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Abstract 

 

The Water, Energy, and Carbon Sequestration Simulation Model (WECSsim) is a national 

dynamic simulation model that calculates and assesses capturing, transporting, and storing CO2 

in deep saline formations from all coal and natural gas-fired power plants in the U.S.  An 

overarching capability of WECSsim is to also account for simultaneous CO2 injection and water 

extraction within the same geological saline formation.  Extracting, treating, and using these 

saline waters to cool the power plant is one way to develop more value from using saline 

formations as CO2 storage locations.   

 

WECSsim allows for both one-to-one comparisons of a single power plant to a single saline 

formation along with the ability to develop a national CO2 storage supply curve and related 

national assessments for these formations.  This report summarizes the scope, structure, and 

methodology of WECSsim along with a few key results.  Developing WECSsim from a small 

scoping study to the full national-scale modeling effort took approximately 5 years.  This report 

represents the culmination of that effort.   

 

The key findings from the WECSsim model indicate the U.S. has several decadesô worth of 

storage for CO2 in saline formations when managed appropriately.  Competition for subsurface 

storage capacity, intrastate flows of CO2 and water, and a supportive regulatory environment all 
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play a key role as to the performance and cost profile across the range from a single power plant 

to all coal and natural gas-based plantsô ability to store CO2.  The overall systemôs cost to 

capture, transport, and store CO2 for the national assessment range from $74 to $208 / tonne 

stored ($96 to 272 / tonne avoided) for the first 25 to 50% of the 1126 power plants to between 

$1,585 to well beyond $2,000 / tonne stored ($2,040 to well beyond $2,000 / tonne avoided) for 

the remaining 75 to 100% of the plants.  The latter range, while extremely large, includes all 

natural gas power plants in the U.S., many of which have an extremely low capacity factor and 

therefore relatively high systemôs cost to capture and store CO2. 

 

For context, the first gigatonne of CO2 captured from all coal and natural gas power plants has a 

cost of only $61 / tonne of CO2 stored and $85 / tonne avoided.  These levels correspond to 

approximately 7,626 million gallons per day (MGD) of added water demand for the avoided 

emissions, and for a storage rate of 1 GtCO2 per year, this uses 5% of all capacity across the 

formations. 

 

The analytical value and insight provided by WECSsim allow users to run power plant- and 

formation-specific scenarios to assess their cost and performance viability relative to other 

pairings throughout the lower 48 states of the U.S.  Along with a national-level perspective, 

the results can identify which power plants are the most economically viable for CO2 

capture, transportation, and storage (CCS), and which saline water-bearing formations are 

the most likely candidates to support large-scale, multi -decade CCS.  A wide suite of 

scenarios can be developed by adjusting the cost and engineering parameter assumptions 

throughout WECSsim.  With this capability, interested parties can address questions 

regarding geologic parameters, power plant make-up power, water treatment costs, and 

efficiencies, amongst many other salient variables both at the power plant level, and when 

developing a nation-wide assessment.  
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1. AN INTRODUCTION TO THE WATER, ENERGY AND CARBON 
SEQUESTRATION MODEL (WECSsim) 

 

1.1  Background 
 

As the United States (U.S.) looks to manage carbon dioxide (CO2) emissions from power 

generating facilities, storing the CO2 in the subsurface may be a large-scale option.  When 

storing CO2 at the scales discussed to manage a large portion of the U.S.ôs emissions it is 

necessary to evaluate the technical and economic feasibility of a proposed system.  This type of 

analysis pulls in existing research and helps identify potential data gaps that need to be addressed 

to reduce the uncertainty in how much CO2 could be stored and for what cost.  Reducing this 

uncertainty helps define a range of costs that need to be evaluated against potential policy 

scenarios to determine if CO2 capture, transportation, and storage (CCS) technology is ready for 

large-scale deployment.   

 

An area of the subsurface that has great potential for CCS are deep saline formations due to a 

predominance of sedimentary rocks with abundant pore space in most locations in the U.S.  

These saline formations can potentially offer more pore space for storage if the existing water 

can be removed and replaced with CO2.  This is where the Water, Energy, and Carbon 

Sequestration Model (WECSsim) can be utilized.  This model synthesizes the disciplines of 

geoengineering, geochemistry, energy systems engineering, energy economics, spatial analysis 

for well field assessment and formation evaluation through geographic information systems, and 

water treatment engineering.  Utilizing these fields the WECSsim model seeks to:  

¶ evaluate and catalog saline formations in the U.S. that may be amenable for storing CO2, 

¶ assess the cost to capture, compress, transport, and store CO2 in the subsurface, 

¶ assess the potential to treat and then use extracted water from saline formations for 

additional power plant cooling, and 

¶ identify the lowest cost locations for simultaneous CCS and saline water extraction to 

maximize the potential storage volumes of CO2. 

 

1.2  Purpose of WECSsim 
 

WECSsim is a dynamic simulation model incorporating the stocks and flows associated with 

potential CO2 capture and sequestration systems (e.g., power plantôs metrics, electricity 

production, flows of CO2, water resource needs and treatment costs, etc.) and the economics 

associated with the system.  This model provides interested parties with the ability to perform 

what-if scenario analyses in real time via an interactive interface.  For example, the model can 

address questions such as:  What if the level of CO2 capture increases from 50% to 70%?  What 

will the electricity costs look like due to this change?  Similar scenario questions can be 

developed for different power plant configurations, geologic formations used for CO2 storage, 

and brackish water pumping treatment technologies. 
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1.3  WECSsim Model Architecture and Scope 
 

 
Figure 1.  WECSsim schematic diagram. 

 

Throughout this document, Figure 1 serves as the central key to WECSsimôs structure and 

subsequent description.  The document develops a series of sections and corresponding scenarios 

based on each of the five model modules illustrated in Figure 1.  Additionally, Section 8 is 

devoted to the combination of all power plants and all potential CO2 geologic sinks listed in 

WECSsim to give an overall U.S., national-level supply curve of storage volume and 

corresponding costs.  Figures 2a, 2b, 2c and 2d illustrate the underlying structureôs interface 

screens of WECSsim.  Throughout this document, descriptions and corresponding model 

interface screens are illustrated for the modules shown in Figure 1.  The highest level of the 

WECSsim user interface is organized in six ótabsô representing the five modules shown in Figure 

1 plus a summary tab. 

 

1.4  Navigating WECSsim 
 

WECSsim has several different levels of detail outlined in Figures 2a, 2b, 2c and 2d.  The latter 

three correspond with the deeper levels of analysis used to assess the national-scale cost-, water-, 

and formation-use curves. 
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Figure 2a.  WECSsim interface menu map. 
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Figure 2b.  WECSsim interface menu map, Cost Curves.1 

 

 

 

 
Figure 2c.  WECSsim interface menu map, Water Curves. 

 

                                                 
1
 WECSsim distinguishes between the amount of CO2 stored, and the amount of CO2 reduced (avoided). 
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Figure 2d.  WECSsim interface menu map, Formation Use. 

 
Throughout WECSsim, the top interface level represents the module tabs.  These include the 

Summary tab and the five module-specific tabs oriented horizontally across the top of the 

interface.  Note that WECSsim has five modules, and the WECSsim interface has six upper level 

tabs.  Module and tab are used throughout this document to refer to a distinct conceptual portion 

of the model, and a distinct portion of the user interface respectively.   

 

The second interface level is a vertically oriented list in the upper left of the interface.  In the 

case of fleet analysis, there is a third level of navigation shown in Figures 2bï2d and discussed in 

Section 8.  Figure 2 shows the available interface screens, Figure 3 shows the home screen with 

the top interface tabs across the top, and Figure 4 shows an example screen with the tabs across 

the top as well as the second level navigation options in the upper left.  Bold text shows the 

location of the user in the interface.  Throughout the WECSsim interface, the convention holds 

that the upper part of the page represents model inputs that change with tab to tab and second 

level navigation changes, while the lower part of the page represents model outputs which only 

change from tab to tab.  Third level navigation options are associated with extra output, and each 

page is unique. 
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1.5  WECSsim Introductory page 
 

WECSsim opens with a home page listing the modelôs authors and other salient background 

information (Figure 3).  A key option for the model user is to select the level of detail they are 

interested in with respect to the number and types of power plants to analyze.  The first option 

allows users to explore any single, specific power plant by name (coal- or natural gas-based) in 

the U.S. for the performance and cost characteristics of a CCS system for any of the saline 

formations within the national database underpinning the model.  The next two options allow the 

user to select only coal plants, or all coal and gas plants, but at a national level such that all 

plants will be simultaneously evaluated, ranked, and sorted based on their CO2 and water 

requirement profiles for a given CCS scenario.  In all cases, all saline formations in the database 

are potential storage targets for the power plant(s) under consideration. 
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Figure 3.  WECSsim home page. 

 
WECSsimôs Single Power Plant Analysis Mode: 

The simplest mode is the single power plant analysis mode in which the model user can specify 

an individual power plant, attributes of that plant, how much CO2 capture is desired, attributes of 

the make-up power system, and aspects of brine extraction and treatment.  From this 

information, WECSsim selects the CO2 sink available with the lowest cost.  The costs calculated 

include those for CO2 storage, CO2 avoided, and added water demands due to CCS that can be 
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offset by using the extracted, treated brine from the targeted formation.  Sections 2ï7 of this 

document develop from the perspective of a single plant analysis. 

 

WECSsimôs Fleet Analysis Mode: 

The other mode of WECSsim is the fleet analysis mode.  In fleet analysis mode, which is an 

extension of the single power plant analysis mode, WECSsim matches each power plant from the 

U.S. coal- and gas-fired fleet to a storage formation and calculates all associated costs and added 

water demands.  Fleet analysis mode can be thought of as the single power plant analysis mode 

run over and over for each plant in the fleet.  Running WECSsim in the fleet analysis mode only 

takes a few minutes depending on computer speed for the full fleet of 1126 power plants 

represented in the eGRID 2007 database (EPA, 2007).  The fleet analysis is national in scale, but 

it can also focus on specific variables based on the model userôs inputs.  Note that any change to 

the modelôs default parameter settings applies to all power plants within the fleet.  For example, 

imagine a power plant in Arizona for which the user would like to specify that make-up power 

be generated by Integrated Gasification Combined Cycle (IGCC) with tower cooling.  This is 

easily done and evaluated in single power plant analysis mode, but if those changes are made in 

fleet analysis mode, make-up power for every plant in the fleet will be generated with IGCC and 

cooled with towers.  If the model user decides to change the rated capacity of a power plant in 

fleet analysis mode, WECSsim will assign the user specified capacity to every plant in the fleet 

instead of using fleet data to populate the default capacities.  It is important that the model user 

be aware of the fact that changing the modelôs defaults in fleet analysis mode has broad 

implications for calculations throughout the model when looking to adjust these default 

parameter assumptions.  Section 8 of this document focuses on interface options specific to fleet 

level analysis. 
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2.  SUMMARY SCREEN OPTIONS 
 

Figure 4 shows the Overview page on the WECSsim Summary tab.  The Summary pages provide 

a high level summary of key model inputs and outputs.  The Overview page inputs include the 

option to choose any power plant from the 2005 U.S. Fleet (EPA, 2007) as a function of plant 

technology and the percent of CO2 capture.  WECSsim selects and displays the most economical 

formation for the selected power plant, how much CO2 is stored, and the costs of storage and 

avoided emissions.  The graphical output includes a map showing the power plant location and 

centroid location of the chosen saline formation, the fate of CO2 before and after CCS, and the 

levelized costs of electricity (LCOE) before and after CCS.  The double bar graph in the middle 

bottom showing CO2 generation and emissions before and after CCS helps illustrate why the cost 

of CO2 storage per mass stored is different from the cost of CO2 emissions avoided per mass 

avoided.  The dollars spent are equivalent, but CO2 generation increases due to fossil fuel-based 

make-up power, which results in the mass rate of CO2 storage being different than the change in 

CO2 emission rates.   

 

 
Figure 4.  WECSsim Summary Tab, Overview Page. 
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Figure 4 shows a scenario of model defaults.
2
  The LCOE ranges from 6.5 cents per kilowatt 

hour (¢/kWh) without CCS to 13.4 ¢/kWh with CCS and brine extraction and treatment.  

Avoided emissions costs are $89.7 per tonne CO2.  Input options available from the remaining 

pages on the Summary tab are the same as the Summary pages for each module tab, so to avoid 

repetition, the reader is referred to the Summary page descriptions in the next several sections. 

 

 

                                                 
2
 For more on model defaults and how to restore them, see Appendix G. 



 

24 

 

3.  POWER PLANT OPTIONS 
 

The Power Plant module in WECSsim is responsible for determining the location, electricity 

generation, CO2 generation, water use, and base electricity costs for a given power plant.  From 

the Power Plant tab, the WECSsim user can adjust any of these parameters.  Defaults are 

typically based on values from an existing plant from eGRID 2007 (EPA, 2007).   
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Figure 5.  WECSsim Power Plant Tab, Summary Page. 

 

Figure 5 shows the Summary page for the Power Plant tab from which the user can change the 

selected default plant and see the plant location, CO2 generation rate, capacity, and capacity 

factor.  Model outputs include a map showing the power plant location, a LCOE bar graph, and 

tabular output including base electricity generation, base CO2 generation, cooling type, and water 

demand.  The selected plant determines model defaults; however, the defaults can be changed 

from the appropriate second level pages.  For example, Figure 6 shows a scenario testing 

increased efficiency per mass CO2 produced (1,885 to 1,500 pounds per megawatt-hour 

(lbs/MWh)).  Note that to change this value, the user must toggle the radio switches to 

ñCustomò, and change the blue custom number to the desired value.  By convention, blue 

numbers in the interface can be manually adjusted by the user using the mouse and keyboard. 
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 Figure 6.  WECSsim Power Plant Tab ï Plant Type & Size Page. 

 

The improved efficiency scenario shown in Figure 6 results in a reduced LCOE for the plant with 

CCS (13 compared to 13.4 ¢/kWh) because of reduction in total CO2 captured, transported, and 

stored, and therefore less brine extracted and treated as well.  However, the cost of CCS per 

stored CO2 or avoided CO2 emissions rises to $73.9 / tonne stored and $106.5 / tonne of avoided 

emissions (from $66.6/tonne and $89.7/tonne, respectively, as seen in Figure 4).  This is because 

there is less CO2 captured at a 90% capture rate (11.41 compared to 14.33 million tonnes per 

year (Mmt/yr) not including make-up power), and thus fewer potential economies of scale 

associated with CO2 capture and transport.  Thus, energy per CO2 efficiency reduces costs of 

CCS from the perspective of LCOE but increases them in terms of cost per mass rate of CO2 

storage or emission reductions.  The subtlety of these changes as a result of a single input change 

underscores the importance of changing only one input at a time.   

 

Inputs and assumptions associated with plant location, water demands, and base LCOE 

assumptions can be changed from the other pages in the Power Plant tab. 
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4.  CO2 CAPTURE OPTIONS 
 

The CO2 Capture module receives information on electricity and CO2 generation for the power 

plant from the Power Plant module (See Figure 3).  In the CO2 Capture tab of the WECSsim 

interface, the model user decides what percent of the generated CO2 to capture, the parasitic 

energy requirements associated with that capture, and what make-up power options will be used 

to offset these energy requirements in order to maintain net electricity generation.   
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 Figure 7.  WECSsim CO2 Capture ï Summary Page. 

 

Figure 7 shows the Summary page of the CO2 Capture tab.  The default CO2 generation at the 

power plant of 1,885 lbs/MWh from eGRID (EPA, 2007) has been restored, so once again the 

user evaluates the base case scenario.  The CO2 Capture tab shows that by default, 90% of 

emissions will be captured at both the original (John E. Amos power plant in West Virginia) and 

make-up power (MUP) plants.  By default, WECSsim chooses the same plant and cooling 

technology for the MUP plant as for the target plant, and thus in this case, MUP will be supplied 

from a subcritical pulverized coal plant cooled with cooling towers.  Determining the parasitic 

energy demand and how that demand will be generated are the two most important results of the 
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CO2 Capture module.  The Parasitic Energy page within the CO2 Capture tab is shown in Figure 

8.  
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Figure 8.  WECSsim CO2 Capture ï Parasitic Energy Page. 

 

In this case, the default of 90% CO2 capture has been changed to 50% at both the original and 

MUP plants.  This value can be changed with the slider bar or by changing the blue numbers 

below the slider bar.  Comparing Figure 7 and Figure 8 illustrates that when this change is made, 

the parasitic energy requirements drop from 30% to 16% of net power plant generation, and total 

CO2 capture drops from 18.67 to 9.2 Mmt/yr.   

 

WECSsim uses the user specified percent of CO2 to be captured to find the parasitic energy loss 

as a fraction of net power using the relationship shown in the upper right of Figure 8.  WECSsim 

will use either the default relationship (dashed black line) or a custom relationship (solid blue 

line) that can be moved by the user by clicking on it and dragging the 0%, 30%, 50%, 70%, 90%, 

and 100% points.  The WECSsim default line changes based on plant type, and the colored 

crosses on the graph represent data points from various NETL studies for reference.  Make-up 

power required to offset parasitic energy losses results in the bulk of added costs and water 

demands associated with implementation of CCS.  Thus, WECSsim bottom line costs are driven 

to a large degree by the calculation of parasitic losses on the Parasitic Energy page of the CO2 
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Capture tab (Figure 8), and the calculation of resulting MUP costs and water demands defined on 

the Make-up Power page of the CO2 Capture tab shown in Figure 9.  
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Figure 9.  WECSsim CO2 Capture ï Make-up Power Page. 

 

On the CO2 Capture ï Make-up Power tab (Figure 9), the model user can select the MUP plant 

type, how much CO2 to capture at the MUP plant, how the MUP plant is to be cooled, the LCOE 

of the new power, and the CO2 generation rate and water withdrawal demand of the MUP plant.  

Figure 9 shows a scenario in which the MUP plant type has been changed from the default 

pulverized coal to IGCC.  Note that as compared to the scenario shown in Figure 8, the LCOE 

costs associated with CO2 capture have dropped slightly (from 2.5 to 2.4 ¢/kWh) because IGCC 

MUP costs are less than pulverized coal if 50% or more of the CO2 from the MUP plant is to be 

captured.  The model user can see this effect in the default MUP LCOE values on the Make-up 

Power page of the CO2 Capture tab by adjusting the MUP CO2 capture amount and toggling 

between pulverized coal and IGCC MUP plant types.   

 

Added water demands associated directly with CO2 capture (not resulting from MUP generation) 

can be adjusted on the Direct Water Use page of the CO2 Capture tab. 
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5.  CO2 STORAGE OPTIONS 
 

The CO2 Storage module receives information on total CO2 capture and location of that capture 

(e.g., which power plant) from the CO2 Capture and Power Plant modules (See Figure 1).  With 

this information, the CO2 Storage module calculates the transportation distances for the CO2 to 

any of the 325 NatCarb 2008-based saline formations (see Appendix C) or a hypothetical saline 

formation as specified by the model user.  The total pore space resource of each saline formation 

(also referred to here as sink) is calculated based on the volume of pores (area × thickness × 

porosity).  With geologic properties of the sink, the model user specification of open or closed 

formation boundaries, and whether or not brine is being extracted simultaneously with CO2 

injection, WECSsim calculates the average volumetric storage efficiency (the portion of pore 

space in the formation that can be filled by CO2) expected for each formation.  Pressure and 

temperature in the CO2 sink (based on depth) are used to calculate steady state density of the 

injected CO2 in the formation.  The volumetric pore resource for CO2 storage in each potential 

sink is multiplied by the density of injected CO2 in that sink to get an estimate of the mass of 

CO2 that could be stored in each formation, either as a total or per unit area of formation.  

WECSsim then combines this mass storage potential with the rate of CO2 capture to get the rate 

at which the power plant in question would fill any of the possible saline formations.  Finally, the 

formation permeability and thickness are used along with a specified injection well field lifetime 

to find the well spacing in the well field and injection rate for each well.  This calculation is 

iterative because well spacing affects injection rate, and injection rate determines total well 

numbers required, which determines well spacing.  See Appendix F for more details on 

injectivity related calculations.  The permeability of the formation can be deterministic, or 

stochastic by individual well or entire well field.  The relative complexity of these calculations 

explains why the CO2 Storage tab is more complex, with eight 2
nd

-level pages as compared to 

four for the Power Plant tab and three for the CO2 Capture tab.  Indeed, development of the CO2 

Storage module represented a sizable undertaking within the overall development of WECSsim, 

which is reflected in the complexity of the CO2 Storage interface tab. 

 

The value of these calculations is that the CO2 Storage module calculates the distance from the 

specified power plant to each available sink, the number of injection wells required at each 

available sink, the sink resource utilized per time, and the pipe sizes and lengths required to 

move CO2 within the injection well field.  All of this information, along with information on 

brine extraction and treatment from the Extracted Water module, are used in the Power Costs 

module to select the most economical saline formation to store CO2 for a given power plant 

scenario.  This is the WECSsim selected formation that is listed as the CO2 Storage Target in the 

CO2 Storage tab Summary page as shown in Figure 10, and the default CO2 Storage Target in the 

CO2 Storage tab Sink ID and Location page shown in Figure 11.  Figure 10 shows that for the 

John E. Amos power plant base case scenario, the St. Peter Sandstone formation, located 

approximately 230 miles away from the power plant, is selected as the most economical 

formation.  Note that the geometric mean permeability of the formation is estimated at 316 mD, 

and only 10 wells are required to inject the 18.7 Mmt/yr CO2 to be stored. 
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Figure 10.  WECSsim CO2 Storage ï Summary Page. 

 

The Plant location page on the Power Plant tab gives a list of the closest five saline formations to 

the power plant, and in this case, the St. Peter Sandstone is fourth on that list.  Why didnôt the 

model choose a closer formation?  The answer lies in the tradeoff between the costs of moving 

CO2, the costs of injecting CO2 and extracting brine, and the quality (or lack thereof) of the 

brine.  Figure 11 shows input options for the sink location, including an option to limit the 

distance that CO2 (and brine) will be moved between the power plant and saline formation and 

vice versa to (an adjustable) 50 miles.  Selection of that option forces the model to use a closer 

formation with a much lower mean permeability (5 mD used in Figure 11 (not shown) compared 

to 316 mD shown in Figure 10), and as a result, 982 injection wells are required such that despite 

the power plant overlying the saline formation, the CO2 transport and storage costs increase from 

0.58 to 2.41 ¢/kWh.  This example shows that an arbitrary limit on the distance between power 

plant and formation may have very detrimental implications on costs associated with CCS at 

power plants that are not close to high quality CO2 sinks. 

 

Default sink shape (in two dimensions) and resulting footprint area is displayed and can be 

adjusted in the Sink Area page of the CO2 Storage tab.  Boundary conditions for the formation, 

either open or closed are also specified in the Sink Area page of the CO2 Storage tab.  The Sink 
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Depth & Thickness page of the CO2 Storage tab is shown in Figure 12.  Model defaults for the 

John E Amos power plant have been restored.  Only two parameters are shown here:  depth and 

thickness; however, because of a paucity of data for these parameters, there are four potential 

sources for these numbers.  The preferred default, and one that exists for the St. Peter Sandstone, 

is a value reported by one of the Regional Carbon Sequestration Partnerships.  If a reported value 

exists, it is used as the default.  If it is not reported, a value from a subset of potentially 

intersecting wells (labeled ñSNL wellsò) becomes the default if available.  The SNL wells in this 

case are only available for a handful of formations either deemed to be important potential 

storage targets or formations for which no depth or thickness information was reported.  If no 

information for depth or thickness was reported or developed with a subset of potentially 

intersecting wells, then results from all potentially intersecting wells are used.  See Appendix D 

for more information on the process used to develop these parameters from well records, either 

by using all potentially intersecting wells, or a subset thereof.  If there are no potentially 

intersecting wells and no reported information, then no information is available to WECSsim, 

and the formation will not be selected unless the user specifies a depth and or thickness in the 

custom option.  Be aware, however, that if the custom option is selected for depth or thickness, it 

sets the depth or thickness of all saline formations to the custom value. 
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Figure 11.  WECSsim CO2 Storage ï Sink ID & Location Page. 
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Figure 12.  WECSsim CO2 Storage ï Sink Depth & Thickness Page. 

 

Default background, injection, and fracture pressures for the saline formation, along with 

formation temperature and resulting CO2 density expected in the formation, are parameters 

displayed and adjustable in the Sink TP CO2 D page of the CO2 Storage tab.  Default porosity 

values are displayed and changeable in the Sink Porosity page on the CO2 Storage tab shown in 

Figure 13. 

 

Figure 13 introduces the notion of rock type composition of the saline formations.  Porosity and 

permeability data were very limited for the 325 NatCarb 2008-based polygons developed for 

WECSsimôs CO2 Storage Module.  To actively address this data limitation, each polygon was 

classified as made up of some fraction of four different rock types:  clean sandstone, dirty 

sandstone, carbonate, and Gulf Coast.  Additionally, a typical range of porosity and permeability 

were associated with each rock type.  For an in-depth discussion on the classification of polygons 

by rock type and the association of porosity and permeability distributions to a given rock type, 

see Appendix E. 
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Figure 13.  WECSsim CO2 Storage ï Sink Porosity Page. 

 

Figure 13 shows that by default the St. Peter Sandstone is classified as 100% clean sandstone, 

and thus WECSsim calculates a mean porosity of 0.13.  In this case, a reported value of 0.25 is 

available, and so it is used as the model default instead of the calculated 0.13.  The model user 

can override this choice by clicking on the alternate estimates for porosity or entering a custom 

value.  The user can also change the assumed rock mix associated with a given saline formation.  

As an example, Figure 14 shows the results of changing the default rock type mix to 50% clean 

and 50% dirty.  The result is initially unexpected:  WECSsim changed the target formation to the 

Appalachian Basin.  The reason for this is that when the user changes the default rock mix, the 

specified rock mix is applied to every formation in the model, and the St. Peter Sandstone now is 

assigned the same average porosity and more importantly, average permeability, as the closer 

Appalachian Basin formation.  This scenario underscores the important point (also made earlier) 

that when model defaults are changed, the change cascades across all saline formations (or all 

power plants) and may change model results in more ways than expected.   

 

If the intention of the user is to see what the change to costs would be if the Saint Peter 

Sandstone is not as close to clean sandstone as assumed, the user must force WECSsim to 

consider the Saint Peter Sandstone only.  This can be done with the custom dropdown in the Sink 
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ID & Location page of the CO2 Storage tab shown in Figure 11.  Figure 15 shows the results of 

this change.  Making the St. Peter Sandstone 50% dirty would increase the number of injection 

wells required from 10 (Figures 11ï13) to 20, and the costs of CO2 transport and storage from 

0.58 to 0.61 ¢/kWh. 
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Figure 14.  WECSsim CO2 Storage ï Sink Porosity Page, Custom Rock Type Fraction. 

Note:  A change to custom rock type mix then changes the target formation because the custom 
change is applied to all formations, and the geologic performance advantage of the St. Peter 

Sandstone supersedes the geographic advantages of closer formations. 
 

In Figures 13ï15, it is important to note that each rock type has an associated mean porosity and 

permeability as well as a standard deviation.  The porosity values are assigned to a normal 

distribution with the given values, and the permeability values are assigned to a distribution that 

is normal in log space with the given values.  It is also important to note that the default mean 

porosity values vary from 0.08 (for Gulf Coast rocks) to 0.18 (dirty sandstone) across rock types.  

This is a very small range relative to the default range for mean permeabilities across rock type 

(1 to 316 mD).  Thus, changing the assumed rock type mix is likely to influence the number of 

wells required more so than the portion of a formationôs pore space required.  The distribution 

parameters associated with each rock type can be adjusted individually, or all distributions can 

be ótightenedô automatically by clicking on the box above the list of standard deviations.  See 












































































































































































































































































































































