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HBU HBR static tests show significant
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» The difference between CIRFT and PNNL curves measures the contribution of fuel
pellets against bending. At 1.87 m-1, approximately 59% of moment comes from
clad and the rest from fuel pellets.





HBU HBR SNF fatigue testing reveals fatigue
endurance limit and different damage rates

Curvature amplitude (m)
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Challenges in CIRFT hydride reorientation test

Bias of preparing CIRFT hydride reorientation (HR) sample -

= Heat source is from clad outer surface (~400C), reduce radial
compressive stress, thermal gradient spread to fuel core.

= |n-situ pressurization with 2400psi pressure may balance /reduce
radiation crimping effect (of 2450 psi coolant pressure).

= Combined effect of thermal annealing & clad pressurization; could
permanently enlarge the clad inner radius.

= Control CIRFT tests to quantify the above three effects are
warranted, in order to properly estimate the net HR effect from
CIRFT HR data while comparing to CIRFT SNF baseline data.






CIRFT combined shock and fatigue

loads shows reduced effective lifetime
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HBU SNF fuel weakest site is resided at P-P
interface, high hydride, spacer grids region
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PWR/BWR fuel assembly load
transferring mechanism

» Fuel assembly skeleton, formed by
guide tubes & spacer grids, are
designed to constrain fuel rods in a
reactor operation.

» In a vertical set-up, the skeleton
experienced with fluid dynamics
induced vibration loads, as well as
rods dead weight, transmitted
though spacer grids to guide tubes,
In reactor operation.

» In a horizontal set-up under SNF
transport of NCT, the skeleton will be
the primary load bearing members
for carrying and transferring the
bending vibration loads within SNF
fuel assembly.






Guide tube and spacer grids become






SNF dynamic loading are from inertia and
assembly system contact-impact loads
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Rod initial velocity of 0.62 mm/s at 10 u-m
clear space between rod/dimple generates
0.46N contact impact in PWR operation

In a vertical skeleton set-up of reactor, fuel
vibration is generate by hydrodynamic load

Spacer
dimple

Fuel

rod

Reaction force = 0.46N on one dimple,
with initial gap of 10 micro-m






Fuel assembly vibration integrity/reliability,
including guide tubes and spacer grids, can
significantly affect MPC canister design concept
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Structural dynamic response depends on
system stiffness, damping, and mass

Egn. of Motion: m d’x/dt? + c dx/dt + k x = P(t)

% k F=ma = m d’/dt?
é—fvw(ww\,— > x(t)
/ M

/ Fo = -kx

é ) - 1—> p(t)
-

0

<__—
Fp =-cv =-cdx/dt %A

Nature frequencies depend on system’s stiffness and mass.






SNF rod vibration under NCT is also
characterized by the rod El (rigidity)
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SNF assembly dynamic interactions, including skeleton,
fuel rods, and canister basket wall, can significantly
increase impact loading intensity and frequency within
fuel assembly & basket/canister structure

 The aging or fatigued skeleton system can increase fuel-rod to
fuel-rod contact impact loading intensity as well as enhance
SNF resonance vibration deformation probability.

 The contact interactions between fuel rods and basket wall also
can further increase fuel rod transient shock loads frequencies.

e Proper structure reinforcement of canister design is warranted
to overcome the static & dynamic vibration loads (external cask
vibration and internal amplification from fuel assembly system
vibration & its interaction transient shocks)

e Mitigation includes increase system damping potential to
reduce vibration intensity.





NCT Cask random vibration provides the
external loading driver to SNF assembly

Continuous Excitation

Discrete Excitation

Acceleration-time history shows presence of discrete

shock signals superimposed on continuous vibration
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Internal vibration loads
include transient
shocks generated by
basket wall & fuel rods
& guide tubes & spacer
grids interactions
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CIRFT Methodology to determine SNF effective
lifetime using SNF vibration time-history data
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Rail Shock and Vibration Pre-Test Modeling of a Used
Nuclear Fuel Assembly - IHLRWM 2015, Charleston, SC, April 12-16, 2015

Table 1. Modal Analysis of Concrete Block _
Table 2. Modal Analysis of Cask/Cradle Systems

Concrete Block System Cask/Cradle System

Mode Frequency Ratio Mode Frequency Ratio
1 1443 0.0002 1 10.52 0.0004
5 174.3 0.0000 2 27.72 0.0269
3 179.0 0.0000 3 28.75 0.0012
4 7859 0.0004 4 52.40 1.0000
5 318.1 1.0000 5 66.76 0.0033
6 338.2 0.6429 6 73.06 0.0419
7 347.9 0.0000 7 153.5 0.0503
8 354.1 0.0000 8 154.2 0.0245






Concrete block model shows significant reduction
in amplification factor compared to cradle model
for both harmonic vibration and transient shocks

Frequency Response Spectra Nonlinear Analysis of Load Transference

Frequency Response

s Excitation  =——FACG - Cradle  =——FACG - Concrete

H H i i H i H
0 30 40 50 B0 7o 80 20 100
hz

Acceleration (mfs~2)

Cradle model shows 10 times
amplification factor (AF), concrete 20 -
mode on the contrary to suppress AF.






Surrogate fuel assembly vibration intensity

registered from Sandia truck vibration simulation
FCRD-UFD-2014-000066

Table 5.1 Strain gauge maximum values for truck test

. . Maximum Micro-strain
Strain Gauge Location on Assembly Absolute Value (yin.fin.)
$3-0° 143
" Adjacent to first spacer gnid,
§3-90 Span 5 84
83 - 225° 108

Table 5.7 Maximum vertical rod accelerations all route segments

All Segments

Uniaxial Location Maximum Acceleration, g
Accelerometer
A1 On first spa;:gr grid, Span 9.5
A2 Mid-span, Span 10 16.7
A3 Adjacent_ to second spacer 14.6
grid, Span 10 —
A7 Adjacent _tn second spacer @
grid, Span 5
A8 On second spacer grid, 11.3
Span 5






Potential error sources of using resistance
strain gage for dynamic deformation
measurement

Type of gage
Time and amplitude errors Gage length
% PEAK Temperature
STRA Lead wire effect
_ __j Shielding of leads
INDICATED Solider joining

STRAIN

STRAIN

Gage bonding

Amplifiers (rise-
time, amplitude,
random






ORNL local SNF modelling

Bottom Inconel
Spacers

Intermediate Zircaloy-4 Spacers

Zr-4 Guide

Top Inconel Tube
Spacers

, Top Stainless
Steel Nozzle

Bottom
Stainless
Steel Nozzle

Stainless Steel
Basket

Fuel rods of Zr-4 Clad and UO, Pellets






Rod and Fuel skeleton interactions

Guide tube ties
to nozzles and
spacers

nozzles

Guide tube outer surface, clad outer
surfaces, spacers bottom surfaces and
basket top surface contact if touch

Spacers connect fuel rods with two Zr-4
springs and two Zr-4 dimples

1

Kasket ties tﬂ

Zr-4 Zr-4 Dimple






ORNL modal analysis show low natural frequency

compared to cradle & concrete models
Mode No.  Frequency Participation Factor in Effective Mass in vertical

vertical direction direction (Ibf s2/in)
sub- —31 2.4439 1.000 8.195E-02
model 2 2.7325 0.162 2.870E-03
3 5.8257 0.004 1.246E-06
4 9.5519 0.004 6.399E-07
5 14.792 0.381 1.079E-02
6 20.845 0.236 2.525E-03
7 22.665 0.011 1.037E-05
8 36.11 0.076 2.857E-04
9 37.702 0.221 3.965E-03
10 50.287 0.026 5.776E-05
cradle — 11 55.525 0.182 1.419E-03
12 70.983 0.163 1.865E-03
13 75.871 0.001 6.431E-09
14 76.498 0.063 8.095E-05
15 90.103 0.026 4.378E-05
16 92.62 0.000 4.972E-10
17 93.064 0.000 4.257E-11
18 94.273 0.000 4.901E-10
concrete =—>49 318.29 0.001 6.104E-09

51 345.44 0.014 6.133E-07





Modal Analysis--Mode and Frequency

U, Magnitude
+1.000e+00
+9.167e-01
+8.333e-01
+7.500e-01
+6.667e-01
+5.833e-01
+5.000e-01
+4.167e-01
+3.333e-01
+2.500e-01
+1.667e-01
+8.333e-02
+0.000e+00

U, Magnitude
+1.000e+00
+9.167e-01
+8.334e-01
+7.500e-01

+5.834e-01
+5.000e-01
+4.167e-01
+3.333e-01
+2.500e-01
+1.667e-01
+8.334e-02
+0.000e+00

T ke syiigm Tnae 2015

Mo EETE Fma- zaom ks
Wi |kl
e mackon Scole Foctor: 100300

Mode-1: 2.4439 Hz

ieon Dt Time 2115

o,

R e Lme seis sEm loemine
1—' X TRy PGS [ sine)

Cerormaavac U

v

o mackn Scale Fascor: - L.992e-08

Mode-3: 5.8257 Hz

U, Magnitudc
= L.0000+00
lbfe 01
~8.3330-01
= h00e-01
~5.0070-
Te-0

U, Magnitude
+1.000e+00
+9.167e-01
+8.333e-01
+7.500e-01
+6.667e-01
+5.833e-01
+5.000e-01
+4.167e-01
+3.333e-01
+2.500e-01
+1.667e-01
+8.333e-02
+0.000e+00

Mode-2: 2.7325 Hz

R
TSI B o e 3

B Fre 9SS ks
ST e Ieveieseime)

Mode-4: 9.5519 Hz






Modal Analysis--Mode and Frequency Cont.

U, Magnitude U, Magnitude
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Load and Boundary- Case 1

Step-1: Gravity for guide tube and two fuel rods
down in vertical Y direction; the other eight fuel
rod weights applied as concentrated loads evenly
on the guide tube at eight spacer location as P
load; basket simply supported.

P=4.94 Ib

Step-2: Continued on Step-1, gravity and loads
same as step-1; remove basket simple support





Step-1: Under Gravity Loads
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Step-2: Acceleration 0.5g Sine Wave and
Gravity Loads

S, Mises
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Step-2: Guide Tube Response on 0.5¢g
Acceleration and Gravity Loads
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Step-2:Clad, Basket and Nozzles Response
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SNF system failure mechanisms should
includes skeleton aging behaviors

Thick oxide region has higher Aa and will higher
stress intensity, Kc = c/ra

Hydride ring region has higher stiffness, when
hydride ring was breached due to cyclic fatigue, fast
brittle fracture was initiated.

S

S
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HBR, Ah=2.9mm, hbrcol16.m: 05-Sep-2014
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Clad residual
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system rigidity
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of clad axial and
radial residual stress;
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CIRFT S-N trend show two different damage
rates and the cut-off range is near 10 N-m
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Strain vs. failure lifetime data shows
significantly reduction in data scatter
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