Performance Evaluation of Wind Energy Conversion Systems Using the Method of Bins - Current Status

Robert E. Akins

Prepared by Sandia Laboratories, Albuquerque, New Mexico 87115 and Livermore, California 94550 for the United States Department of Energy under Contract AT(20-1)-700

Printed March 1978
NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America

Available from
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price: Printed Copy $4.00; Microfiche $3.00
PERFORMANCE EVALUATION OF WIND ENERGY CONVERSION SYSTEMS USING THE METHOD OF BINS - CURRENT STATUS

Robert E. Akins
Environmental Research Division 5333
Sandia Laboratories
Albuquerque, New Mexico 87185

ABSTRACT

A detailed description of the method of bins, a technique of data collection and reduction for field performance evaluation of Wind Energy Conversion Systems (WECS) is provided. The method of bins is a straightforward yet useful approach to the complex problem of relating the response of a WECS to a variable wind field. Examples of typical results obtained using the method of bins are presented. Methods of determining that the measure of performance of a WECS obtained is correct are outlined. Areas in which further modifications to the technique may be appropriate are also discussed.
CONTENTS

I Introduction ... 7
II The Method of Bins .. 7
 Development ... 7
 Description .. 8
 General Approach .. 8
 Vertical Wind Shear Correction 10
 Density Correction ... 10
 Combining Records ... 11
 Typical Results ... 11
III Verification ... 13
IV Areas for Continued Development 17
V Summary .. 18
References .. 19
Description

General Approach -- A schematic representation of the method of bins is shown in Figure 1. Two input parameters are sampled; a measure of turbine output and a reference anemometer. The measure of turbine output could be shaft torque at the base or hub of the turbine or some measure of generator output. For the remainder of this discussion the measure of turbine output will be taken as torque measured before any speed increasers or generators. Such a measurement provides only a measure of the aerodynamic performance of the turbine or WECS. The location of the reference anemometer is important in the interpretation of the performance data and will be discussed in a later section.

Figure 1. Schematic Representation of The Method of Bins
The range of anticipated wind speed readings is partitioned into equal intervals; for instance 100 intervals to span the range 0 to 25 m s\(^{-1}\) in 0.25 m s\(^{-1}\) increments. As simultaneous readings are taken of both velocity and torque (at 0.1 s intervals), the appropriate velocity bin is identified and a counter associated with that bin is incremented. A running total of torque associated with that particular bin is increased by the torque reading. This operation continues at the specified sampling interval until a decision is provided to stop the operation. At the VAWT test facility data are taken with an on-line minicomputer system and a command to terminate the data collection can be entered in real time. If a time history of torque and wind speed were being analyzed at a later time using a computer facility, a decision to terminate data reduction could be caused by the end of the record or by some internal decision-making process based on the data.

Upon completion of the data recording or of the analysis of an existing data record, the stored wind speed probability density function and the corresponding torque summations may be combined in a number of ways to provide quantitative measures of WECS performance. The average torque produced as a function of wind speed is the primary measure of turbine performance available from this technique. The torque versus wind speed relationship may be examined directly or the information may be put into a nondimensional format. Two nondimensional quantities are computed, a power coefficient, \(C_p \), and alternatively a performance coefficient, \(K \). These quantities are defined:

\[
C_p = \frac{T(V_R) \omega}{\frac{1}{2} \rho A V_R^3} \quad \text{power coefficient} \quad (1)
\]

\[
K = \frac{T(V_R) \omega}{\frac{1}{2} \rho A (R \omega)^3} \quad \text{performance coefficient} \quad (2)
\]

where

- \(T(V_R) \) is the average torque for a particular bin
- \(\rho \) is the density of ambient air during the test
- \(A \) is the swept area of the WECS
- \(V_R \) is the reference velocity for the bin corresponding to the torque (see Vertical Wind Shear Correction)
- \(R \) is the radius of the WECS
- \(\omega \) is the angular velocity of the WECS
The power coefficient is a measure of the fraction of power extracted from a stream-tube of air passing through the cross section of the WECS. The peak power coefficient does not correspond to the peak power produced by a WECS. The performance coefficient is also used as a measure of WECS output. The performance coefficient is proportional to WECS output in the constant RPM mode of operation. Thus, in the constant RPM application, it provides a more readily understood indication of WECS performance.

These parameters are both listed on an output device and plotted using a standard software package. If more than one anemometer was sampled during a particular test, results for each anemometer are displayed. After the data have been examined quickly, the raw records of torque and wind speed probability density may be stored for future use or data collection may be continued by providing an appropriate command.

Vertical Wind Shear Correction -- The reference velocity in the power coefficient is defined as the centerline velocity of the wind turbine. This velocity would be measured at a height corresponding to the center of a vertical-axis WECS or at the hub height of a horizontal-axis WECS. In general, it is not possible to locate a reference anemometer at this exact height and a correction for vertical wind shear must be made. If measurements of wind speed as a function of height are available at the site in question, the correction may be based on these measurements. If no field measurements of the velocity profile are available, an estimate of the appropriate correction may be made based on existing literature. In the present formulation of the method of this correction is applied to each instantaneous velocity reading before selecting a bin. No correction is applied to account for horizontal convection or decay of discrete eddies.

The vertical wind shear correction is of particular importance in the calculation of the power coefficient. The reference velocity is cubed in the denominator of this expression and small errors in the reference velocity will lead to errors approximately three times as large in the power coefficient.

Density Correction -- Both the power coefficient, \(C_p \), and the performance coefficient, \(K \), involve the density of the air during the test. The density of air is a function of both temperature and barometric pressure and can vary at a given location by as much as 15%. These variations are generally not sudden and occur over at least a number of hours. Since both \(C_p \) and \(K \) are nondimensional measures of turbine output, the torque and hence, power produced is a function of density. Therefore it is not consistent to compare actual torque or power for different days without correcting for density variations. To correct for such variations, the measured torque can be normalized to a standard density using the expression,

\[
T_{COR} = T_{ACT} \cdot \frac{\rho_{STD}}{\rho_{ACT}}
\]
(3)
In this expression \(\rho_{\text{STD}} \) is a standard density chosen for a particular location. For the VAWT Test Facility in Albuquerque, New Mexico, at an elevation of 1646 m, the density corresponding to a barometric pressure of 830 mb and a temperature of 16°C was selected as the standard.

A similar correction may be applied to obtain a torque or power reading at sea level. In such a correction, there is a 20% increase in torque between Albuquerque and sea level.

Combining Records. -- In order to obtain an accurate measure of performance of a WECS at a particular location for a specified operating condition, data should be taken for a range of wind regimes which are representative of the site. Such a range of conditions will not be obtained in a short period of testing, and therefore data from a number of different test conditions must be combined. The method of bins allows such records to be combined in a straightforward manner. After each data collection with the WECS, both the torque and wind speed probability density as a function of wind speed are stored in the equivalent of a permanent file in the minicomputer system. These records could also be stored on an external storage medium such as punched cards or punched paper tape. After a number of these data records are accumulated they may be recalled and combined. An averaged torque is computed for each bin weighted by the number of readings in that bin for each record. The probability densities are combined to obtain an overall probability density for the combined record.

When combining torques or any other measure of power, it is important to correct all values to a common density as discussed in the preceding section. Such a combined record of torque provides a useful measure of the average performance of a WECS over a wide range of operating conditions. This description of performance combined with an annual wind speed distribution for a given location provides an estimate of the output which a particular WECS would provide.

Typical Results - - In order to provide a qualitative feeling for typical results obtained with the method of bins, two sets of preliminary performance data for the 17 m VAWT in its two-bladed configuration are presented. The first set of data shown in Figures 2 to 5 are for 11 separate test runs combined using the technique described in the previous section. The combined record consists of 144.236 data points taken at 0.25 s intervals or 10 hours of WECS operation on 9 different days. Figure 2 is the wind speed probability density function of the combined record. Figure 3 is the measured torque at the base of the turbine as a function of wind speed corrected to the centerline of the turbine. Figure 4 is the power coefficient, \(C_p \), as a function of tip-speed ratio, \(R_e/\nu \). Figure 5 is the performance coefficient \(K \), as a function of advance ratio, the inverse of the tip-speed ratio. Figures 6 to 9 are the same plots for one particular test run of about one hour duration. The data from Figures 6 to 9 are used in the following section to provide verification for the method of bins.
Figure 2. Wind Speed Probability Density (F) - Combined Records

Figure 3. Shaft Torque as a Function of Wind Speed - Combined Records
The data from the combined records cover a much wider range of velocities and provide a better definition of the C_p and K curves than do the data from the single run.

III. Verification

In order to develop confidence in the method of bins, a number of approaches to verify the technique have been pursued.

In the initial presentation of the method of bins1 the repeatability of the performance data was discussed. The fact that the torque or performance coefficient as a function of wind speed was repeatable is not conclusive evidence that the method provides valid results. Consequently additional methods of verification have been investigated as a part of the field testing of the 17 m VAWT.
Figure 5. Performance Coefficient as a Function of Advance Ratio – Combined Records

Figure 6. Wind Speed Probability Density (F) – Individual Record
Figure 7. Shaft Torque as a Function of Wind Speed - Individual Record

Figure 8. Power Coefficient as a Function of Tip-Speed Ratio - Individual Record
Figure 9. Performance Coefficient as a Function of Advance Ratio - Individual Record

The most promising method verification involves a comparison of the predicted WECS output using a measured wind speed distribution with the actual energy produced by the WECS during the same period. The predicted output is obtained using techniques discussed in Reference 6. This calculation requires a known power or performance coefficient determined from prior testing and the wind speed distribution at hub or centerline height. The predicted energy, E_p, produced in a period T_o is given by

$$E_p = T_o \int_0^{T_o} \left[\int_{V_{CI}}^{V_{CO}} F(V) C_p(V) \frac{1}{2} \rho V^3 \, dV \right] \, dt . \tag{4}$$

The integral in brackets for a fixed T_o is not a function of time and the expression may be rewritten

$$E_p = T_o \int_{V_{CI}}^{V_{CO}} F(V) C_p(V) \frac{1}{2} \rho V^3 \, dV . \tag{5}$$
where $F(V)$ is the probability density of the wind speed, V_{CI} is the cut-in speed of the WECS, and V_{CO} is the cut-out speed of the WECS.

This value of E_A was compared with the actual energy produced in the same period, E_A. The value of E_A was obtained from a direct integration of shaft torque as a function of time. The C_p used in equation (5) had been obtained from earlier tests. In some cases a reference anemometer located 83 m away from the WECS was used to determine $F(V)$. A summary of verification runs is shown in Table I. The close agreement between the measured and predicted energy production is evidence that the experimentally determined C_p curve is correct. The fact that a C_p curve determined using readings taken at 0.25 s intervals can be used with a wind speed probability density based on 1 minuted averaged speeds is a further indication of the reliability of the performance data obtained using the method of bins. This fact demonstrates that this C_p curve obtained is independent of sampling interval.

IV. Areas for Continued Development

Even though the present version of the method of bins provides useful performance data, areas remain in which useful development of the technique may be pursued. The technique is presently applied using instananeous values of reference velocity and WECS output. The output of many WECS is periodic and related to the operating rpm. It is possible that the WECS output and the reference wind speed should be averaged over one or two periods of rotation of the WECS. Such an averaging may provide reliable C_p and K curves with less total data collection time than the present technique.

A second area for further study involves the correction of the reference wind speed to provide an accurate measure of the wind speed at the centerline of the WECS. In the current version the instantaneous wind speed 0.6 diameter above the WECS is corrected using the mean vertical wind shear measured at the VAWT test facility. For a 1 to 10 minute average such a correction is valid, but the use of such a correction for instantaneous velocity assumes a perfect correlation between velocity fluctuations at the two locations. For the distances involved there will be a positive correlation between such locations, but the correlation coefficient will be less than 1.0. The averaging which takes place in the process of combining readings into bins accounts for some of this difference, and averaging both torque and wind speed may result in a more accurate vertical shear correction. A similar problem exists if there is a horizontal separation between the reference anemometer and the WECS. Fluctuations in wind speed are not only convected horizontally but are also constantly changing as the dynamics of turbulent flow affect them.
TABLE I
Comparison of Predicted and Measured Energy Production

<table>
<thead>
<tr>
<th>Run</th>
<th>Anemometer Location</th>
<th>Wind Speed Observation Method</th>
<th>Energy (kWh)</th>
<th>Diff (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>1</td>
<td>51.1</td>
<td>54.3</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>1</td>
<td>28.8</td>
<td>28.8</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>1</td>
<td>28.8</td>
<td>28.9</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>2</td>
<td>28.9</td>
<td>28.8</td>
</tr>
</tbody>
</table>

Anemometer Location

- a - Directly above WECS
- b - WECS centerline on tower 83 m away

Wind Speed Observation Method

- 1 - Instantaneous readings every 0.25 s
- 2 - 1 minute averages based on 0.25 s readings

Consequently, an instantaneous correction for horizontal wind speed differences contains some error also. Possibly the large number of readings associated with the present form of the method of bins involve sufficient averaging to deal with these inaccuracies. Further studies should address this question.

The maximum horizontal separation between a WECS and a reference anemometer used for performance evaluation should be defined. The need for this information is related to all methods of field performance evaluation, but is also related to applications of the method of bins.

Some measures of the minimum number of points associated with a particular test condition which are required in order to obtain reliable performance estimates must be determined. Such criteria could be applied to determine minimum test durations.

V. Summary

The present form of the method of bins provides a simple yet viable method of performance evaluation of WECS. It is effective for determination of average performance characteristics such as power or performance coefficients. It allows performance data taken at different times to be combined to provide WECS performance characteristics to include a wide range of wind regimes.

Comparisons of predicted WECS output using performance characteristics obtained with the method of bins agree well with actual measured performance. This comparison in addition to prior studies concerning the repeatability of results is evidence that the method of bins is a valid method of evaluating WECS performance.
References

DISTRIBUTION:

TID-4500-R66 UC-60 (263)

Wichita State University (2)
Aero Engineering Department
Wichita, KS 67208
Attn: M. Snyder
 W. Wentz

Aluminum Company of America
Alcoa Laboratories
Alcoa Center, PA 15069
Attn: D. K. Ai
 Senior Scientific Associate

American Wind Energy Association
54468 CR31
Bristol, IN 46507

Dynergy Corporation
P.O. Box 428
1269 Union Avenue
Laconia, NH 03246
Attn: R. B. Allen, General Mgr.

South Dakota School of Mines and Technology
Department of Mechanical Engineering
Rapid City, SD 57701
Attn: E. E. Anderson

P. Bailey
P.O. Box 3
Kodiak, AK 99615

Washington State University
Department of Electrical Engineering
College of Engineering
Pullman, WA 99163
Attn: F. K. Bechtel

Arizona State University
Solar Energy Collection
University Library
Tempe, AZ 85281
Attn: M.E. Beecher

University of Oklahoma
Aero Engineering Department
Norman, OK 73069
Attn: K. Bergey

Louisiana Tech University
Department of Mechanical Engineering
Ruston, LA 71270
Attn: B. F. Blackwell

Dr. P. H. Bottelberghs
Chemical Conversion and Energy Storage
Landelijke Stuurgroep Energie Onderzoek
Dutch National Steering Group for Energy Research
Laan van Vollenhove 3225
Zeist NETHERLANDS

McDonnell-Douglas Aircraft Co.
P.O. Box 516
Department 241, Building 32
St. Louis, MO 63166
Attn: R. Brulle

R. Camerero
Faculty of Applied Science
University of Sherbrooke
Sherbrooke, Quebec
CANADA JIK 2R1

University of Hawaii
Wind Engineering Research Digest
Spalding Hall 167
Honolulu, HI 96822
Attn: A. N. L. Chiu

USDA, Agricultural Research Service
Southwest Great Plains Research Center
Bushland, TX 79312
Attn: R. N. Clark

Lockheed California Co.
Box 551-63A1
Burbank, CA 91520
Attn: U. A. Coty

Arthur G. Craig
Alcoa Mill Products
Alcoa Center, PA 15069

US Department of Energy (3)
Albuquerque Operations Office
P.O. Box 5400
Albuquerque, NM 87185
Attn: D. K. Nowlin
 W. P. Grace
 D. W. King

Headquarters (20)
US Department of Energy
Wind Energy Conversion Branch
Washington, DC 20545
Attn: L. V. Divone, Chief
 D. D. Teague

Southern Illinois University
School of Engineering
Carbondale, IL 62901
Attn: C. W. Dodd
DISTRIBUTION: (cont)

J. B. Dragt
Nederlands Energy Research Foundation (E.C.N.)
Physics Department
Westerduinweg 3 Ptttn (nh)
THE NETHERLANDS

Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, CA 94304
Attn: P. Bos

W. J. Ewing, President
Research Dynamics Associates
P.O. Box 211 Menlo Park, CA 94025

J. Fischer
F.L. Smith & Company A/S
Vigerslevaalle 77
2500 Valby, DENMARK

Environmental Protection Specialist
Department of Environmental Resources
735 West Fourth Street
Williamsport, PA 17701
Attn: R. E. Fisher

University of Colorado
Department of Aerospace Engineering Sciences
Boulder, CO 80309
Attn: J. D. Fock, Jr.

Aerophysics Company
3500 Connecticut Avenue NW
Washington, DC 20008
Attn: W. F. Foshag

Albert Fritzsch
Dornier System GmbH
Postfach 1360
7990 Friedrichshafen
WEST GERMANY

Tyler & Reynolds & Craig
One Boston Place
Boston, MA
Attn: W. W. Garth, Jr.

Amarillo College
Amarillo, TX 79100
Attn: E. Gilmore

TRW Energy Systems
7600 Colshire Drive
McLean, VA 22101
Attn: R. Gorman

Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139
Attn: N. D. Ham

DOE/DSE
20 Massachusetts Avenue
Washington, DC 20545
Attn: S. Hansen

SERI
1536 Cole Blvd.
Golden, CO 80401
Attn: D. M. Hardy

Massachusetts Institute of Technology
Aero/Astro Deptment
Cambridge, MA 02139
Attn: W. L. Harris

Allegany Ballistics Laboratory
Hercules, Inc.
P.O. Box 210
Cumberland, MD 21502
Attn: P. W. Hill

Sven Hugoossen
Box 21048
S. 100 31 Stockholm 21
SWEDEN

O. Igna
Department of Mechanical Engineering
Ben-Gurion University of the Negev
Bear-Sheva, ISRAEL

JBF Scientific Corporation
2 Jewel Drive
Wilmington, MA 01887
Attn: E. E. Johanson

Stanford University
Department of Mechanical Engineering
Stanford, CA 94305
Attn: J. P. Johnston

Kaman Aerospace Corporation
Old Windsor Road
Bloomfield, CT 06002
Attn: W. Batesol

Michigan State University
Division of Engineering Research
East Lansing, MI 48824
Attn: O. Krauss
Kaman Sciences Corporation
P. O. Box 7463
Colorado Springs, CO 80933
Attn: J. Meiggs

Colorado State University
Department of Civil Engineering
Fort Collins, CO 80521
Attn: R. N. Meroney

G. N. Monsson
Department of Economic Planning and Development
Barrett Building
Cheyenne, WY 82002

Don Myrick
105 Skipper Avenue
Pt. Walton Beach, FL 32548

National Aeronautics and Space Adm.
Langley Research Center
Hampton, VA 23665
Attn: R. Muraca, MS317

National Aeronautics and Space Adm. (3)
Lewis Research Center (3)
2100 Brookpark Road
Cleveland, OH 44135
Attn: J. Savino, MS 509-201
R. L. Thomas
W. Robbins

West Texas State University
Department of Physics
P. O. Box 248
Canyon, TX 79016
Attn: V. Nelson

Oklahoma State University (2)
Stillwater, OK 74074
Attn: W. L. Hughes
EE Department
D. K. McLaughlin
ME Department

Oregon State University (2)
Mechanical Engineering Dept.
Corvallis, OR 97331
Attn: R. Wilson
R. W. Thresher

Dow Chemical USA
Research Center
2300 Mitchell Drive
Walnut Creek, CA 94598
Attn: H. H. Paalman
DISTRIBUTION: (cont)

Illinois Institute of Technology
Department of Electrical Engineering
3300 South Federal
Chicago, IL 60616
Attn: A. G. Vacroux

P. N. Vosburgh, Development Manager
Alcoa Allied Products
Alcoa Center, PA 15069

Otto de Vries
National Aerospace Laboratory
Anthony Fokkerweg 2
Amsterdam 1017
THE NETHERLANDS

West Virginia University
Department of Aero Engineering
1062 Kountz Avenue
Morgantown, WV 26505
Attn: R. Walters

Bonneville Power Administration
P. O. Box 3821
Portland, OR 97225
Attn: E. J. Warchol

Tulane University
Department of Mechanical Engineering
New Orleans, LA 70118
Attn: R. G. Watts

University of Alaska
Geophysical Institute
Fairbanks, AK 99701
Attn: T. Wentink, Jr.

 Battelle Pacific Northwest Lab (3)
Atmospheric Sciences Dept.
P.O. Box 999
Richland, WA 99352
Attn: W. C. Cliff

G. Jones
328 Airpark Drive
P.O. Box 1965
Ft. Collins, CO 80522

Rockwell International (3)
Wind Systems
Rocky Flats Plant
P.O. Box 838
Golden CO 80401
Attn: A. C. Hansen

1000 G. A. Fowler
1200 L. D. Smith
1260 K. J. Touryan
1300 D. B. Shuster
1320 M. M. Newsom
1324 E. C. Rightley
1324 L. V. Feltz
1330 R. C. Maydew
1331 H. R. Vaughn
1332 C. W. Peterson
1333 S. McAlees, Jr.
1333 R. E. Sheldahl
1334 D. D. McBride
1335 W. R. Barton
1336 J. K. Cole
3161 J. E. Mitchell (50)
3161 P. S. Wilson
5300 O. E. Jones
5330 R. W. Lynch
5333 B. D. Zak
5333 R. E. Akins
5333 J. W. Reed
5700 J. H. Scott
5710 G. E. Brandvold
5715 R. H. Brasch (100)
5715 E. G. Kadlec
5715 B. Stiefeld
5715 W. N. Sullivan
5715 M. H. Worstell
8266 E. A. Aas
3141 C. A. Pepmueller (Actg) (5)
3151 W. L. Garner (3)

DOE/TIC (25)
(R. P. Campbell, 3172-3)