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ABSTRACT 
 
Predicting photovoltaic array performance is an important 
part of system design and monitoring, so it’s important to 
quantify the uncertainty associated with the predictions. 
The Sandia Array Performance Model [1] is one of many 
tools used to predict annual energy production, but the 
effect of the uncertainty in model coefficients has not been 
fully investigated.  This paper quantifies the relative 
importance of voltage and current temperature 
coefficients, as well as the coefficients relating voltage and 
current to solar irradiance, for crystalline silicon modules.  
Using the coefficient variation observed in the Sandia 
module database and computer simulation, the effect of 
the uncertainty was quantified in terms of the range in 
predicted annual energy production relative to actual 
energy production by three small grid-connected PV 
systems.  The relative importance of each coefficient by 
month of the year was also determined in order to 
understand the seasonal behavior of the performance 
model.   
 

INTRODUCTION 
 
System design and field monitoring depend on accurate 
photovoltaic array performance predictions.  Performance 
predictions are useful in comparing different technologies 
prior to installation and for monitoring systems in the field.  
Understanding the precision in performance predictions is 
essential to making decisions with high confidence. This 
paper documents the impact of uncertainty associated 
with five model coefficients used in the Sandia 
Photovoltaic Array Performance Model [1].  Previous work 
has already put some bounds on the effect of the 
temperature coefficients relative to other system level 
factors in determining ac-energy available from PV 
systems [3].  We use the model to calculate the range of 
predicted annual energy production from three small 
systems installed at Sandia National Laboratory’s outdoor 
test site as a way of estimating the impact, or sensitivity, of 
each coefficient on the model residuals.   
 
Sandia National Laboratories (SNL) has for many years 
conducted outdoor tests on photovoltaic modules to 
estimate performance coefficients from linear regression 
for use in the Sandia Photovoltaic Array Performance 
Model.  Sandia also maintains a database of performance 
coefficients for hundreds of photovoltaic modules for 
modeling purposes. The Sandia performance model has 
been implemented in the U.S. Department of Energy's 

Solar Advisor Model (SAM) [2]. The uncertainty estimates 
documented in this analysis will also support a separate 
modeling and simulation effort underway at SNL to 
understand differences among various competing 
performance models, including the Solar Advisor Model 
(SAM).   
 

PROCEDURE 
 
Sandia Array Performance Model  
 
The Sandia Array Performance Model was used to predict 
annual energy production from three small crystalline 
silicon arrays of less than 2 kW each located at the Sandia 
outdoor test facility.  The nominal coefficients taken from 
the module database for the appropriate array provided 
the baseline prediction for annual energy production.  We 
then applied 32 unique sets of model coefficients 
generated by a 25

 

 experimental design plus one center 
point in order to generate a range of predicted annual 
energy production.  The uncertainty in the model 
coefficients was represented by the variation in the 32 
unique sets of coefficients.  The range in predicted energy 
production from the simulation was used to quantify the 
effect of the uncertainty in the model coefficients on 
performance predictions. A more realistic estimate of the 
uncertainty in some of the model coefficients was also 
quantified through analysis of test results on multiple 
modules from the same manufacturer.   

The Sandia Array Performance Model uses three key 
equations to predict power at any given time, shown in 
equations 1-3.  The uncertainty analysis will address the 
impact of five parameters in these equations:  βVmp, α Imp, 
C0, C2
 

, and the diode factor ‘n’.   

            (1) 
 

        (2) 
 
       (3) 
 
 
Imp = Predicted maximum-power current 
Vmp = Predicted maximum-power voltage 
Pmp = Predicted maximum power 
Imp0 = Current at maximum power under standard test 
conditions. 
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Vmp0

E

 = Voltage at maximum power under standard test 
conditions. 

e
C

 = Effective irradiance on a scale from 0 to 1+ suns. 
0 and C1 are regression coefficients estimated under 

clear and cloudy sky conditions by regressing Imp at 50 °C 
on Ee + Ee

2 and intercept = 0.  C0 + C1
T

 = 1. 
C

T
 = Cell temperature 

0
C

 = Reference cell temperature, 25 °C 
2 and C3 are regression coefficients estimated by 

regressing Vmp at 50o

α
 C on nkT/q*ln(Ee).   

Imp
β

 = Temperature coefficient for maximum-power current  
Vmp

δ(T

 = Temperature coefficient for maximum-power 
voltage 

C

 

) = nkT/q = “Thermal voltage“ where k is Boltzmann’s 
constant, q is elementary charge, T is cell temperature in 
Kelvin, and n is the measured ‘diode factor’ of a cell n a 
module 

The Sandia report provides a more detailed explanation of 
these equations and how they are generated for use in the 
model [1]. 
 
Sandia Module Database 
 
The Sandia module database contains model coefficients 
for over 50 tested crystalline silicon modules and 300 
crystalline silicon modules with estimated coefficients.  
The 5th and 95th

 

 percentiles from the distribution of model 
coefficients were used for the high and low levels for the 
experimental design and simulation, Figure 1.  This plot 
includes both measured and estimated coefficients, since 
the distributions are similar.    

 
 

Figure 1:  Distribution of model coefficients for crystalline 
silicon modules from the Sandia module database with 
reference lines at the 5th and 95th percentiles.   

 
C1 and C3 are not included explicitly in the simulation 
because they do not vary independently from C0 and C2, 
respectively.  C0 + C1 = 1.  The equation C3 = -8.5 + 10.5 
* C2 was used to estimate C3 from C2

 

, based on the 
correlation between the two terms observed in the 
historical database.     

Computer Simulation 
 
A computer simulation was used to quantify the effect of 
uncertainty in the model coefficients on predicted energy 
production.  For each of the three arrays, the Sandia Array 
Performance model was run with 32 unique sets of model 
coefficients from the factorial design plus the nominal set.  
The nominal set comes from the module database for the 
given technology.   
 
DC power was measured every two minutes between 
March 2007 and March 2008 on three small grid-
connected systems installed at the Sandia outdoor test 
facility.  DC power was predicted at each observation 
using the Sandia Array Performance Model.  Measured 
and predicted energy were calculated as the weighted 
sum of power by the hour, the month, and the year for 
each system, as shown in Equations 4 and 5.  The weight 
of each sum was determined by the time interval between 
the current measurement and the previous measurement.  
If the interval was greater than one hour, that observation 
was ignored because the irradiance conditions may have 
changed a great deal in that interval of time.  The number 
of observations was constant for each simulation so the 
comparison across the experimental design is valid, but 
not necessarily an accurate representation of a full year in 
production.   
 

           (4)  
 

          (5)            
 
The residual was calculated as DC predicted energy 
minus DC measured energy, such that a positive residual 
indicated the model over-predicted the actual energy 
production and a negative residual meant the model 
under-predicted actual energy.  Effective irradiance was 
collected from a calibrated crystalline reference cell in the 
plane of array.  Cell temperature was estimated from 
thermocouples on the back of the modules and equation 
12 from Sandia report [1] using a 3 °C temperature offset.   
 
Finally, a multiple linear regression model was fit to the 
residuals versus the model coefficients to determine 
relative importance of each coefficient, Equation 6. 
 

        (6) 
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Figure 2:  Residuals for three systems over the 34 simulations (32 factorial points + 1 center point + 1 nominal setting) for 
which actual DC energy was approximately 2000 kWh/kWp/yr.  The residual using the nominal coefficients is shown with 
the green asterisk and the center point is shown with ‘o’. 

 
 
 

 
 

RESULTS 
 
Annual Energy Residuals 
 
Table 1 shows the sensitivity of annual energy yield on the 
uncertainty in model coefficients.  Predicted yield varied by 
as much as 5% from the lowest to highest prediction for a 
given array of modules.   
 

 
 
Table 1:  Minimum and maximum of annual energy 
residuals for three systems over the simulation space.   
 
The residuals for all 34 sets of model coefficients are 
shown in Figure 2.  The residual divided by the power 
rating of the system is plotted on the y-axis, so the 
interpretation of the residual is straightforward in terms of 
annual yield (kWh/kWp/yr).  The 5th and 95th

 

 percentiles of 
the model coefficients are plotted along the x-axis as ‘lo’ 
and ‘hi’, respectively.   

Several general patterns emerge from the plot.  First, the 
Sandia model using the nominal coefficients does a good 
job of predicting the annual DC energy production.  
Predicted yield for String 1 and String 3 are low by 15 
kWh/kWp/yr, or 0.75%, relative to the 2000 kWh 
produced.  The prediction for String 2 was high by about 
40 kWh/kWp/yr, or 2%.  The residuals for the center points 
of the design space, shown as circles in the graph, appear 
close to the nominal coefficients, as well.  This result 
suggests that ‘generic’ model coefficients for this specific 
technology did just as well as the nominal coefficients in 
predicting energy yield, for these three system examples.  
 
 
Several additional observations can be taken from the 
graph, some of which should be expected from a careful 
examination of equations 1 and 2, some of which are less 
obvious.   
 

1. As βVmp

2. As C

 varies from -0.0025 (Lo) to -0.002 (Hi), 
the coefficient is approaching 0, so predicted 
power increases because the voltage loss due to 
temperature diminishes.    

0 varies from 0.975 (Lo) to 1.021 (Hi), it 
moves from a number less than one to a number 
greater than one, so predicted power increases 
because Ee

3. As C
 > 0. 

2 varies from -0.387 (Lo) to 0.344 (Hi), the 
predicted power decreases for all three systems, 
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which is not obvious from the equations.  As C2 
varies from Lo to Hi, it changes from a negative 
number to a positive number.  For C2 < 0, 
predicted Vmp increases when Ee < 1 and 
decreases when Ee > 1, because ln(Ee) < 0 
when Ee < 1.   When C2 is positive, predicted 
Vmp decreases when Ee < 1 and increases when 
Ee > 1.  The effect of C2 has to be understood in 
terms of the distribution of Ee

4. As α

 for a given area or 
time period. (See Figure 7.)   

Imp

5. As n varies from 1.216 (lo) to 1.49 (Hi), predicted 
power decreases.  This effect is also not obvious 
from the equations, as it depends on the sign of 
the C

 varies from -0.00052 (Lo) to -0.000006 
(Hi), the coefficient is actually getting closer to 0, 
so predicted power increases because the 
current loss due to temperature decreases .    

2
 

 and the distribution of irradiance.   

The relative importance of each coefficient in explaining 
the variation in predicted annual energy yield is shown in 
Figure 3.  The points represent the difference between the 
high and low annual energy predictions for each term 
averaged across the other factors in the experimental 
design.   
 

 
 
Figure 3.  Relative importance of model coefficients on 
variation in annual energy predictions for systems that 
produced 2000 kWh/kWp/yr.   
 
BVmp has the biggest impact on energy prediction, but the 
effect is limited to + 0.75% of actual energy.  C0 and C2 
follow as the second and third most important coefficients 
for predicting energy production. The α Imp

 

 coefficient 
effects the prediction by + 0.4%, while the diode factor is 
limited to less than + 0.2%.   The sum of the individual 
effects is equal to the overall variation shown in Figure 2.  

The relative rank is likely to vary for systems in different 
climates, depending on the distribution of temperature and 
irradiance, as well as for different technology types.  As 
previously reported, the effect of temperature coefficients 
on predicted annual energy production for mc-Si is 
different for Albuquerque as compared to Buffalo, NY, 
where it’s much colder and less sunny [3]. 
   

Monthly Energy Residuals 
 
The relative importance of each model coefficient also 
changes by month of the year (Figure 4).  There is no 
significant difference from one array versus another in 
terms of relative importance by month, so the three arrays 
were aggregated to the same panel in this graph.  The 
importance of C0, C2, and n remain constant from month 
to month, but the influence of temperature coefficients α lmp 
and βVmp changes over the year.  βVmp 

 

can impact 
predictions by as much as + 2.5 kWh/KWp/month in June 
and July when actual energy production was around 200 
kWh, but it showed virtually no impact in the cooler winter 
months. 

 
 
Figure 4.  Relative importance of each model term by 
month of the year for three small crystalline systems in 
Albuquerque, NM.  

 
DISCUSSION 

 
Uncertainty of Model Coefficients 
 
The estimates of uncertainty in the model coefficients 
used for the simulation represent a worst case scenario 
because the analysis assumes all the variation in the 
module database represents random variation about the 
true coefficient.  Physics based models should explain at 
least some of the variation in the database:  cell 
technology, cell production variability, cell mismatch in 
modules, module sampling uncertainty, test procedures 
including outdoor environmental conditions or laboratory 
equipment used to vary temperature, data analysis or 
regression algorithms, and measurement error [4].   
 
Using historical data from Sandia outdoor module testing, 
we can estimate the variation associated with different 
modules which are nominally equivalent in terms of cell 
technology and module construction.     The within group 
variation of nominally identical modules is about one-half 
to one-third as much as the entire distribution for βVmp and 
α Imp
 

 , Figure 5. 

The range of predicted annual energy yield for Array 2 
was cut in half when using uncertainty estimates equal to 
half of the original estimates.  A Gage Repeatability and 
Reproducibility (Gage R and R) study would be necessary 
to further refine the estimate of uncertainty for a broad 
range of module products and test conditions, and to 
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identify opportunities for improving the measurement 
process.     
 

 

 
 

Figure 5.  βVmp [V/°C/cell] and α Imp [1/°C] estimates for 
crystalline silicon modules.  A, B, C, D, and F show groups 
of nominally equivalent modules.  The references lines are 
the 5th

 

 and 95 the percentiles from the module database.  
DB represents the remaining records in the module 
database for silicon modules. 

Figure 6 shows the βVmp estimates of several different 
modules from three different manufacturers of crystalline 
silicon modules.  βVmp for manufacturer 1 is significantly 
higher than the other two by 0.1 mV to 0.27 mV/ C/ cell, 
based on a 95% confidence interval for the difference in 
the means.  This analysis was based on measured 
modules only.  By contrast, there is no significant 
difference in α Imp
 

 for these same three manufactures.   

   
 
Figure 6.  Comparison of βVmp

 

  (V/C/cell) for three different 
module manufacturers of crystalline silicon modules. 

The estimates of within group variation and the significant 
difference in βVmp 

       

for at least one manufacturer suggest 
that the uncertainty estimates used in the simulation were 
over-stated by a factor of 2 or 3.  The combined sensitivity 

of annual energy yield to model coefficients drops from + 
2.5% to + 1.5% using these more realistic estimates of 
uncertainty in model coefficients.  The sensitivity of any 
single model coefficient is considerably less than the 
combined effect of all five terms.  

 
Relative Importance by Month 
 
The relative importance of the two temperature 
coefficients changes over the course of the year.  
Predicted energy yield is more sensitive to βVmp and α Imp

 

 
in the summer months because the average module 
temperature is higher and further away from standard test 
conditions. The average monthly cell temperature ranged 
from 18 °C in January to 45 °C in July and August.   

The relative importance of C0 and C2

 

 remain constant 
over the year because they are the coefficients for 
effective irradiance effects.  Effective irradiance generally 
varies from 0 to full sun over the course of each day all 
year round, as opposed to operating temperature which is 
more seasonal.   

 
 
Figure 7.  Predicted Vmp vs effective irradiance for a 
single module over a range of C2 and C3

 

 values taken 
from the module database. 

C2 is also the only parameter to change signs from the low 
to high setting.  C2 and the corresponding C3 coefficients 
are used to predict the Vmp as a function of Ee, and they 
are especially important in lower light conditions, as shown 
in Figure 7.   As Ee approaches 1, Vmp approaches 
Vmp0, and C2 and C3 have little effect on predicted Vmp.   
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However, C2 and C3

 

 are important for modeling the 
relationship between Vmp and effective irradiance below 
0.7 suns.   

Finally, the importance of the diode factor on energy 
predictions remains fairly constant and relatively small 
over the year.  The diode factor enters in to the equation 
as part of the thermal voltage, which is roughly 26 mV per 
cell at 25 °C and n = 1.  With five modules in series and 72 
cells per module, the predicted Vmp would increase (or 
decrease depending on the sign of C2) from 2.4 V to 3.5 V 
between n=1 and n=1.5 when C2

 

 =0.25.  This represents 
a 0.5% relative change for a 200 V system.  

Overall Modeling Accuracy  
 
It is important to keep the results presented in this 
document in context with the overall uncertainty 
associated with modeling PV system energy production. 
This study specifically addresses only variation in 
temperature coefficients and coefficients relating the 
behavior of Vmp and Imp to solar irradiance. As discussed 
elsewhere, there are many other factors influencing both 
the DC performance characteristics of a PV array as well 
as the AC performance of the overall system [3]. All of 
these factors must be considered in modeling or 
monitoring PV system energy production. 
 
This study quantifies the influence and the relative 
importance of specific coefficients in the Sandia 
performance model for crystalline silicon systems 
operating in Albuquerque. Knowing the relative influence 
of these coefficients will assist in guiding development of 
module testing procedures and in improving the Sandia 
performance model. Similar analyses will need to be 
conducted for other PV technology types (thin-film, 
concentrator) at different geographic locations in order to 
better understand the overall uncertainty in annual energy 
calculations using the Sandia performance model.        
 
 
 

CONCLUSION 
 

The effect of uncertainty in the model coefficients for 
predicting annual energy yield using the Sandia Array 
Performance Model ranged from 2% to 5% relative to 
actual energy production.  Using the worst case estimates 
of uncertainty, the predicted annual energy yield varied by 
100 kWh/kWp/yr on a system that produced 2000 
kWh/kWp/yr of DC power (5%). Using slightly more 
realistic estimates of coefficient uncertainty, the predicted 
annual DC energy yield ranged only 2% relative to actual 
energy yield.  While the relative importance of each 
parameter can change over the course of the year, βVmp 
was most important in terms of predicting annual energy 
yield.  Under the worst case estimates of uncertainty 
however, the sensitivity to βVmp was roughly + 0.75%.  C0 
and C2 each had slightly less influence on the predicted 

annual yield compared to βVmp.  α Imp

 

 was about half as 
important and the diode factor had virtually no impact on 
predicted annual energy production.  

These conclusions were reached for crystalline silicon 
systems operating in environmental conditions typical of 
Albuquerque, New Mexico. The relative importance of the 
modeling coefficients considered will likely differ for other 
PV technology types and for sites with different 
environmental conditions. However, relatively liberal 
bounds on coefficient variability, due to either 
measurement error or module production variability, were 
found to introduce relatively small errors (<5%) when 
comparing predicted to measured annual energy 
production.  
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