential 
defined in Eq. 1 and they are all standard output of WAMIT 
v6.4. The excitation force ௝݂ is obtained by: 

 ௝݂ = ߩ߱݅− ඵܣ1 (߶௢ + ߶ௗ)݊௝݀ܵௌ್  4 

where ߩ is the density of seawater, ܵ௕ is the wetted surface of 
the body, and ௝݊  is the unit normal vector pointing into the 
body. The radiation impedance is found through:  

 ௝ܼ௝ᇲ = ඵߩ߱݅ ߮௝ ߲߮௝ᇲ߲݊ ݀ܵ = ௝ܾ௝ᇲ + ݅߱ ௝ܽ௝ᇲௌ್  5 

where ௝ܾ௝ᇲ = Re{ ௝ܼ௝ᇲ} is the radiation resistance and ߱ ௝ܽ௝ᇲ =
Im{ ௝ܼ௝ᇲ} is the radiation reactance. An explicit solution of ߮௝ 
can be circumvented by solving for the radiation resistance 
indirectly through a reciprocity relation with the excitation 
force [7, Eq. 5.148] and solving for the added mass from the 
radiation resistance through the Kramers-Kronig relationship 
[7, Eq. 5.105]. The coupling term ܪ௝௣ that results from unit-
fluctuations of the air-pressure resulting in body movements is 
found through:  

௝௣ܪ  = ඵߩ߱݅ ߮ ௝݊ௌ್ ݀ܵ 6 

where ߮ is understood to be ߮௞ with ݇ = 1. 
 Note that the signs of Eq.’s 4, 5, and 6 are switched from the 
formalism developed in [7] since the unit normal vector must 
point into the body as a result of the formulation within 
WAMIT v6.4.  

B. The Free Surface  

 The hydrodynamic terms relating to air-pressure fluctuations 
above the internal free surface can also be found by using 
portions of the velocity potential defined in Eq. 1. The 
excitation volume flow is found through:  

ݍ  = ඵܣ1 ߲(߶௢ + ߶ௗ)߲ݖௌ ݀ܵ 7 



where the integral is taken over the internal free surface ܵ. 
This integration is computed discretely by obtaining the 

excitation vertical velocities, 
డ(థ೚ାథ೏)డ௭ , from WAMIT for each 

field point shown in Fig. 2. The radiation admittance is 
obtained explicitly through:  

 ܻ = −ඵ ௌݖ߲߲߮ ݀ܵ = ܩ +  8 ܤ݅

where ܩ = Re{ܻ}  and ܤ = Im{ܻ}  are the radiation 
conductance and radiation susceptance of the internal free 
surface respectively. Analogous to Eq. 5 above, solution for 
the radiation admittance does not require the explicit radiation 
potential ߮. As presented in [17], the radiation conductance is 
related to the excitation volume flow through the following 
reciprocity relationship: 

ܩ  = ௚ݒ݃ߩߨ2݇8 න ଶగ|(ߚ)ݍ|
଴  9 ߚ݀

where the integration from 0 to ߨ already acknowledges the 
transverse symmetry of the device, ߚ  defines the incident 
wave-headings, and ߥ௚  is the group velocity. The radiation 
susceptance can then be found from the radiation conductance 
through the Kramers-Kronig relationship: 

(߱)ܤ  = ߨ2߱− න ଶ߱(ݕ)ܩ − ଶஶݕ
଴  10 ݕ݀

where the integral is to be understood in the principal value 
sense and is most readily evaluated with a Hilbert 
Transformation. The coupling term ܪ௝௨ that results from unit-
oscillation velocities resulting in air-pressure fluctuations is 
found through: 

௝௨ܪ  = −ඵ ߲߮௝߲ݖௌ ݀ܵ = ௝ܥ +  ௝ 11ܬ݅

where the integral is taken over the internal free surface ܵ. 
This integration is computed discretely by obtaining the 

radiation vertical velocities 
డఝೕడ௭  from WAMIT for each field 

point shown in Fig. 2. WAMIT User Manual v6.4 in Section 
4.7 [18] does not state the correct non-dimensional form of the 
radiation velocities. The correct non-dimensional form of the 
radiation velocity for the ݆th mode is presented in User Manual 
v7.0 [16] and given below:  

ఫഥݑ  = ߱ଶ݃ܮ ∇߮௝ = ߱ଶܮܷ݃ܮ௡ݑ௝. 12 

Here ܮ is a scaling factor representative of the length of the 
device, ∇  is the non-dimensional gradient operator, ݊  is 
dictated by the rigid mode ݆ (݊ = 0 for ݆ = 1,2,3 and ݊ = 1 
for ݆ = 4,5,6), ܷ is the dimensional fluid velocity, and ݑ௝  is 
the dimensional velocity of the body in the ݆௧௛ mode. 
 Finally it can be shown that ܪ௝௣ =  ௝௨ and hence explicitlyܪ−
solving for the radiation potential ߮  of the free surface is 
unnecessary to determine all of the hydrodynamic parameters.   
 A transformation vector is required to account for the 
velocity of the body at the center of the free surface in the 
global coordinate system due to body motions around the 

COG (as defined in the body coordinate system). Thus the 
vertical velocity of the body at the center of the internal free 
surface is calculated through multiplication of the body 
velocity with the transformation vector: 

ࢀ  = ሾ0 0 1 0 ′ݎ− 0ሿ୘		 13 

where ݎ′  is identified in Fig. 1 and TABLE I. This 
transformation relativizes the air-chamber results to the 
movements of the structure. 

IV. HYDRODYNAMIC RESULTS 

 The hydrodynamic parameters are found for wave 
frequencies spanning 0 to 2.5 rad/s in 0.01 rad/s intervals 
assuming infinite depth. The integral in Eq. 9 requires a sum 
over incident wave propagations. Therefore hydrodynamic 
parameters are found for 17 distinct wave-headings starting 
with incidence in the positive x-direction ( ߚ = 0 ) and 
increasing in intervals of ߨ 16⁄ . However, the only wave-
heading analyzed to estimate performance is ߚ = 0.  

 

 
Fig. 3:  Non-dimensional excitation forces on the structure in heave and pitch 
as well as the excitation volume flow of the free surface. 

 Fig. 3 shows the initial excitations from the incident and 
diffracted velocity potentials for both the oscillating structure ௝݂ in heave and pitch as well as the excitation volume flow ݍ. 
The secondary peak in pitch excitation begins after ߱ = 0.7 
and obtains it’s maximum value at ߱ ≅ 0.95.  
 The radiation impedance for the structure and the radiation 
admittance for the oscillating water column are shown in Fig. 
4, Fig. 5, and Fig. 6. Fig. 4 and Fig. 5 show the non-
dimensional heave and pitch damping terms and added 
mass/inertia respectively. Unlike axisymmetric devices, non-
axisymmetric devices exhibit a cross-coupling between the 
heave-pitch and the heave-surge rigid body modes, hence the 
radiation impedance cross-coupling terms are non-zero and 
appreciable for this device. These cross-couplings influence 
the locations of the natural resonances of the freely floating 
structure [27]. Furthermore, the hydrodynamic coupling 
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between the structure and air column is derived from the 
radiation potential, ߮௝ , thus we expect from Eq.’s 3 and 11 
that both surge and pitch will contribute to the air-pressure 
fluctuation through the coupling term ܪ௝௨.  

 

  
Fig. 4:  Non-dimensional radiation damping as a function of frequency for 
heave and pitch.  

 

 
Fig. 5:  Non-dimensional added mass/inertia as a function of frequency for 
heave and pitch.  

 For a fixed structure OWC, the resonance of the OWC is 
solely defined by the excitation ݍ and radiation admittance ܻ. 
Hence, for an uncoupled system the radiation susceptance, 
shown with the conductance in Fig. 6, identifies the resonance 
since it includes the effect of the hydrostatic stiffness [7]. 
Thus the first zero-crossing is identified as the piston 
resonance location of the hydrodynamically uncoupled system. 
The large peaks occurring in Fig. 3-Fig. 7 are localized in 

frequency with the first zero-crossing of the radiation 
susceptance.  

 
Fig. 6:  Radiation conductance and susceptance of the fluctuating air-pressure. 
The hydrodynamically uncoupled piston and slosh resonances are identified 

 Fig. 7 shows the real and imaginary components of the 
heave and pitch coupling terms ܪ௝௨ . As expected the 
magnitude of coupling is quite large in each mode indicating 
that an oscillating structure will induce a measurable air-
pressure fluctuation, or equivalently an air-pressure 
fluctuation will induce structure motions.  

 

 
Fig. 7:  Coupling terms for heave and pitch motions of the body showing 
strongly coupling to the fluctuating air-pressure.  

As shown in Eq. 3 this coupling influences the solution for 
the pressure response. The hydrodynamically coupled relative 
pressure response amplitude operator (RAO) can be derived 
from Eq. 3 and 13 to be: 

 
ܣ݌ = ݍ − ∑ ௝௨ܪ) + ௝ܶܵ)ݑ௝௝ ܻ . 14 

where the coupling term ܪ௝௨ is modified by the transformation 
vector ܵࢀ to account for the pressure-volume flow that occurs 
due to the velocity of the body at the center of the free surface. 
The non-zero contribution of ܪଷ௨ and ܪହ௨, as well as ܪଵ௨, seen 
in Fig. 7 signify that the natural resonance of the OWC has the 
potential to be highly influenced by these coupling terms. 
Hence, the resulting fluctuating air-pressure resonance could 
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migrate due to the coupling with surge, heave, and pitch 
structural modes in much the same way that the heave 
structural resonance migrates due to the influence of the rigid-
body cross-coupling terms. Fig. 8 shows the magnitude and 
phase of the numerator of the hydrodynamically coupled 
relative pressure RAO detailed in Eq. 14. 

  

 
Fig. 8:  Numerator of hydrodynamically coupled, but unlinked, pressure RAO. 
Magnitude of peak and phase change at ߱ = 0.73 indicate’s the OWC 
resonance location for the hydrodynamically coupled system.   

 Three peaks are identified in Fig. 8: two are structural in 
origin (solid lines) and one is from the hydrodynamic 
coupling with the oscillating water column (dashed line). The 
two structural resonances correspond to heave (߱ = 0.39) and 
pitch (߱ = 0.55) and are close to estimates obtained using 
standard equations [27] which do not produce accurate 
estimates for non-axisymmetric devices. The uncoupled piston 
resonance identified in Fig. 6 is not visible in Fig. 8 and the 
phase of the numerator is constant at this frequency. The third 
peak seen in Fig. 8 at ߱ = 0.73  could originate from two 
places:  1) this peak is a result of the structure motions solely 
(similar to the explanation of the first two peaks) or 2) it is the 
new resonance location for the coupled OWC. 
 If option one is correct, then the system is so misbalanced 
that dynamics of the structure are completely overwhelming 
the dynamics of the water column and we thus do not see the 
piston resonance identified in Fig. 6. Since there is a large 
pitch excitation near this third peak (as indicated above in Fig. 
3) it is possible that this excitation results in a large pitch 
rotational velocity and is the base cause of this last peak.  
 However, the authors believe that the last peak in Fig. 8 is 
the coupled OWC resonance and this is further supported in 
Section VI. This new resonance location for the oscillating 
water column is a direct result of the dynamics of the 
oscillating structure. A steady change in phase is associated 
with this peak and this type of resonance is often associated 
with damped systems. In this case, the non-zero ܤ seen in Fig. 
6 would offer this damping.  

V. LINKED GOVERNING EQUATIONS FOR FLOATING OWC 

 A linear frequency-domain model is used to produce 
estimates of the power conversion capabilities of the device 
presented in Fig. 1. There are two governing equations:  one 
for the oscillating structure and one for the fluctuating air-
pressure. The power conversion chain links the oscillating 
structure to the OWC through the resistive damping term ܴ௟௢௔ௗ . The governing equation for each mode of the 
oscillating structure is given by:  

 

݅߱ ௝݉௝′ݑ௝= ቀ ௝݂ܣ − ቀ ௝ܾ௝′ + ݅߱ ௝ܽ௝′ቁݑ௝− ൫−ܪ௝௨ + ௝ܶܵ൯݌ቁ − ൬ 1݅߱ ௝൰ݑ′௝௝ܥ − ൬ −௝൰ݑ௝ܭ1݅߱ ൫ܾ௩௜௦,௝ݑ௝൯ 15 

where the left-hand side of the equation is the total force 
acting on the body. The first term on the right-hand side is the 
hydrodynamic contribution discussed in previous sections. 
The second term, technically part of the full hydrodynamic 
contribution, is the hydrostatic restoring force. The third and 
fourth terms are added to account for additional forces 
affecting the device:  the mooring restoring force and the 
linearized viscous damping both represented here as diagonal 
matrices.    
 A Wells Turbine, which possesses a linear relationship 
between pressure and flow, is assumed in this performance 
model. Since air is highly compressible, accurate predictions 
of the air flow through the Wells Turbine require a linear 
representation of this compressibility. The governing equation 
for the relative air flow through the Wells Turbine is given by: 

 

൬ 1ܴ௟௢௔ௗ + ݅ ߱∀௢݌ߛ௔௧௠ ൰݌
= ቌܣݍ − ܩ) + ݌(ܤ݅ −෍൫ܪ௝௨ + ௝ܶܵ൯ݑ௝௝ ቍ
− 1ܴ௩௜௦  ݌

16 

where the left-hand side of the equation is the total 
compressible relative air flow through the Wells Turbine 
(consistent with [28]) with no limitation on the pressure 
allowed within the air-chamber. The linearized air 
compressibility is defined through the following terms:  the 
initial volume is ∀௢ ߛ , = 1.4  and is the ratio between the 
constant-pressure and constant-volume specific heats for air, 
and ݌௔௧௠  is the atmospheric pressure. The first term on the 
right-hand side is the hydrodynamic contribution discussed in 
previous sections. The second term is added to account for the 
viscous damping in a linearized manner. Note that smaller ܴݏ݅ݒ results in greater losses of the volume flow. This inverse 
representation has been selected based on the formalism 
developed in [7] where analog’s to electric circuitry are 
heavily employed and admittance is the inverse of impedance. 
 These coupled governing equations are most readily 
understood in matrix notation as follows: 
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 ൬ݍࢌ൰ܣ = ቌࢆ௜ ௜்ࡴ௜ࡴ− ௜ܻ + 1ܴ௟௢௔ௗቍ ቀ݌࢛ቁ 17 

where the bolded quantities are matrices or column vectors 
and: 

௜ࢆ  = ࢈ + ௩௜௦࢈ + ݅߱ ቆ࢓+ ࢇ − ࡯) + ଶ߱(ࡷ ቇ, 18 

௜ࡴ  = ࡴ +  and  19 	,ܵࢀ

 ௜ܻ = ൬ܩ + 1ܴ௩௜௦൰ + ݅ ൬ܤ + ߱∀௢݌ߛ௔௧௠൰. 20 

 The linked governing equations above can then be solved to 
obtain the linked body velocity RAO and the linked relative 
pressure RAO. The RAO’s are the response of a variable at a 
given frequency per unit incident wave amplitude ܣ . The 
relative volume flow through the Wells Turbine may be 
derived from: 

 ்ܳ = ܣݍ − ௜ܻ݌ − ௜்ࡴ ࢛ =  ௟௢௔ௗ. 21ܴ݌

From the relative volume flow, the relative interior free 
surface elevation may then be derived from:  

ܣ୪,୊ୗ୉ୣୖߦ  = −்ܳ ൗ݅߱ܵܣ . 22 

The negative sign in Eq. 22 reflects the fact that positive 
volume flow into the air-chamber occurs for a decreasing free 
surface elevation. 
 The power absorbed by the coupled and linked device is 
dependent upon the ܴ௟௢௔ௗ  applied at the air turbine. The 
pneumatic power available to the Wells Turbine from the air-
column is the product of the relative pressure in the air-
chamber and the relative volume flow [7]  

ۧܲۦ  = തതതതതതതതതതതതത(ݐ)்ܳ(ݐ)݌ = ்∗ܳ݌}12ܴ݁ }. 23 

The pressure, ݌, is found through solution of Eq. 17 and is the 
relative pressure resulting from both the movements of the 
structure as well as the water column. In monochromatic 
waves, the average pneumatic power simplifies to  

 〈P〉 = 12 1ܴ௟௢௔ௗ  ଶ. 24|݌|

The magnitude of the resistive damping term will impact the 
pneumatic power available to the Wells Turbine by 
influencing both the motion of the device as well as the water 
column. 

A. Optimal Resistive Damping  

The optimal resistive damping term can then be found from 
the solution to the following optimization condition 

 
߲〈P〉߲ܴ௟௢௔ௗ = 0. 25 

where ۧܲۦ  is the average power presented in Eq. 24. 
Application of the optimization condition presented in Eq. 25 

results in the following analytic form of the frequency 
dependent optimal resistive damping:  

 ܴ௟೚೛೟ = (| ௜ܻ + ௜்ࡴ ௜ିࢆ ଵ࢏ࡴ|ଶ)ିଵଶ. 26 

Eq. 26 is the optimal resistive damping for a floating OWC. If 
the structure were fixed, the optimal ܴ௟௢௔ௗ  would consist of 
only the first term in Eq. 26. However, since the structure is 
floating, and also absorbing power from the incident waves, 
the optimal resistive damping must reflect the contribution 
from the floating structure. Hence the additional term relating 
to the magnitude of coupling ࡴ௜ and the radiation impedance ࢆ௜ of the structure in the analytic form of the optimal ܴ௟௢௔ௗ is 
reasonable. Inserting Eq. 26 into Eq. 24 produces the 
maximum pneumatic power in monochromatic waves. 

VI. PERFORMANCE RESULTS:  MONOCHROMATIC WAVES 

 Viscous damping terms were selected in order to reduce the 
magnitudes of the linked body motions and free surfaces 
elevations at resonance. Constant (and diagonal when 
applicable) damping values for both the body and the free 
surface are applied across all frequencies. For the presented 
solutions these are: ܾ௩௜௦ = 0.02ඥܯ௧௢௧ܿ௧௢௧ and           ܴ௩௜௦ିଵ =0.01(max(ܩ)). ܯ௧௢௧ is the physical mass in combination with 
the infinite frequency added mass and ܿ௧௢௧  is the total 
restoring force (hydrostatic plus mooring). The magnitude of 
these additional viscous damping terms should be verified 
with experimental tests. However the presented values are 
able to reduce RAO magnitudes to reasonable levels.  
 The mooring restoring force is obtained from the mooring 
design detailed in [29]. The design was found to act linearly 
for excursions of ± 5m in the surge, sway, and heave 
directions. The magnitudes of the restoring forces are:       
55.5 kN in surge, 6.1 kN in sway, and 7.5 kN in heave.   

A. Optimal Resistive Damping 

 Fig. 9 compares the analytic expression of ܴ௟೚೛೟ from Eq. 26 

as a function of frequency to a numeric optimization. The 
difference between the curves is solely a result of the fidelity 
of the numeric optimization, which confirms the solution 
presented in Eq. 26. Since both the body motions and the free 
surface are accounted for in the relative pressure term, the 
profile of ܴ௟೚೛೟  experiences multiple distinct minima 

corresponding to natural resonances for the coupled device. 
The structural resonance locations and the coupled OWC 
resonance location are identified in Fig. 9 for clarity (solid and 
dashed vertical lines, respectively). Between these minima, ܴ௟೚೛೟  increases resulting in three resistive damping peaks.  

 Fig. 10 compares the linked and unlinked RAO’s for heave, 
pitch, and the absolute free surface elevation (FSE) when ܴ௟೚೛೟  is applied at each frequency. The linked RAO’s exhibit 

the unlinked natural resonances as would be expected since ܴ௟೚೛೟  is minimal at these locations. However, the linked 

RAO’s also exhibit additional peaks that correspond to the 
peaks seen in ܴ௟೚೛೟. These new linked peaks are the result of  

  



‘ 

 
Fig. 9: Comparison of analytically derived and numerically obtained optimal 
resistive damping ࢚࢖࢕࢒ࡾ for a floating OWC.  

 

 
Fig. 10: RAO’s for heave, pitch, and the absolute free surface elevation when 
a Wells Turbine with ࢚࢖࢕࢒ࡾ is applied in the linked case and when there is no 
Wells Turbine in the unlinked case.  

the free surface and structure moving nearly in phase with one 
another.  
 Fig. 11 focuses on the phase relationship for the RAO’s 
presented in Fig. 10. The locations of the peaks in ܴ௟೚೛೟  are 

identified with vertical dotted lines; these coincide with the 
phase of the FSE matching the phase of the structural RAOs. 
Comparing the phase of linked heave with linked absolute free 
surface elevation at ߱ = 0.51 shows that the two are nearly in 
phase. Similar inspection at ߱ = 0.67 between the pitch and 

absolute free surface elevation also shows a close phase match. 
Additionally, at ߱ = 0.67  the phase of the heave RAO is 
similar to the pitch and FSE. Hence it is not clear that this 
peak is purely a pitch-coupled OWC peak as identified. The 
last peak in Fig. 9 located at ߱ = 0.96 is identified in all three 
figures and it is clear that there again appears to be a close 
phase match.  
 Work by Alves [30] has shown the effect of accounting for 
both the oscillating structure and the fluctuating air-pressure 
with a one-dimensional, axisymmetric, floating OWC device 
modeled using generalized modes. His results also show a 
new peak between the structural heave resonance and the 
coupled OWC resonance. This third peak is the linked heave- 
coupled OWC peak that is the result of both the body and the  

  
Fig. 11: Phases of the RAO’s for heave, pitch, and the absolute free surface 
elevation when a Wells Turbine with ࢚࢖࢕࢒ࡾ is applied in the linked case and 
when there is no Wells Turbine in the unlinked case.  

fluctuating air-pressure oscillating in phase but with distinct 
amplitudes. The three new peaks in Fig. 10 can be similarly 
explained through their corresponding phase relationships in 
Fig. 11. Hence, the linked heave-coupled OWC, the linked 
pitch-coupled OWC, and the last peak exhibit the same pattern 
expected from Alves’ one-dimensional results. 
 This interpretation of the linked peaks also lends itself to the 
belief that the resonance peak at ߱ = 0.73  is the coupled 
OWC peak. Additionally, the largest unlinked RAO response 
from the absolute FSE in Fig. 10 is at this frequency.   
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 The relative linked pressure is shown in Fig. 12. The peaks 
in pressure correspond to the locations of increased resistive 
damping. Alternatively the peaks in relative volume flow, 
shown in Fig. 13, correspond to resonances in the system. 
This inverse partnership between pressure and flow is 
expected:  when the device is in resonance there will be large 
volume flow, otherwise ܴ௟೚ೌ೏  will be used to increase the 
pressure in the air-chamber when the phase relationships have 
a close phase match.  

 
Fig. 12:  RAO of relative linked pressure with ࢚࢖࢕࢒ࡾ applied. 

 

Fig. 13:  RAO of relative linked flow with ࢚࢖࢕࢒ࡾ applied. 

 
Fig. 14:  Capture width for a floating OWC with ࢚࢖࢕࢒ࡾ applied at each 
frequency. 

 Finally the capture width of this device, with ܴ௟೚೛೟ applied at 

each frequency, is shown in Fig. 14; the locations of the 
resonances are identified. Both the heave and the coupled 
OWC resonance contribute to the capture width. The pitch 
natural resonance is not detectable, but it is likely that it has 
been subsumed into the linked heave-coupled OWC peak. The 
three peaks in Fig. 9 that result from the phase matching 
between degrees of freedom strongly effects the structure of 
the capture width. Linking the structure to the OWC through 
the Wells Turbine and applying ܴ௟೚೛೟  results in the largest 

power conversion at these linked peaks.  

 Although coupling between the structure and the OWC is 
often mentioned as a benefit of the BBDB design, this is the 
first presentation, to the authors’ knowledge, demonstrating 
the linked heave-coupled OWC and linked pitch-coupled 
OWC modes. These linked modes expand the area of power 
conversion and cannot be ignored. 

VII. CONCLUSIONS  

 Results presented here provide a resistive control strategy to 
optimize converted power for a floating OWC device. Further, 
the dynamics of a floating OWC are shown to be distinct from 
those of a fixed device. The relative motion of the water 
column for a non-axisymmetric device results in multiple 
resonance peaks and a broadening of the capture width of the 
device. Additionally, the resonance location of a floating 
OWC has been shown to be distinct from the fixed OWC 
resonance location. 
 A linear, frequency-domain, performance model is presented 
that links the oscillating structure to air-pressure fluctuations 
with a Wells Turbine. The hydrodynamic parameters related 
to the fluctuating air-pressure within the OWC are calculated 
using reciprocity relations on an array of field points defining 
the interior free surface. Device structural parameters for a 
non-optimized BBDB are detailed. Dimensions of the device 
were informed from literature while the structural properties 
were obtained from an idealized solid model. The 
performance model is exercised on this device using the 
calculated hydrodynamic parameters. The air is modeled as a 
compressible system. Viscous damping values are applied to 
both the structure and the air column. 
 The resonances of an OWC contained in a floating body are 
not solely defined by the excitation ݍ and radiation admittance ܻ as it is for a fixed structure. For a fixed OWC, resonance is 
determined by the first ܤ  zero-crossing. However, for a 
floating OWC, coupling between the oscillating structure and 
the fluctuating air-pressure indicates that the resonance of the 
OWC moves to a new location.  
 An analytic expression to determine the optimal ܴ௟೚ೌ೏  for 
any floating OWC is presented. This expression is modified 
from the fixed OWC expression by a term relating to the 
magnitude of coupling ࡴ௜ and the radiation impedance ࢆ௜  of 
the structure.   
 Performance model results are presented for the optimal ܴ௟೚ೌ೏ . Results include RAO’s of the device motion and 
internal free surface height as well as the relative pressure and 
volume flow in the air-chamber. Additionally the optimal 
capture width is presented. The results exhibit that it is 
possible to preserve the unlinked natural resonances and that 
the linked modes, resulting from the peaks in ܴ௟೚೛೟ , 

substantially increase the capture width of the BBDB.   
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