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CIRFT bending load vs fatigue life 
data reveals large data scatter 


y = 270.85x-0.245 
R² = 0.8976 
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Number of Cycles or Cycles to Failure  


HBR Failure


HBR No failure


NA Failure


NA No Failure


MOX Failure


LMK Failure


LMK No failure


Power (HBR Failure)


HBU [GWD/MTU] 
 


HBR: 64-67 
MOX: 40-49 
NA: 60-63 
BWR,-LMK: 54-57 







Complex vibration can be constructed 
or formed by modal shape functions 







SNF transport reliability investigation plays a 
critical role in the back end fuel cycle initiative 
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Skelton of fuel assembly is formed by 
guide thimble tubes and spacer grids 







System damping can critical affect 
the system amplification factors 
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Fuel Rod Section with Two Dimples Model 


• 3-D model 
• Model clad as full fuel rod 


with length 38mm 
• Model two dimples  
• Dynamic explicit  
• Define general contact 


between clad and dimple 
surfaces 


• Define clad initial velocity 
upon impacting dimple 
0.25mm/s~0.62mm/s as 
estimated 


• Both clad and dimple with 
material Zircaloy-4 
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Impact 20g Load 


Impact location max 
stress 3.641 MPa 







 







 







Canister design can significantly affect 
SNF system vibration reliability 


+ 







Guide tube and spacer grids become load 
bearing in horizontal set-up under NCT  







SNF fuel assembly vibration intensity 
depends on aging skeleton integrity 


 Due to SNF horizontal installation for transport, guide tubes & 
spacer grids are now become bending load bearing members 
for fuel rods static & dynamic loads;  


 Fuel assembly skeleton, formed by guide tubes & spacer 
grids, is responsible for LOAD transferring mechanism within 
the fuel assembly during transport. 


 Thus, the integrity of guide tube & spacer grids will critically 
affect SNF vibration intensity during transport. 


End nozzle Guide tube 
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Transient Shocks and Vibration Environments 
Encountered During Normal Rail Transportation 
of Heavy Cargo (SAND82-0819, TTC-0298, August 1982) 


Peak Normal Vibration  


Transient Shocks of NCT  
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TTCI rail study vibration spectrum provided in 
FCRD-UFD-2013-000325 (2013) 







Unique design concepts of CIRFT testing 
protocol are illustrated below 







Canister orientations can affect static/dynamic 
loads transfer mechanism within a fuel assembly 
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17X17 Westinghouse OFA 
PWR Fuel Assembly 


Upper Tie Grids/Nozzles 


Lower Tie Grids/Nozzles 


Spacer Grids Rigidly Attached to the 
Guide Tubes  


Global PNNL SNF assembly FEM – no 
pellet-pellet interfaces 
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Fuel rod, skeleton, and basket wall 
material properties 
Material Density 


(lb/in3) 
Young’s 
Modulus (psi) 


Poisson’s ratio Yield strength 
(psi) 


UO2 0.396 2.92e7 0.32 3.11e5 


Zircaloy-4  0.237 1.32e7 0.33 1.31e5 


Inconel 0.296 3.06e7 0.284 1.432e5 


Stainless steel 0.2901 2.8e7 0.3 4.206e4 


Dimple 
Spring 
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Modal Analysis--Mode and Frequency Cont. 


Mode-9:  37.702 Hz 


Mode-11:  55.525  Hz 


Mode-10:  50.287  Hz 


Mode-12:  70.983  Hz 


Cradle model 
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Modal Analysis--Mode and Frequency Cont. 


Mode-17:  93.064 Hz 


Mode-49:  318.29 Hz 


Mode-18:  94.273 Hz 


Mode-51:  345.44 Hz 


Concrete model 
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Modal Analysis--Mode and Frequency Cont. 


Mode-13:  75.871 Hz 


Mode-15:  90.103 Hz 


Mode-14:  76.498 Hz 


Mode-16:  92.62 Hz 
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Contact Stress 


Step-1: max contact stress at intermediate 
spacer touching basket location 


Step-2: max contact stress at clad contacting guide tube   
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Load and Boundary- Case 2 
Step-1: Gravity for guide tube and two fuel rods 
down in vertical Y direction; the other eight fuel 
rod weights applied as concentrated loads evenly 
on the guide tube at eight spacer location as P 
load; basket simply supported. 


P 
P 


P 
P 


P P 
P P 


P=4.94 lb 


Step-2: Continued on Step-1, remove gravity 
and  concentrated loads; remove basket simple 
support boundary; apply 0.5g sine wave 
acceleration on basket and nozzles. 
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Step-1: Under Gravity Loads--Same as 
Case 1 


Intermediate spacers sit on basket 


Bottom spacer 
doesn't contact 
basket 


Top spacer 
doesn't contact 
basket 


Guide tube and fuel 
rods sag in the middle; 
Max stress on guide 
tube, no yielding 
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Step-2: Acceleration 0.5g Sine Wave 


Max stress for the system on the 
Top spacer (Inconel), yielded 
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Step-2: Guide Tube Response on 0.5g 
Acceleration 


Guide tube yielded at top and bottom nozzle location 
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Step-2:Clad, Basket and Nozzles Response 


Clad yield at 
spacer grip  


Basket and nozzles yielded 
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Contact Stress 


Step-1: max contact stress at intermediate spacer touching 
basket location 


Step-2: max contact stress at intermediate spacer touching 
basket location 
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