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ABSTRACT 

Mirror facets for Concentrating Solar Power (CSP) systems have 

stringent requirements on slope accuracy in order to provide adequate 

system performance. This paper presents a newly developed tool that 

can characterize facets quickly enough for 100% inspection on a 

production line.  

A facet for a CSP system, specifically a dish concentrator, has a 

parabolic design shape. This shape will concentrate near-parallel rays 

from the sun to a point (or a line for trough systems). Deviations of 

surface slope from the design shape impact the performance of the 

system, either losing power that misses the target, or increasing peak 

fluxes to undesirable levels. Three types of facet slope errors can 

impact performance. The first is a focal length error, typically caused 

by springback in the facet forming process. In this case, the 

wavelength of the error exceeds the size of the facet, resulting in a 

parabola, but with the wrong focal length. The results in a slope error 

that is largely systematic across the facet when the measured slope is 

compared to the design slope. A second shape error, in which the 

period of the error is on the order of the length of the facet, manifests 

also as a systematic slope error. In this case, the facet deviates from a 

parabolic shape, but can be modeled with a higher order curve. 

Finally, the residual errors after a model is proposed are usually 

lumped through a Root Mean Square (RMS) process and characterized 

as the 1-sigma variation of a normal distribution. This usually 

characterizes the small-scale imperfections in the facet, and is usually 

called “slope error”. However, all of these deviations from design are 

in facet errors in the slope of the manufactured facet.  

The reported characterization system, named SOFAST (Sandia 

Optical Fringe Analysis Slope Tool) has a computer-connected camera 

that images the reflective surface, which is positioned so that it views 

the reflection of an active target, such as an LCD screen. A series of 

fringe patterns are displayed on the screen while images are captured. 

Using the captured information, the reflected target location of each 

pixel of mirror viewed can be determined, and thus through a 

mathematical transformation, the surface normal map can be 

developed. This is then fitted to the selected model equation, and the 

errors from design are characterized. The reported system currently 

characterizes point focus mirrors (for dish systems), but extensions to 

line focus facets are planned. 

While similar approaches have been explored, several key 

developments are presented here. The combination of the display, 

capture, and data reduction in one system allows rapid capture and 

data reduction. An “electronic boresight” approach is developed 

accommodating physical equipment positioning errors, making the 

system insensitive to setup errors. A very large number of points are 

determined on each facet, providing significant detail as to the location 

and character of the errors. The system is developed in MatLab, 

providing intimate interactions with the data as techniques and 

applications are developed. Finally, while commercial systems 

typically resolve the data to shape determination, this system 

concentrates on slope characterization and reporting, which is tailored 

to the solar applications. 

This system can be used for facet analysis during development. 

However, the real payoff is in production, where complete analysis is 

performed in about 10 seconds. With optimized coding, this could be 

further reduced. 

BACKGROUND 

Parabolic dish systems are proposed for utility scale power 

generation [1] as well as distributed generation [2]. While cost is a 

critical component of these systems, performance cannot be sacrificed 

to attain low cost, without impacting the return on investment. A 

critical element of the performance is the reflective surface, or mirror 

facets. Prior study has shown that the value of the generation system is 

closely coupled to the quality of the reflective surface [3]. While 

analytical studies have been performed, a measurement tool is needed 

to couple the analytical studies to the practical application. In addition, 

the high rate of production needed to support the utility scale 

deployments means that either very intermittent testing is performed, 

or a high speed testing system must be developed to maintain 100% 

facet measurement. Industry-reported facet production rates are in the 



 

range of one facet completed every 20 seconds, which means 

approximately 10 seconds on station would be available for full 

characterization. 

The defacto standard for mirror characterization by the National 

Laboratories has been the Sandia and NREL-developed VSHOT 

system [4,5]. VSHOT uses a laser, reflected off the facet, and a target 

to characterize the location of the reflected vector. From this, the 

surface slope at each selected location can be calculated. Each location 

measured on the mirror requires repositioning the laser (through a set 

of controllable mirrors), and the capture of an image of the target 

board. Typically, 1000 to 3000 points are measured on a 1 m² facet. 

This data is fitted to a parabola or other representative surface shape 

description, and the residual difference between the local 

measurements and the fitted model is reported as a standard deviation 

of the error magnitude. The fitted model and the residual slope error 

provide a model of the surface suitable for analytical study. The 

capture of the data takes a number of minutes, limited by the laser 

repositioning speed and the camera capture and data transfer speed. 

The system reports the fitted focal length (parabolic fit) or higher order 

polynomial fit, as well as the residual slope error expressed as standard 

deviation (1-sigma) of a normal distribution of the error vector 

magnitudes. The VSHOT system has been extensively used in 

development for laboratory characterization of facet systems. The time 

to collect data limits the use of VSHOT for high rate production lines. 

More recently, Ulmer of DLR in Germany has implemented the 

use of “Deflectometry” [6] to characterize facets and full dish systems. 

This system is being distributed and implemented on a commercial 

level by a spinoff company, CSP Services. Deflectometry is virtually 

identical to “Fringe Reflection”, and is based on the same concepts 

that will be explored in this paper. The CSP Services Deflectometry 

system uses a high grade consumer camera for imaging, and a video 

projector for target generation. The images are manually triggered, and 

downloaded for post-test analysis. This system is geared toward 

development characterization, and is suitable for characterization of 

full dishes. The cited paper concerns earlier work using a colored 

target, which CSP Services has upgraded to the deflectometry method. 

Heimsath has also presented a fringe reflection technique [7] that 

is in use for characterization of linear Fresnel facets. This system is 

geared toward the nearly-flat facets of a linear Fresnel system, and is 

used both in the laboratory and in the field for system characterization. 

The intent is in-factory quality control. The paper does not discuss the 

speed of the process. Heimsath has teamed with pioneers in the 

automotive industry’s fringe reflection community. This use of fringe 

reflection demonstrates one approach to apply these techniques to 

linear focus systems. 

Fringe Reflection or Deflectometry systems have been used 

extensively in the automotive industry to characterize surface quality 

of body panel and glass parts. These systems typically integrate the 

measured surface slopes to generate surface positional information for 

comparison to CAD models [8]. A significant part of the literature on 

these techniques concentrates on robust numerical integration 

techniques that can handle “real world” data with missing points in the 

integration field [9,10]. Another use is through differentiation of the 

slope information to give local curvature, which provides a very 

sensitive measure of surface flaws such as paint texture [11]. While we 

anticipate these commercial systems could be adapted to measurement 

of solar facets, the needs of the solar industry differ from the 

automotive industry, in that we are most interested in the slope data. 

Therefore, we chose to develop our system and software geared to 

support point focus (and eventually line focus) mirror characterization. 

In development of the software, we have discovered a number of 

interesting issues and application that can be exploited with direct 

access to the raw data and algorithms. The two cited European CSP 

developments reinforce the need for solar-specific algorithm and 

hardware development. 

The fringe reflection or deflectometry systems use phase-shifted 

fringe patterns on a target, and view a reflection of that target in the 

mirror, in order to map each camera pixel image of the mirror to a 

specific location on the target. The process used is well documented 

[12]. Literally hundreds of papers cover various aspects of this topic, 

so only a few seminal papers are noted in this text. Once the fringe 

patterns are used to map a location on the mirror to a location on the 

target, vector algebra is used to generate the surface normal at each 

location on the reflective surface. The advantage of the fringe methods 

is that each captured set of images generates data on all points of the 

facet. Anywhere from 6 to 20 images may be used to characterize each 

point, but all points are characterized with this set of images, rather 

than the VSHOT method where one point is generated for each image 

captured. 

In this paper, we present a fringe reflection technique developed 

in MatLab, dubbed SOFAST (Sandia Optical Fringe Analysis Slope 

Tool). An integrated data collection and analysis system is 

implemented, with the data customized for the solar application. 

Several proprietary facet fabrication processes had indicated a 

completion rate of once every 20 seconds, so we set a goal of 10 

seconds dwell time to characterize the facet. We assume the facet 

would be placed in a fixture by a robotic handler for repeatable 

positioning. In addition, we develop “electronic boresighting” to 

analytically rotate the facet into the correct reference coordinate 

system for future dish system modeling. Finally, a set of captured 

information is identified for an archival library of facet measurements. 

HARDWARE 

The fringe reflection approach is shown schematically in Figure 

1. A camera views the facet, which is positioned such that the camera 

sees the reflection of a target in the facet. The camera and target are 

carefully positioned relative to each other, or in our case, fastened 

together. The camera and target are placed near the 2-f position (twice 

the focal length) of the facet, so that the return signal areal extent at 

the target is as small as possible. A good quality facet requires a target 

that fits comfortably on a 24” LCD monitor. The advantage of an LCD 

monitor is that the spatial control of the fringe pattern and of the phase 

shifts is excellent [13]. The camera can be considered a pinhole, or 

single x,y,z position in space (Cxyz). Each point on the facet (Fxyz) can 

be determined through geometry and ray tracing. The pixel location 

(Pxyz) is projected through Cxyz and intersects with the parabolic 

surface to determine Fxyz. Finally, through the fringe analysis, the 

return location at the target, of each pixel can be determined. Given 

these three points, the incoming (CF) and outgoing (FT) vectors are 

determined at each point, and then the surface normal on the facet can 

be determined. 

In setting up the system, the camera/target assembly is 

positioned such that all (or most) of the mirror “sees” the target from 

the point of view of the camera. This can be easily accomplished by 

displaying an all-white target, and positioning the facet while 

monitoring the camera image. Poorer facet quality may require a larger 

LCD screen to fully characterize the facet. 

The use of fringe patterns to determine the return signal location 

is well understood [14]. Given a sinusoidal fringe brightness pattern on 

the target, Figure 2, and shifting that fringe 3 times, for a total of four 

images, one can determine the phase angle of any given pixel in the x 

direction, but not the absolute position in the x direction if more than 

one fringe period is present. The relative phase angle is determined 

through the formula [12]: 



 

 
Figure 1. Schematic of SOFAST system layout. The target is an LCD screen used to display sinusoidal fringe patterns. The 

camera views the fringe pattern in the reflection from the facet being measured. If the point Txyz can be determined, then the 
normal vector can be determined from vectors CF and FT. 
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where ø is the phase angle of the target location, and the I’s are 

the intensities of the pixel during each of the phase-shifted displays. 

For the example return signal indicated along the red vertical line in 

Figure 2, the relative phase ø is determined to be at 1.72 radians (98.3 

deg) based on equation 1 with the measured brightness at each red 

line. In this case, since there are two periods, the result is ambiguous, 

as the phase of 1.72 radians occurs twice in the pattern. The process is 

repeated with y-direction fringes to determine the coordinates of the 

target position in two dimensions. Figure 3 shows the reflected view of 

the 4-fringe pattern in a good quality mirror. 

A key feature of this approach is that the system is self-tuning, 

as the intensity ratios are used, rather than the absolute intensity. A 

number of methods are used to change this relative phase angle into an 

absolute angle. Most methods require a known surface slope and 

position at some point in the field of view, from which the absolute 

phase is integrated. We chose to use the “temporal phase unwrapping” 

method [15]. In this method, a single fringe is used first, which gives 

an absolute location but with a possibly significant error band. This is 

followed with a finer fringe pattern (more periods), such that the size 

of one period is larger than the error band of the prior iteration, as 

shown in Figure 4. The rough absolute location from the single fringe 

locates the return signal within a one period wide window in the finer 

pattern. We found that we could provide a sequence with one fringe, 

followed by four fringes, and get repeatability on the order of 5 pixels 

of the LCD target. This, at 12m distance, is roughly 0.04 mrad of 

surface slope uncertainty, when we are considering surfaces with 

residual standard deviations (RMS error) of 1-4 mrad. Other 

formulations in the same reference allowed as few as three patterns to 

find the relative phase angle, with a little less accuracy. For stability, 

we chose the 4 fringe method, with 1 and 4 periods, for a total of 8 

images in the x direction. The process is repeated for the y direction. 

Our camera was suitable for 14 frames per second, but our display 

card took up to 0.3 seconds to complete the display of a new pattern. 

Therefore, the entire data collection takes about 5 seconds. 

 

  

  
 

Figure 2. Fringe patterns with two periods, showing the 4 
phase-shifted positions. The overlaid sinusoidal line 

indicates fringe brightness, and is not included on the real 
target. The red line indicates a sample position of the return 

signal. The patterns would be repeated in the horizontal 
direction to determine vertical position. The normalized 

brightnesses of the fringe at the red line are about 0.995, 
0.427, 0.005, and 0.572, for phase shifts of 0, π/2, π, and 3π/2 

respectively. 
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CAMERA CALIBRATION 

As engineers, we like to live in a perfect world, where a camera 

lens fits a pinhole model, and the camera sensor is linear with the light 

intensity. However, after significant measurements, we find this is not 

the case, even with quality equipment. Therefore, the camera needs to 

be characterized and the discrepancies of reality accounted for. 

The first area is the lens distortions, or “intrinsic” calibration of 

the camera system. This is a characterization and correction of the 

distortions by the lens. We used a Basler 641fc firewire camera, which 

has a 2.1Mpix sensor (1600 x 1200 pix) [16]. We specified a Fujinon  

lens [17] for the initial testing. While there are substantially lower cost 

lenses, we found that the distortion of “security camera” grade lenses 

was significant. We used a canned MatLab toolbox for lens 

characterization [18]. A series of images of an accurate checkerboard 

pattern at various angles is used to develop a model of the barrel 

distortions of the lens, as well as the actual focal length of the lens on 

the camera. We found that the distortions of this series of lenses was 

very small. We did use the reported focal length of the lens as an input 

to our code. We structured the code to use the measured distortions of 

the lens as output from the toolbox. 

The second area of calibration is the “radiometric” calibration of 

the system, or the response of the camera and LCD display to various 

commanded light levels. For flexibility we employed the color version 

of the camera, though in the future, with the selected implementation, 

a grey tone camera would be suitable. The camera response to red, 

green, and blue is not linearly proportional to the imaged light. 

Therefore, a calibration curve had to be developed. In addition, since 

we are imaging a reflection of an LCD screen, we also found that the 

LCD screen response was not linear to the programmed value. The 

mirror is not 100% reflective, and may have absorptivity that varies 

with the spectrum. We also found that too fast a shutter speed would 

result in a partial image as the LCD screen updated. It is therefore 

important to calibrate the radiometric response of the entire system, 

from target, through reflection, and to camera response. 

The first step in the radiometric calibration is to adjust the lens 

aperture such that the shutter speed for full saturation is sufficiently 

long to avoid problems with the LCD flicker. We experimentally 

determined a suitable shutter speed range. We display a full white 

image on the screen, and then test at both ends of the acceptable 

shutter speed range. At the high end (long shutter speed), the image 

should be fully saturated. At the low end (shortest shutter speed still 

long enough to avoid LCD flicker) the sensor should not be saturated. 

This guarantees that a shutter speed in the acceptable range will 

provide a full range (255/255) signal for a full white (255) output on 

the LCD screen. Thus, the system will use the full dynamic range of 

the camera without saturating the camera. The optimum shutter speed 

within the acceptable range is determined with a simple binary search 

algorithm. This (and most subsequent) actions are only performed on 

“active” pixels. These can be determined by generating a simple 

binary “mask” of the image data. Two images are collected, one with a 

dark target and one with an all white target. The pixels that change 

response more than a set threshold are considered “active”, as they 

reflect some point on the target to the camera. All non-responsive 

pixels are ignored. 

Once the physical aperture is set, we then ramp the camera 

sensitivity or gain, while displaying an all-white target. This 

essentially varies the gain of the green receptors. We find a gain that 

provides an indicated average pixel brightness of about 250 (out of 

255), in order to maximize the camera range without saturating pixels. 

We then repeat this for the red and blue “white balance”, again 

maximizing the response without saturating. If a B&W camera is used, 

this only has to be done on one channel. We use a binary search 

algorithm to quickly find the gain that provides a response of 250. 

Finally, we need to map the end-to-end response of the system 

(LCD, reflection, and camera). We ramp a uniform image on the LCD 

from 0 to 255 while recording the average response of the active 
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Figure 3. Reflected fringe pattern in ADDS facet. A four-
fringe pattern is displayed on the target. The detected 

image is colorized to aid in viewing. Four such images are 
collected for each fringe depth, in each directions (x and 
y) to develop a map of the reflected image location on the 

LCD target. The color value is the 8-bit pixel brightness 
detected. 
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Figure 4. Temporal drill-down example. The initial 

measurement of phase with a single fringe locates the 
target signal at the blue diamond at about 2.32 radians. 

This measurement has a positional uncertainty based on 
the brightness uncertainty of the four measurements. The 
four fringe measurement determines the final phase, and 

therefore the final position, as well as three aliased 
positions. The positions in the four-fringe measurement 

are only considered within a 1-fringe window centered on 
the single-fringe position (four fringe initial guess), thus 
selecting the correct four-fringe location. The four-fringe 

range must be wider than the single-fringe positional 

uncertainty. The uncertainties shown are illustrative only. 



 

pixels. We find the response somewhat flat at low brightness, which 

makes the low end of image display brightness of limited value. We 

determine the commanded brightness at which the change in camera 

response is positive with a positive stimulus, and use this as a “floor”. 

We also look for saturation at the bright end, though this should not 

happen since we already set the gain of the system. We fit a 7th order 

polynomial to the camera response, which we use later to scale the 

fringe pattern brightness, thus linearizing the system from commanded 

stimulus to sensed brightness. This could be performed at a pixel level, 

but such calibration would then have to be performed for each facet. 

We found with good quality LCD screens that the response across the 

screen was sufficiently uniform. We perform the radiometric 

calibrations once per day, or when we determine there has been a 

significant change in room lighting. The camera must be warmed up at 

least half an hour before calibration for the most consistent results. 

The third area of calibration is the position of the camera, target, 

and facet relative to each other. We carefully measure the fixture that 

holds the camera relative to the target. We have design information on 

the facet, which allows us to use a single camera observation to 

determine the camera location relative to the facet in 6 degrees of 

freedom. We use the extrinsic analysis portion of the Camera 

Calibration Toolkit [18] to perform this analysis. Given the real-world 

coordinates of the corners of the facet, we are able to determine the 

camera location in the facet coordinate system within a few 

centimeters as an initial guess on position. This is refined later in the 

analysis section. We also make a distance measurement from the 

center of the target screen to a selected location on the facet. We 

perform this measurement with a Disto [19] laser range finder, 

accurate to 3mm. We use this physical measurement in the later 

refinement of the camera position. Several standard edge detection 

methods are used to locate the physical corners of the reflective 

surface. This task is simplified by using the mask rather than the raw 

image, which provides very definite edges of the facet. Figure 5 shows 

the mask and the located corners for an ADDS [20] parabolic facet. 

The edge lines are located, and the intersections determine the four 

corner points, labeled 1 through 4. Additional feature points are 

located by projection once the coordinate system is determined. In this 

case, the reference points are splits between separate pieces of glass on 

the facet, and make handy reference locations for the Disto 

measurements. 

DATA COLLECTION 

The fringe patterns are scaled to fill the LCD screen. The 

sinusoidal brightness variation goes from the floor to the maximum as 

determined in the radiometric calibration, and is linearized by the 

system response curve. The first set of fringe patterns displayed 

contain a single period, which gives an absolute screen location. Each 

point measured on the mirror is independent of neighboring points, 

making this method suitable for “difficult” mirrors (very distorted). 

Methods of characterization that rely on fixed line patterns or shape 

keys on a target require “coherent” images, where the shape of the line 

or key can be recognized in the reflected image. Each brightness 

measurement has a range of uncertainty, which leads to uncertainty in 

the position determination.  This can then be refined with more 

periods, as long as the length of a single period on the screen exceeds 

the uncertainty band of the prior fringe measurement. Through trial 

and error, we saw little improvement beyond 4 periods on the target, 

and found that we can robustly transition from 1 to 4 periods (meaning 

the width of one period in the 4-fringe pattern was significantly wider 

than the error band of the single fringe, so the correct period was 

routinely captured in the four-fringe run). We also found the 

refinement in going to 4 periods was usually less than 10 pixels, so it 

would be feasible to only record the single-period data. However, we 

still use the 4-period data to refine our results. However, when larger 

LCD targets or projection screens are used for less accurate facets or 

full dishes, this refinement is likely more important than in these tests. 

We experimented with using a single grayscale gradient (linear) 

on the screen for the initial absolute location estimate. This approach 

is not self-calibrating for brightness of the signal. In many cases we 

found we could go from the single linear gradient to the four periods 

robustly, and get the same results as the full fringe periods. However, 

the savings is limited to 3 images in each direction, and we determined 

that adding the uncertainty imposed by potentially changing lighting 

conditions outweighed the time savings for this implementation of the 

tool. 

The collected fringe data can be saved in a “Data dump”. This is 

helpful in development, as we can re-analyze the collected data should 

the characterization algorithms be improved. This is the equivalent of 

saving raw voltage data rather than the engineering units in a data 

acquisition system. 

DATA REDUCTION 

The reflected target location information for each point on the 

mirror is reduced in an interative process to determine the surface 

normal (slope) at each point on the facet surface. In iterative process is 

needed because the measured shape of the facet may differ form the 

design shape, and must be integrated from the slope data. However, 

the slope data depends upon the facet shape. The basic fitting process 

follows these steps, and is detailed after: 

1. Determine the initial assumed coordinates of the camera and 

target in the facet coordinate system, using extrinsic analysis 

combined with the Disto measurement from the target to a 

point on the facet. 

2. Select a “design” facet shape model , typically a simple 

parabola of rotation. 

3. Project each camera pixel on the pixel plane (P in figure 1), 

through the center of the lens (camera location, C in figure 

1), and intersect with the facet shape model. If the shape 
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Figure 5. Active pixel mask and located edges and 

corners. The large inactive area at point 7 is a “yellow 
sticky” on the facet used temporarily for measurements. 
Points 1 through 4 are the located corners, and points 5 
through 7 are key locations on the facet for reference. In 

this case, the key locations are at splits between the 
subfacet pieces of glass, which make a handy reference. 



 

model is parabolic, this involves solving a quadtratic 

equation for each camera pixel. This process provides the 

x,y,z coordinates of the pixel ray intersection with the facet, 

point F in figure 1.  

4. Using the camera location (C in figure 1), facet point 

location (F), and the measured target point (T) for each 

viewed point on the facet (corresponding to each pixel in the 

camera image), determine the surface normal at each point  

5. Fit the surface slopes at each point to the partial derivatives 

of the model shape equation, using a least squares fit. This 

gives coefficients of the derivative equations, and therefore 

coefficients of the model shape equation. Adjust the constant 

term of the model shape such that the Disto measured 

distance remains fixed. 

6. Repeat steps 3 through 5 using the new fitted shape 

equation. Repeat until the solution converges. This appears 

quick, typically 3 iterations is enough. 

7. Adjust coordinate system such that the fitted position and 

normal at the “alignment point” (a selected point on the facet 

that will represent the entire facet for alignment purposes) 

matches the design facet position and normal. Repeat steps 3 

through 7 until solution converges, typically 3-4 iterations. 

This places the facet information in a useful and consistent 

coordinate system for further analysis. 

 

We selected a 3-D parabolic equation in Cartesian coordinates 

for our primary facet shape model, based on the published VSHOT 

approach [4]. This equation allows a different focal length in the X and 

Y directions, which can occur in imperfect manufacturing processes of 

point focus mirrors, and in the design case of line focus mirrors. The 

parabolic model is expressed as: 

 

z=Ax²+By²+Cx+Dy+Exy+F (2) 

 

Step 4 in the process converts the collected target data into a 

surface normal at each location on the facet, which can easily be 

expressed as a slope in the x and y directions at each location. It is 

these slopes that are fitted, so we fit the data to the partial derivatives 

of the model equation: 

The first step in the data reduction is the determination of the 

normal vector at each location on the mirror. In order to attain this 

information, we need the location of the camera (pinhole model), the 

target (target pixel as measured), and the point on the facet. As noted 

earlier, we know the position of the camera and target relative to the 

facet coordinate system through an extrinsic analysis of the mirror 

corners in the captured image mask, as well as the relative positions of 

the camera and target. We also can model the position of each pixel on 

the sensor plane, relative to the lens pinhole model, by developing this 

plane and performing the camera position rotations and translations. 

The location of the camera pinhole and each pixel provides a vector 

for each pixel, going from the camera to the facet. We only know that 

the data sensed by each pixel is on this vector, but we do not know the 

length of the vector. However, we can model the facet, and determine 

the intersection of the vector with the facet surface. If the facet model 

is parabolic, then the intersect location can be determined through a 

quadratic equation. However, if the model is a higher order, one must 

use an iterative process to locate the intersect of the vector with the 

facet. 
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A simple least squares linear fit of the data to equations 3 and 4 

is performed. The linear terms of the model spatial equation (C and D 

in (2)) become fixed slopes in the slope equations, and thus can be 

interpreted as a tilt (constant additional slope), at least for small tilts. 

However, it can also be interpreted in the model shape equation as a 

diagonal spatial translation of the origin of the parabola. The effect is 

the same for small tilts. The cross term, Exy, can be interpreted in the 

model equation as a rotation of the principle axes (greatest and 

smallest focal lengths) of an elliptical 3-D parabola relative to the 

physical orientation of the measured facet. However, in slope space, 

one can see that a tilt is added in equation 3 in the x direction, which 

increases as y increases. This term, thus, can also be interpreted as a 

twist. This interpretation has little value if a full parabola of rotation 

(or elliptical parabola) is considered, but we generally consider a 

narrow slice of the parabola, such as the ADDS gore facets. If the 

facets are well made, this term should approach 0. However, we have 

seen on some high aspect ratio facets that the twist can be significant, 

and that the twist term is not equal in each fitted partial derivative. 

Most texts that deal with this model equation consider full circular or 

elliptical shapes, and so this twist interpretation is not typically made.  

The fitting process is a standard least squares fit to the two linear 

equations. The coefficients are then assembled into the model shape 

equation. The constant term, F, is adjusted such that the measured 

distance to a single point on the facet is maintained. When assembling 

the partial derivatives into the model shape equation, the E term is 

averaged. 

The fitted model shape equation will likely differ from the initial 

(design) model equation. This new shape will change the intersections 

of the camera pixel rays (CF) with the facet (point F), and therefore 

the surface normal will slightly change. Thus, the process is iterated 

until the shape and slope cease to substantially change. During the 

initial fitting, we only use 10% of the facet points (camera pixels), in 

order to substantially speed up the fitting process. A typical facet has 

400,000 to 700,000 pixels active on our 2.1 Mpix camera, and so we 

are fitting to at least 40,000 points. Once the fit has converged, we 

perform a final fit with all of the datapoints. 

It is important to select a coordinate system that suits the facets 

naturally, as well as is supported by the analysis tools used for post-

processing. For small spherical facets that simulate a parabola through 

the use of many facets, we designate the physical middle of the facet 

as the origin, and the x axis is typically along the longer dimension. 

This is typical of the McDonnell Douglass [21] and Stirling Energy 

Systems [22] dishes. A parabolic gore facet is a segment of a parabola 

of rotation, and has the natural origin at the vertex of the parabola. The 

z axis is the axis of rotation (were the facet to have the same focal 

length in x and y), and the x-y plane perpendicular. The x axis is 

aligned with the projection of the centerline of the gore onto the x-y 

plane. See Figure 6 for sample coordinate systems. It is important to 

note that the origin on a typical gore facet is not even on the physical 

facet, which adds to the difficulty in setup and interpretation. 

We also can perform a fit to a higher order 3-D polynomial 

curve, in order to more closely model the shape of an imperfect facet. 

This fitting is performed after a parabolic fit session is completed. The 

higher order curve has proportionally more cross terms, which we do 

not attempt to interpret at this point. 

The coordinate system for the facet is in part determined by the 

assumed location of the camera and target, which was initially 

determined by the extrinsic analysis of the corner locations. Error in 



 

this location will lead to tilt of the facet relative to the assumed 

coordinate system. In VSHOT, if the linear (tilt) terms in z space are 

not “small”, then the physical arrangement is changed and the process 

is repeated. However, in our system, as long as the camera can “see” 

the target in every part of the facet, then we only have to change the 

assumed location of the camera and recalculate the normals, in effect 

moving the coordinate system to line up with the facet. Initially we 

performed this step by adjusting the numerical values of the camera 

location and tilt proportionally to the tilt terms. We also adjust the 

constant term in the parabolic equation such that the laser distance 

finder measurement matches. In effect, this process makes the origin 

of the facet lie at 0,0,0 of the assumed coordinate system, and the 

surface normal at the origin is 0,0,1. This is usually appropriate for 

small spherical facets, where the origin is at the center of the physical 

facet. However, on the large, slender gore facets, this location is not 

even on the facet. If one measured a focal length error, but set the 

vertex normal vector to 0,0,1, then the tilt and z position of the actual 

facet at the radii of interest will deviate substantially from design, as 

shown in 2 dimensions in Figure 7. In addition, if there is a twist in the 

facet, the model coordinate system can be tilted substantially off the 

reflection of the physical facet. 

 

 
Figure 6. Typical Facet Coordinate Systems (FCS) for 

spherical and gore facets. The origin of gore facets is not 
on the physical facet. 

 

We therefore determined that a point on the facet should be used 

to “anchor” the coordinate system to match the design facet. In effect, 

when a dish is physically aligned in the field, the facets are positioned 

such that some point on the facet matches the design position, and the 

facet is rotated such that the surface normal at that location matches 

the design facet surface normal. If the facet were perfect, every point 

on the facet would match the design. However, on a facet with shape 

and slope imperfections, one point is selected to represent the entire 

facet. We typically select a point near the outer end of the facet for this 

“perfect alignment” point [23], and the rest of the facet is allowed to 

“float”. We implement such a process as follows: 

 

1. The x,y,z position of the fitted facet shape at the alignment 

point is set to the design spatial position. This is effected by 

calculating the fitted model facet shape z position at the 

design x,y position of the alignment point, and then setting 

the constant term (F) so that the z position matches design. 

2. An analytical sphere is developed about the point at which 

we made a physical distance measurement (Disto point). 

This does NOT have to be the same as the alignment point. 

This is the distance to the center of the target, which is used 

for a reference in our measurement tool. 

3. The design normal vector at the alignment point is projected 

to the sphere. This intersection is the new location of the 

camera/target assembly. This places the camera/target 

assembly at the measured distance from the Disto point on 

the facet, and also places it along the design normal vector 

4. The fitted normal vector at the alignment point is intersected 

with the target plane, which determines the measured camera 

position in the coordinate system under which the 

measurements are made 

5. The camera array is translated and rotated such that it lies on 

the design location found in (3), and such that the pixel 

vector for the alignment point intersects the fitted facet 

shape at the alignment point 

 

This process results in a facet coordinate system in which the 

fitted facet shape is tilted and positioned such that the physical 

alignment point matches the design alignment point in 6 degrees of 

freedom, and the distance to the camera is set by the physical 

measurement. This results in the facet being oriented in the dish 

coordinate system analytically the same way it will be oriented 

physically when the dish is aligned. This also results in appropriate tilt 

terms in the fitted equation.  

The change in the coordinate system also requires iteration, 

repeating the facet normal calculations. We implement two nested 

loops. The coordinate system is re-calculated after three loops of 

surface shape modifications. This whole process repeats three times to 

get a stable facet shape and coordinate system. The full-resolution 

calculation is only performed after all iterations, and we typically do 
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Figure 7. Parabolic fitting when the focal length is not 
correct. In this case, the facet extends from 1.5 to 4.5 
meters. The design curve has the correct slope and 

position at each location. The long focal length matches the 
design curve slope and position at the origin, but matches 
neither at the alignment point. The shifted long focal length 
matches the slope at the origin, but matches the position at 
the alignment point, selected at 4 m. Finally, the rotated and 

shifted long focal length matches the design facet in 
position and slope at the alignment point (4 m), and neither 

match at the origin. 
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not see a change in measured parameters when going to all the points. 

At this point, a final run may be added, in which the slope fitting 

is to a higher order curve than linear. For this process, we use the fitted 

parabolic facet model shape to determine the x,y,z coordinates of each 

pixel view vector with the surface. We assume that only very small 

changes from the parabolic fit would be present in a reasonable facet, 

and thus we avoid the nonlinear iterative process that would have to be 

used to find the intersects with a higher order shape. 

We now have three models of the facet shape and slopes: the 

design shape model, the fitted parabola, and the fitted higher order 

curve. We also have the measured surface normal at each location. The 

difference between the measured values and the surface models is a 

residual slope error. While many seem to characterize a facet quality 

with a single “slope error” number, we find that slope error must be 

combined with a surface model, and it represents those measured 

features that are not captured by the surface model. We “model” the 

residual as a normally distributed error, and we report the standard 

deviation as an “RMS”, or Root Mean Square error. It is a simple 

matter to calculate the slope error (in radians, not in slope units) at 

each measured location by comparing the measured value to the model 

value. The resulting slope errors, combined with focal length and other 

shape deviations from design, can be used to provide a figure of merit 

for the facet. If the models represent a reasonable fit to the facet (i.e., 

the residual is distributed), the model equations and normally-

distributed residual can be used to model the facet system. If a 

reasonable fit to a model cannot be found, the large number of actual 

slope measurements can be used in a ray trace program to fully model 

the facet system. 

RESULTS  

In an example, high quality facet, we characterized a gore facet 

from the ADDS dish [20] at Sandia National Laboratories. Figure 8 

shows the resulting comparison to the design facet shape. The image 

color is proportional to the magnitude of the error vector at every 

pixel. The white quiver arrows indicate direction and magnitude of the 

error at every tenth point, so as not to crowd the image. The total 

residual slope error (magnitude of the resultant vector) is 1.5 mrad. 

However, we see the x direction error is 1.4 mrad, while the y 

direction is only 0.5 mrad. We also see that the alignment point is 

along the centerline, ¾ of the way out on the facet, where the slope 

error approaches 0 mrad. Finally, we see that the slope error is very 

systematic in the x direction, indicating the model does not well 

represent the surface shape, likely due to a focal length error. In this 

case, reporting a residual slope error of 1.5 mrad from the design 

condition, as a standard deviation, does not adequately model the 

shape of the facet. 

In Figure 9, we compare the measured slope to the parabolic fit 

shape model derived from the measured data, and the residual is 

lowered substantially, to a resultant magnitude standard deviation of 

0.78 mrad, with 0.48 mrad in the y direction and only 0.62 mrad in the 

x direction. The fitted focal length is 5.42 m in the x direction, and 

5.35 m in the y direction, compared to the design focal length of 5.33 

m. The residual is far less systematic, and therefore does a reasonable 

job capturing the errors not modeled. Note also that twist of the facet 

is reported, though it is very small in this facet, at 0.1 to 0.15 mrad/m. 

This facet would be reported with the measured focal lengths and 

twist, with a residual slope error of 0.78 mrad. We do note, however, 

some systematic vectors of error at the left end and the center of the 

facet. These are shape errors that are not captured by the parabolic fit, 

but are more systematic than the assumed normal distribution. 

Finally, Figure 10 shows the residual slope error when fitted to a 

3rd-order shape model. The systematic areas of error are gone, and the 

primary error is seen as striations in the glass, and minor damage along 

the edges of the facet from handling. The resultant magnitude residual 

now has a standard deviation of 0.63 mrad, with both the x and y 

components about 0.4 to 0.5 mrad. This facet could be reported with 

the complete 3rd-order shape model equation plus this residual slope 

error. This residual is also a representation of the potential of this 

fabrication technique. If one assumes that gross shape errors can be 

corrected, then this comparison to a higher order shape model would 

indicate the residual one could attain compared to the design shape if 

process modifications address shape errors. 

In Figure 11 and Figure 12, we compare the results of SOFAST 

with an identical facet tested with the VSHOT system. This facet 

clearly shows “print through” of the three mounts, one top and bottom 

about 1/3 from the left, and one centered vertically about ¾ from the 

left. While the error is locally systematic, it is also somewhat spread 

about the facet, and a random distribution may not be too bad an 

approximation. Higher order polynomial fits did not improve the shape 
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Figure 8. ADDS facet slope error when compared to design shape. The very systematic horizontal errors shown by the 

vectors indicate a focal length error. The pixel color indicates the total slope error compared to the design slope, while the 
white arrows indicate the direction and magnitude of the error at every 10

th
 pixel (the shortest arrow appear as dots). The 

residual slope error standard deviation of magnitude is 2.31 mrad, with 2.25 mrad in the x direction and 0.53 mrad in the y 
direction. The color scale ranges from 0 mrad (blue) to 5 mrad (maroon). 



 

descriptor very much, because the shape errors are localized an no 

global shape model was found that captured these local shape errors . 

The focal length measurement matches well between the VSHOT data 

and the SOFAST data, as does the total residual of 1.5 mrad. 

After characterization, the SOFAST system adds a description 

line to an excel file, so that facets can be archived by serial number. 

We save the calculated focal lengths, the residuals compared to each 

model, the fitted parabolic model, the camera settings, the measured 

distance, and the date, time, and serial number. This results in a fairly 

complete database of facet quality that can be stored in company 

archives. In addition, on command we can store the images shown 

here, as well as a full “data dump” that would allow complete 

reconstruction of each test. The data dump is 6-8 MB in size, so it may 

not be practical to store such data on every facet, but perhaps on 

occasional facets in a systematic sequence. 

While a full error and uncertainty characterization will be 

performed at a later date, we did explore some of the error and 

repeatability capabilities of this system. We identified the distance 

between the target/camera and the facet surface to be the measured 

item with the greatest uncertainty. We therefore explored the response 

of the system to a range of input “measured” distance without 

changing the camera location. Within a few 10’s of centimeters of the 

actual measured position, we found that errors in the distance 

measurement had very little effect on the residual slope error results. 

However, we did find that for every centimeter of change in the 

entered distance, with the same collected data, the resultant focal 

length changed by about ½ cm. Second, without changing anything in 

the physical setup, we repeated a full measurement several times 

sequentially, and found that the measured return location on the target 

screen varied up to about 5 pixels. The pixel pitch on the monitor was 

0.25mm, so the variation in measurement was 1.25 mm. At 12 m 

distance, with a reflected ray (law of reflection doubles the tilt), this 

corresponds to a repeatability of about 0.05 mrad for each point, far 

smaller than the range we are interested in. A complete analysis of the 

standard deviation of the repeatability should be performed. 

SUMMARY 

A tool has been developed that fully characterizes point focus 

solar mirror facets at a rate suitable for production line archive testing 
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Figure 9. ADDS facet slope error when compared to a fitted parabola. There is still some systematic error at the left end and in 
the center, indicating that the parabolic fit may not completely model the surface shape. The residual slope error magnitude is 

indicated by pixel color, and the direction and magnitude of the residual is indicated by the white arrows at every 10
th

 pixel. 
The residual slope error standard deviation of magnitude is 1.35 mrad. Same scaling as figure 8. 
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Figure 10. Slope error of the ADDS facet compared with a 3rd order (in z space, 2

nd
 order in slope space) shape. The residual 

slope error appears mostly random, indicating this model fits the facet. The residual slope error standard deviation of 
magnitude is 0.70 mrad. The color scaling is again 0 to 5 mrad, blue to maroon. 



 

of 100% of the manufactured facets. The approach taken couples the 

camera data directly into the target control and data reduction systems, 

and thus eliminates time-consuming post-processing. A key feature is 

the “electronic boresighting”, which appropriately positions the 

coordinate system around the facet such that the facet fitted shape is 

suitable for analysis in design codes such as Sandia’s CIRCE2 [24]. In 

addition, we have introduced further understanding of the shape errors 

detected with the fitting process, including twist of the facet. This is 

important for high aspect ratio facets such as the ADDS shown in this 

report. 

The measurements from this system compare favorably with 

prior tools such as VSHOT. The tool has proven useful in the 

development of commercial grade facets for deployment on the SES 

systems, as it provides very fast feedback to engineers in the product 

refinement process. 

In future work, we will combine this tool more directly with 

CIRCE2 modeling tools. Rather than introducing the analytical fitted 

model to CIRCE2, we will import the surface normals and locations 

directly into CIRCE2, and model the reflected energy from a set of 

measured facets. With the large number of points per facet, this will 

provide unprecedented fidelity in the modeling process. In addition, 

we would like to fully characterize the measurement error sensitivities 

on this process, as has been done with VSHOT5. The optics and 

geometry are similar, so the VSHOT analysis of error is mostly 

applicable, but should be repeated for this new tool. 
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Figure 11. Slope error of MDAC “Egg Crate” facet 

compared to parabolic fit, as determined with SOFAST. 
Note the print-through of the three mounts.  The standard 
deviation of the residual is 1.5 mrad. The color indicates 
the total slope error at each pixel, while the white arrows 
indicate the direction of the error at every 10

th
 pixel. The 

slope is measured at over 264,000 points on the facet. 

 
 

Figure 12. Slope error of the same MDAC “Egg Crate” facet 
as determined by VSHOT. The standard deviation of the 

residual is 1.64 mrad. The slope is measured at 6580 points 
on the facet. Image courtesy of Tim Wendelin, NREL. 
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