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ABSTRACT 
 
 When modeling photovoltaic (PV) system 
performance data, modelers typically reduce the amount 
of data analyzed by reducing the sampling frequency 
below the maximum sampling frequency of their 
instruments (under-sampling), averaging a number of 
samples together, or a combination of these two methods. 
A sampling frequency which is too low may not provide 
enough fidelity to accurately model system performance, 
while a sampling frequency which is too high may provide 
unnecessarily high data fidelity and increase file size and 
processing complexity. This paper strives to quantify the 
errors caused by reduced sampling and averaging 
frequencies through the comparison of modeled high 
temporal resolution weather data and low resolution 
weather data. 

INTRODUCTION 
 

 Predictive models can be used in many stages of PV 
system design, purchase, installation, and operation. For 
instance, a model may be used to choose one technology 
instead of another, to estimate power output for power 
purchase agreements (PPA), or to monitor a system’s 
health in real-time. In all of these cases, some form of 
weather and irradiance input is used to predict system 
performance. This weather and irradiance data can come 
from many sources such as historical typical 
meteorological year (TMY) data, real-time data from 
instruments, satellite derivations, or can be generated 
using transition matrices [1]. In each case, the user of the 
data must make a decision regarding an appropriate rate 
at which to sample the data. A high sample rate will 
increase data fidelity at the expense of larger data file 
sizes and analysis computation time. In order to reduce 
the file size, the user may sample less frequently (under-
sample), or sample frequently and average samples 
together. If the reduced data is used in a predictive model, 
and the output is compared to the same predictive model 
output for non-reduced (higher temporal resolution) data, 
the reduced data output will have errors which can be 
attributed to the use of fewer samples of weather data. 
Furthermore, under-sampling and averaging will produce 
distinctly different error patterns. 
 
 It has been shown that the averaging of weather data 
into larger time bins can over predict insolation, the 
integration of irradiance over time, at low light levels [1] 

[2]. This skewed insolation distribution, when combined 
with the fact that modules have a non-linear response to 
irradiance can lead to incorrect performance predictions. 
Variation in insolation due to plane of array (POA) 
irradiance is shown in [2]. Figure 1, below, shows the 
percent of annual direct insolation received on a 2-axis 
tracker by direct normal irradiance in Albuquerque, NM. 
Notice that as the same irradiance data is averaged into 
larger time bins, more energy appears to be generated at 
medium irradiance levels, and this averaging can grossly 
under estimate low irradiance insolation by 5%. Note that 
Albuquerque has a relatively large amount of clear 
weather. In a climate with more partly-cloudy weather, this 
effect would be expected to be even greater. The effect 
shown could cause disparities when using models to 
compare concentrated PV modules to “standard” one-sun 
PV modules. Only direct beam irradiance and insolation 
are shown in Figure 1, but the same effect can be seen 
with global irradiances which may cause disparities when 
using models to compare modules with different 
responses to irradiance. 
 
 If significant weather changes are randomly dispersed 
throughout the day, sample rates less than a few hours 
should not appreciably alter the distribution of high and 
low irradiance periods throughout the year (irradiance 
being the primary driver of PV system output) as happens 
when data is averaged. However, sampling at a given rate 
generally will produce less accurate weather information 
than sampling at a faster rate and averaging to the same 
sample period. It should also be noted that the method of 
interpolation between sampled points can greatly affect 
the induced error. For the purposes of this paper, all 
sample interpolation uses a “zero order hold” or a “sample 
and hold” method, which assumes that all data at times in 
between samples are at the same value as the previous 
sample. 
 
 While these effects have been shown to exist, it is 
unclear how this skew will affect PV predictive models.  
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Figure 1: Percent of annual direct insolation received by 
the irradiance at which it was received, based on 
averaging period length for Albuquerque, NM 2008 
 

PROCEDURE 
 

Data collection 
 

 In an effort to quantify the errors associated with 
reduced sample rates and averaging, weather data was 
collected at Sandia National Laboratories’ Photovoltaic 
Systems Evaluation Labs (PSEL) in Albuquerque, NM. 
Sandia’s weather station collected irradiance, 
temperature, wind speed and other meteorological data 
approximately every three seconds for several days in late 
August to mid-September, 2008. The weather data was 
then used in a simple irradiance algorithm to obtain 
irradiance on a tilted plane. Finally, the POA irradiance 
and meteorological data were input to Sandia’s 
Photovoltaic Array Performance Model [3] to simulate the 
performance of a single 215 Wp mono-crystalline module 
which had been tested at Sandia in 2006. 
 
 The highest resolution weather data and the model 
output corresponding to that data are considered the “real-
time” data set. This “real-time” data set is considered to be 
the gold standard to which all other data will be compared 
and comparison statistics will be generated. The three 
second weather data was then re-sampled at a lower rate, 
known as the sampling window. Sampling windows were 
generated from 10 to 3600 seconds in 10 second 
increments. For example, a sampling window of sixty 
seconds would sample every twentieth point and assume 
that the sampled value is held for the following sixty 
seconds. The under-sampled weather data was then up-
sampled to the same rate as the “real-time” data in order 
to allow a point for point comparison. In order to average 
the weather data, the day was similarly divided into time 
bins the size of the sampling window, but all weather 
points which fell within the bin were averaged and the 
average value was used for the entirety of the time bin. 
The under-sampled and averaged weather data sets were 

then used to model the performance of a single module, 
and the model outputs of the under-sampled and 
averaged weather data were compared to the model 
outputs for the “real-time” weather data. Figure 2, below, 
shows the modeled module maximum DC power, Pmp, on 
a sunny day in Albuquerque using the high resolution 
“real-time” weather data. Also shown is the modeled 
maximum power for weather data that was under-sampled 
and averaged. The error between under-sampled or 
averaged Pmp and the “real-time” Pmp was calculated 
through comparison statistics. Since the time interval used 
in Figure 2 is 3600 seconds (1 hour) the total error 
between the “real-time” and sampled graphs would 
correspond to a point at sampling window = 3600. Note 
that for a day with little variability, the under-sampled data 
under predicts power in the morning and over predicts 
power in the afternoon, but will generally have the correct 
total energy over a day. 
 

 
Figure 2: Modeled module maximum DC power, Pmp, on 
a sunny day with low variability, shown with model output 
from 1 hour averaging and 1 hour under-sampling of 
weather data 
 
Comparison statistics 
 
 After modeling the under-sampled and averaged 
weather data sets, the output was compared to the “real-
time” modeled output with a number of error statistics. The 
root mean squared deviation (RMSD), mean absolute 
error (MAE), and daily energy deviation (DED) were 
computed as follows: 
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where  
 n = the number of samples in the day 
 yi = the ith under-sampled or averaged output PMP 
 xi = the ith “real-time” output PMP 
 ti = the time (in seconds) of the ith sample 
 
 The mean bias error (MBE) was also computed, but is 
extremely similar in nature to the daily energy deviation 
since the time between samples is approximately equal. In 
most cases these error values have been normalized by 
the measured module power at standard test conditions 
(Wp) for the module in order to make the output scalable to 
a PV array of any size. When normalized by Wp the DED 
becomes a daily energy yield error measured in Whr/Wp.  
 
Daily variability binning 
 
 It was also hypothesized that the resulting errors 
would be positively correlated to the daily variability. Thus 
a “daily variability factor”, FDV, had to be used to separate 
the days of high variability from the days of low variability. 
For this variability factor, direct beam transmittance, Kn, 
was chosen as the input although a number of similar 
inputs could be used [4]. FDV was computed as the 
variance of the difference of all Kn values from the prior Kn, 
as shown in equation (5). 
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where  
 In = the direct normal irradiance at Earth’s surface 
 Io = extraterrestrial direct irradiation 
 
 For all of the days where FDV was computed, the days 
were sorted into four groups by variability. The highest 
variability days had FDV ≥ 4.5 x 10-4. Two groups of less 
variability were found such that 2.5 x 10-4 ≤ FDV< 4.5 x 10-4 
and 2 x 10-5 ≤ FDV < 2.5 x 10-4. The least variable days 
were found such that FDV < 2 x 10-5. These variability bins 
were respectively referenced qualitatively as “no 
variability”, “little variability”, “moderate variability”, and 
“high variability” for ease of reading. The days with the 
least variability were perfectly clear days, although similar 
FDV values could be obtained from days which were 
uniformly overcast. Figure 3, below, shows Kn values for 
representative days in each variability bin. Each bin 
contained three days of similar FDV values, and the 
following results section will show the average errors of 
the three days within each variability bin. 
 

 
Figure 3: Kn values for representative days in all 4 
variability bins 
 

RESULTS 
 

Effect of averaging vs. under-sampling 
 
 Throughout the process, it was found that averaging 
and under-sampling do not produce similar amounts of 
error. Figure 4 and Figure 5, below, show that under-
sampling produces approximately twice as much MAE for 
days with little variability, but these variations seem to 
average out and there is not a large difference between 
under-sampling and averaging on the energy yield error. 
 

 
Figure 4: MAE for days with no variability. 
 



 
Figure 5: Daily energy yield error for days with no 
variability. 
 
 For days with moderate or high variability, however, 
the MAE is typically increased by about 50% when an 
under-sampling reduction method is used instead of an 
averaging method. In these cases, the errors are not 
averaged throughout the day, and the daily energy yield 
error of an under-sampling method is about 2-2.5 times 
larger than that of an averaging method. It is also worth 
noting that the energy errors of a high variability day due 
to under-sampling were approximately evenly distributed 
on either side of zero (μunder-sample = 0.011), while the 
energy errors due to averaging were always positive 
(μaverage = 0.071). MAE and daily energy error for days with 
high variability are shown below in Figure 6 and Figure 7. 
 

 
Figure 6: MAE for days with high variability. 
 

 
Figure 7: Daily energy yield error for days with high 
variability. 
 
 Under all conditions, the under-sampling method 
produced a much more erratic error function for varying 
sample rates.  
 
Effect of daily variability 
 
 Daily variability plays a large part in determining the 
errors associated with sampling rates. A day with low 
variability is typically insensitive to sample rate since the 
conditions which govern system output, namely irradiance, 
are changing slowly. The high frequency nature of the 
conditions on a highly variable day greatly increases the 
error sensitivity to sample rate. As previously mentioned, 
twelve days were evenly binned into four variability 
groups. The under-sampling method produces a more 
erratic error function. In order to improve readability, the 
error due to daily variability is only shown here as 
generated by the averaging of weather data.  
 
 Figure 8, Figure 9, and Figure 10 respectively show 
the RMSD, MAE, and daily energy yield errors for the 
different variability bins. 
 
 
 



 
Figure 8: RMSD in W/Wp for days of differing variability 
 

 
Figure 9: MAE in W/Wp for days of differing variability 
 

 
Figure 10: Daily energy yield error in Whr/Wp for days of 
differing variability 
 
 These figures clearly show that increased daily 
variability leads to increased errors on a sample by 
sample basis and that these sample errors lead to an over 

prediction of energy for a mono-crystalline module. 
Furthermore, as indicated by the MAE in Figure 9, 
modeling errors of up to 6% may be experienced during 
high variability days even if the weather data is measured 
at a three second interval and averaged into one hour 
bins, which is similar to the method used for gathering of 
irradiance data in TMY data sets [5]. 
 
Effect of different types of modules 
 
 Modules typically exhibit a nonlinear response to POA 
irradiance with respect to their rating at a given test 
condition. Figure 11, below, shows the modeled 
performance differences with varying effective irradiance 
(Ee) when other conditions are held at PVUSA test 
conditions [3]. A module with perfectly linear response to 
Ee would overlay the x-axis of Figure 11. The non-
linearities observed, combined with the aforementioned 
averaging of high and low light levels, which causes more 
annual insolation at medium irradiances, can cause 
models using averaged irradiance data to over predict 
energy generation for modules with increasing efficiency 
at low light levels [1] [2]. 
 

Modeled Performance Differences with Varying Irradiance
Ambient conditions held at T=20 C, wind speed = 1 m/s
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Figure 11: Performance differences for 6 modules with 
varying effective irradiance. Note that modules shown may 
not be indicative of current production modules. 
 
 Up to this point, all error statistics have been shown 
for module 4 (215 Wp mono c-Si). Figure 12, below, shows 
the daily energy yield error for module 1 and module 4 for 
a range of variability conditions. In both cases, the 
averaging of weather and irradiance data causes the 
model to over predict energy output. However, the over 
prediction is significantly larger for the module with high 
performance at lower light levels (module 1). For days of 
little and moderate variability, the energy error for module 
1 is approximately 2 times the energy error for module 4; 
this increases to about 2.5 times for days of high 
variability. Thus, the nonlinear response of a module is 
compounded by the averaging of highly variable 
irradiances to cause higher errors in energy prediction.  
 



 
Figure 12: Energy yield error over a range of averaging 
window sizes and variability conditions, for two different 
modules using identical input weather data 
 

CONCLUSIONS 
 

 When measuring weather and irradiance data for use 
in PV modeling, either as a predictive tool, comparative 
tool, or as a monitoring tool, the weather instrumentation is 
typically sampled at a low rate or sampled and averaged 
in order to reduce the amount of data collected. Each 
method of data reduction induces more errors as the 
sampling or averaging size becomes larger. It is evident 
from the results presented that sampling less frequently 
causes larger errors than sampling more frequently and 
averaging. 
 It was also shown that the errors induced by the 
averaging of weather data are a function of the daily 
variability, as defined by direct beam transmittance in 
equation 5. This seems intuitive, as a signal with higher 
frequency content requires a higher sampling frequency in 
order to avoid aliasing. However, the results show that 
MAE of up to 0.06 W/Wp (6% at STC) can be induced by 
averaging data into 1 hour averages on high variability 
days. Energy yield errors of up to 0.2 Wh/Wp per highly 
variable day were also found. Energy yield errors of 0.2 
Wh/Wp can be significant, especially for highly variable 
days which receive low daily insolation. For a single day 
(not shown), an energy yield error of 0.38 Wh/Wp was 
found, which accounted for a 7.9% over prediction of 
energy throughout the day. While this was the “worst-
case” of all 16 possible days of data, combining high 
variability and low insolation, it can serve as an indicator of 
the energy errors which may be induced by a reduced 
sampling rate. 
 As modules respond non-linearly to changes in 
irradiance, they are affected by the averaging of irradiance 
data which blends high and low irradiances into periods of 
medium irradiance. Modules which show higher 
efficiencies at medium irradiance (around 500 W/m2) will 
benefit from the averaging of irradiance data by over 
predicting energy generation due to medium irradiance 
conditions. Conversely, modules with lower efficiencies at 

medium irradiance will be negatively impacted as models 
which average irradiances will under predict energy 
generation (or over predict by less, as is shown in this 
paper).  
 

FUTURE WORK 
 

 Further improvements in the method presented may 
be made by refining the variability binning process, 
modifying the error statistics used, or looking at a larger 
sample of models, modules, and input weather data. 
Linear interpolation of the reduced data points may also 
be examined as an alternative to the “sample and hold” 
methods used here.  
 In the future, it may be possible to estimate an 
average number of days a particular site may have within 
each variability bin, thus defining the average variability of 
a site. Based on the site variability, a sampling or 
averaging rate may be selected such that measurements 
are expected to not exceed a given error threshold. More 
generally, it is hoped that the results presented will inform 
system modelers as they select a sampling and averaging 
rate, such that they may have data with accuracy 
appropriate to their needs.  
 Since most modelers depend on hourly data sets 
such as TMY3 data, the effect of hourly averaging for a 
range of climates and module types is of interest. The 
possibility of synthesizing sub-hourly data from hourly data 
to improve modeling accuracy will also be investigated. 
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