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Truck Test Route 
40 miles in Albuquerque area  
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Range of Road Conditions 
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Route included railroad crossings… 
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…and rough dirt roads 
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Maximum Strains Measured during Truck Test 
essentially identical to shaker results 
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Strain Gauge Location on Assembly Maximum Micro-strain 
Absolute Value (µin./in.) Road Segment 


S1 - 0° 
Adjacent to first spacer grid, Span 10 
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1 


S1 - 90° 53 
S1 - 225° 74 


 
S2 - 0° 


Mid-span, Span 10 
94 


S2 - 90° 99 
S2 - 225° 86 


 
S3 - 0° 


Adjacent to first spacer grid, Span 5 
143 


S3 - 90° 84 
S3 - 225° 108 


 
S4 - 0° 


Mid-span, Span 5 
69 


S4 - 90° 101 
S4 - 225° 93 


  
Average 0°  90 


1 Average 90°  83 
Average 225°  90 


All maximum strains during road Segment #1 at 872.4 – 902.3 seconds into the trip. This corresponds to travel on Poleline Road (dirt). 
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Truck Test Maximum Accelerations 


All Segments 
Uniaxial 


Accelerometer Location Maximum Acceleration, g Road 
Segment 


A1 On first spacer grid, Span 10 9.5 


1 


A2 Mid-span, Span 10 16.7 


A3 Adjacent to second spacer grid, 
Span 10 14.6 


A7 Adjacent to second spacer grid, 
Span 5 22.0 


A8 On second spacer grid, Span 5 11.3 


57 


All Segments 
Triaxial Accelerometer Location Maximum Acceleration, g 
TA2 – X (longitudinal) On top of basket above 


mid-span of assembly 
(Span 5) 


2.1 
TA2 – Y (lateral) 3.6 
TA2 – Z (vertical) 5.6 


TA5 – X (longitudinal) Below trailer bed above 
rear axle 


13.7 
TA5 – Y (lateral) 10.0 
TA5 – Z (vertical) 11.8 
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Strains correlated to road surfaces 
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Pennsylvania St. bridge 


speeding to Building 6922 


8-inch rut 
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Side Basket Showing Cutout for Filming 
Assembly during Truck Test 
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Maximum Micro-strains on Zircaloy Fuel Rods  
during Shaker Shock Test – Strains are very low 
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Maximum Strains on Zircaloy Fuel Rods, Shock Test #1 
Rod Location Assembly Span Position on Span Maximum Strain 


(µin./in.) 
Top-middle rod Bottom-end Adjacent to spacer grid 90 
Top-middle rod Bottom-end Mid-span 131 
Top-middle rod Bottom-end Adjacent to spacer grid 171 
Top-middle rod Mid-assembly Adjacent to spacer grid 104 
Top-middle rod Mid-assembly Mid-span 97 
Top-middle rod Top-end Adjacent to spacer grid 127 
Top-middle rod Top-end Mid-span 199 
Top-middle rod Top-end Adjacent to spacer grid 70 


Top-side rod Bottom-end Adjacent to spacer grid 54 
Top-side rod Bottom-end Mid-span 107 
Top-side rod Top-end Mid-span 117 
Top-side rod Top-end Adjacent to spacer grid 113 


Bottom-side rod Bottom-end Mid-span 62 
Bottom-side rod Bottom-end Adjacent to spacer grid 121 
Bottom-side rod Mid-assembly Adjacent to spacer grid 110 
Bottom-side rod Mid-assembly Mid-span 115 


        
Average of All Strain Gages 


Average Top-middle Rod 
Average Top-side Rod 


Average Bottom-side Rod 
Average Bottom-end Span 


Average Mid-assembly Span 
Average Top-end Span 


Average Mid span 
Average Adjacent to Spacer Grid 


112 
124 
98 


102 
105 
107 
125 
118 


107 


maximum 


average 
maximum 
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Irradiated rods are stiffer than unirradiated tubes. 
Strains decrease with stiffness. 
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Bending stiffness (=EI) of HBR high burnup irradiated Zircaloy-4 rod with pellet-
clad interaction (per ORNL): 


EIZirc4-irr ≈ 52 N-m2  
Range of irradiated rod EI ≈ 16.5 – 87 N-m2  


(dependent upon interfacial bonding conditions) 


Bending stiffness of unirradiated Zircaloy-4 tube (SNL assembly tests): 


EIZirc4-unirr = 17.7 N-m2  [including contribution of Pb] 


Bending stiffness Zircaloy-4 (irradiated/unirradiated) = 52/17.7 = 2.9 
Range of bending stiffness Zircaloy-4 (irradiated/unirradiated) ratio: ≈ 1 – 5 


The maximum strain measured in the truck test was 147µm/m so, for the same 
loading environment, the NCT strain on an irradiated rod would be: 


≈ 147(17.7/52) = 50 µm/m 
(or ≈ 70 µm/m considering difference in natural frequency of irradiated rod and unirradiated 


tube) 
Range irradiated rod strain: ≈ 157 – 30 µm/m 


(dependent upon interfacial bonding conditions) 
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Thoughts on the free drop issue 


 Measuring the effects of a free drop on rods in an assembly within an actual package 
(cask) would be experimentally difficult and expensive.  


– The cask test would require sacrificial impact limiters. 
– Analysis is far more viable. 


• A model validated via the assembly NCT tests would be useful. 
 The peak acceleration would be approximately 20 g. 


– That acceleration may be low enough that the assembly and rods would probably remain elastic. 
 Should a cask ever experience a free drop in-service (e.g., handling accident) , it is 


unlikely that the cask would be transported. 
– It is likely that the assemblies would be removed from the cask, inspected, and possibly repackaged. 


 
 Sandia performed an actual 0ne-foot drop test of a 1/3-scale ENSA 32 cask. Data supplied 


to PNNL for analysis of strains on an assembly 
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The 1-Foot Free Drop is NOT a test of an assembly  
– it is a test of a Package 


§ 71.55 General requirements for fissile material packages. 
  
(d) A package used for the shipment of fissile material must be so designed and 
constructed and its contents so limited that under the tests specified in § 71.71 
("Normal conditions of transport"): 
(1) The contents would be subcritical; 
(2) The geometric form of the package contents would not be substantially altered; 
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The Free Drop is NOT a test of an assembly –  
it is a test of a Package 
 


– § 71.71 (a) Evaluation. Evaluation of each package design under normal conditions of transport must 
include a determination of the effect on that design of the conditions and tests specified in this section. 


– (c) (7) Free drop. … a free drop through the distance specified below onto a flat, essentially unyielding, 
horizontal surface, striking the surface in a position for which maximum damage is expected.  
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Package weight Free drop distance 


Kilograms (Pounds) Meters (Feet) 


More than 15,000 (More than 33,100) 0.3 (1) 
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§ 71.4 Definitions 
 


“Package means the packaging together with its radioactive contents as presented 
for transport.” 
 
“Packaging means the assembly of components necessary to ensure compliance 
with the packaging requirements of this part. It may consist of one or more 
receptacles, absorbent materials, spacing structures, thermal insulation, radiation 
shielding, and devices for cooling or absorbing mechanical shocks. The vehicle, 
tie-down system, and auxiliary equipment may be designated as part of the 
packaging.”  
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Interface bonding efficiency can significantly affect HBU SNF 
flexural rigidity and bending moment distribution among fuel 
pellets and clad  
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Jy-An Wang, ORNL  
2014 ASTM C26 Committee Meeting  
June 10-12, 2014  
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HBU SNF rod for CIRFT testing reveals good contact at 
fuel-clad interface  
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Jy-An Wang, ORNL  
2014 ASTM C26 Committee Meeting  
June 10-12, 2014  
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Interface Bonding (IB) can significantly dictate SNF 
composite system mechanical properties  
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Jy-An Wang, ORNL  
2014 ASTM C26 Committee Meeting  
June 10-12, 2014  
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Environmental effects on Zircaloy 


 Increase Temperature, 
Decrease elastic modulus, yield strength, and stiffness 
Decrease fatigue strength 
 


 Increase irradiation, 
Increase yield strength, modulus (slightly) 
Decrease fatigue strength (slightly) 
 


 Increase stiffness, 
Decrease strain for a given applied bending moment 
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Property relationships 


 Flexural rigidity = stiffness = EI  (N-m2; lb-in2) 
 


 I = moment of inertia   (m4; in4) 
  = π/4(r4) for a rod 


 = π/4(ro
4 – ri


4) for a tube 
 


 Elastic modulus = E = σ/ε    (N/m2; lb/in2) 
 


 Strain = ε = roκ = ro(M/EI)    (m/m; in/in) 
 


 Curvature = κ = ε/roκ   (m-1; in-1) 
 


 Bending moment = M = σS   (N-m; in-lb) 
 


 Stress = σ = M/S = M/(I/ro)  (GPa; N/m2; lb/in2) 
 


 Section modulus = S = I/ro  = (EI/E) ro (m3; in3) 
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ro
unirr-tube =ro


irr-rod  
 so, for the same applied moment, M: 
 εirr/εunirr = (ro(M/EIirr))/( ro(M/EIunirr)) = 
EIunirr/EIirr 
So, εirr = εunirr(EIunirr/EIirr) 


ORNL reports that for a 6.25 N-m “bending loading” the 
“maximum clad Von Mises stress is 13.36 ksi for “HBU Zr-4 clad 
inserted with a single UO2 rod, rod and clad interface de-bond”. 
So, for a 0.7 N-m “bending load” (applied moment) the stress 
would be: 
σhigh burnup irradiated Zircaloy-4 = (13.36)(0.70/6.25) ≈ 1.5 ksi 
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Rail loadings less severe 
than truck loads 
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Variation of the Deep Borehole Reference  
Design for Disposal of Vitrified High Level Waste 







*Relative to the reference design, disposal vitrified 
HLW in deep boreholes will require: 
 
• The redesign of treatment plants to accommodate 


smaller diameter glass logs. 
 
•  Approximately four times as many reduced 


volume canisters would have to be created and 
handled. 
 


• Existing waste at West Valley and Savannah River 
would require reprocessing and repackaging into 
smaller canisters  


 
Or could we modify the deep borehole design to 
accommodate the current canister design??? 


Vitrified High Level Waste:  
A Challenge for Deep Borehole Disposal  


*U.S. Department of Energy (DOE), 2014, Evaluation of Options for Permanent Geologic Disposal of Spent 
Nuclear Fuel and High-Level Radioactive Waste in Support of a Comprehensive National Nuclear Fuel Cycle 
Strategy, FCRD-USED-2013-000371, U.S. Department of Energy, Washington, DC. 







Large Diameter Deep Boreholes 
 


The Cannikin Example – 5 Megaton Spartan Missile 
Detonation 
• First major project under the National Environmental Policy Act of 1969, 


which required the preparation of an “Official Environmental Impact 
Statement.”  
 


• Largest mined shaft in the United States with a single elevator to 6,000 
feet.  
 


• Deepest 90-inch hole—6,150 feet (1,875 meters) 
 


• Cased hole using 54” casing  
 


• Largest load lowered downhole—over 400 tons.  
 


• Largest emplacement drill rig—1,000 ton mast.  
 


• Drilled in hard rock (volcanics) 
 


• Drilled without blow out preventer (BOP) 
 
 


Deep Mine Shafts -Penna #3 shaft (LaRonde, 
Canada) 
• Deepest single-lift shaft in the western hemisphere  


 


• Depth: 2,259 meters  
 


• Circular hole 5.5m diameter 
 


• Drilled in hard rock (volcanics) 
 


 
 


 







Beswick et al., 2014* propose the following 
design: 


 


Large Diameter Deep Boreholes 


Depth 
(m) 


Hole 
Diameter (in.) 


Casing 
Diameter (in.) 


0-500 60 54 


500-1000 48 40 


1500-2500 36 30 


2500-5000  24 to 26 20 


*Beswick A.J., Gibb, F.G., and Kravis, K.P. (2014) Deep borehole disposal of nuclear waste: engineering 
challenges. Proceedings of the Institution of Civil Engineers, 167, EN12. p.47-66. 







Waste  
Interval 
500 m 


Seal  
Interval 
1000 m 


Top of  
Bedrock  


500 m 


36” hole 30” OD 
 casing @ 3000 m 


48” hole 40” OD  
casing @ 1000 m 


58” hole 50” OD  
casing @ 300 m 


Preliminary Large Diameter Deep Borehole  
Design For Vitrified HLW 


Depth 
(m) 


Hole 
Diameter 


(in.) 


Casing 
Diameter 


(in.) 


Casing 
Thickness 


(in.) 


Casing 
Weight 


(lbs) 


0-300 58 50 1 
515,059 


300-1000 48 40 1 
2,049,705 


1000-3000 36 30 0.75 
2,306,102 







Considerations for Very Large Borehole 
Design 


 
• Proposed depth to bedrock is shallow relative to reference design (500-1000 m). 


 


• The borehole redesign will likely require non-standard drilling equipment and 
techniques. 


• Largest available BOP is 30” 
• Hydraulic jacking system to lower casing 
• Large diameter bits (36” and greater) 


 


• Characterization borehole becomes critical for the decision to proceed with drilling 
disposal borehole(s).  


• Stress state of rocks at depth 
• Over-pressured formations and well blow out risk 
• Establishing acceptable geochemical and hydrological conditions at 1500-3000 m. 


 


• Can the current canisters (and canister designs) be emplaced in a deep borehole? 
 


• Shallow borehole depths may necessitate an increased reliance on waste form and 
waste package performance. 


 


• Very preliminary cost estimates suggest significant cost increase (50 million) in cost per 
borehole over the reference design. 
 


• Current and Projected vitrified HLW can be disposed of in ~150 boreholes. 
 


 
 


 
 







 
Questions/Comments/Discussion 
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