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Abstract 

 

The appropriate treatment of model uncertainty is an important and difficult challenge in the analysis of complex 

systems. The conceptual treatment of model uncertainty is complicated by the fact that parameter uncertainty grades 

into model uncertainty with no clear boundary between where parameter uncertainty ends and model uncertainty 

begins. The intent of this presentation is to solve neither the challenge of how to unambiguously define model 

uncertainty nor the general challenge of how to appropriately incorporate representations for model uncertainty into 

an analysis. Rather, the intent is to provide perspectives on both the indicated challenges by providing examples of 

how model uncertainty was defined and incorporated into the 2008 performance assessment for the proposed 

geologic repository for high-level radioactive waste under development by the U.S. Department of Energy at Yucca 

Mountain, Nevada. Specifically, five examples of the incorporation of model uncertainty into the 2008 Yucca 

Mountain performance assessment are presented: uncertain model for infiltration and unsaturated flow properties, 

uncertain model for CO2 partial pressure in waste disposal drifts, uncertain model for plutonium solubility, uncertain 

model for a Poisson process, and uncertain model for dose conversion. 
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1. Introduction 

 

  As is now widely recognized, the appropriate representation of uncertainty is an important 

part of any analysis [1-8]. Further, the uncertainties that must be considered in the analysis of a 

complex system are often subdivided into two classes: aleatory uncertainty and epistemic 

uncertainty [9-15]. Specifically, aleatory uncertainty corresponds to the uncertainty that derives 

from randomness in the properties or the behavior of the system under study (e.g., the magnitude 

and time of occurrence of a future seismic event), and epistemic uncertainty corresponds to the 

uncertainty that derives from a lack of knowledge with respect to the appropriate value to use for 

a quantity that is assumed to have a fixed value in the context of a specific analysis (e.g., the 

appropriate value to use for a spatially-averaged permeability). In turn, epistemic uncertainties 

are often divided into parameter uncertainty and model uncertainty, where parameter uncertainty 

corresponds to epistemic uncertainty in the appropriate value to use for a quantity that is an input 

to a model and model uncertainty corresponds to epistemic uncertainty with respect to the 

appropriate model to use to represent a physical process or some other aspect of the behavior of a 

system. Parameter uncertainty and its effects on model predictions has long been an area of study 

[16-25]. Model uncertainty has been less studied than parameter uncertainty but is an area in 

which interest is rapidly increasing [26-34]. 

 

  The conceptual treatment of model uncertainty is complicated by the fact that parameter 

uncertainty grades into model uncertainty with no clear boundary between where parameter 
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uncertainty ends and model uncertainty begins. The intent of this presentation is to solve neither 

the challenge of how to unambiguously define model uncertainty nor the challenge of how to 

appropriately incorporate representations for model uncertainty into an analysis. Rather, the intent 

is to provide perspectives on both the indicated challenges by providing five examples of the 

treatment of model uncertainty in the 2008 performance assessment (PA) for the proposed 

geologic repository for high-level radioactive waste under development by the U.S. Department 

of Energy at Yucca Mountain (YM), Nevada [35-40]. 

 

 The presentation is organized as follows. First, a brief overview of the 2008 YM PA is given 

(Sect. 2). Next, the five examples of the incorporation of model uncertainty into the 2008 YM 

PA are presented: uncertain model for infiltration and unsaturated flow properties (Sect. 3), 

uncertain model for CO2 partial pressure in waste disposal drifts (Sect. 4), uncertain model for 

plutonium solubility (Sect. 5), uncertain model for a Poisson process (Sect. 6), and uncertain 

model for dose conversion (Sect. 7). The presentation then ends with a concluding discussion 

(Sect. 8). 

2. Overview of the 2008 Yucca Mountain Performance Assessment 

 

 This section is written to provide an overview of the 2008 PA for the proposed YM 

repository for high-level radioactive waste and is adapted from Sect. III of Ref. [41]. Additional 

and more detailed information on this analysis is contained in Ref. [40] and in the many 

specialized reports cited in this reference. In particular, the conceptual structure and 

computational organization of the 2008 YM PA are described in App. J of Ref. [40]. 

The  NRC’s requirements for the YM repository [42-44] in 10 CFR Part 63 result in a PA 

that involves three basic entities: EN1, a characterization of the uncertainty in the occurrence of 

future events (e.g., igneous events, seismic events) that could affect the performance of the 

repository; EN2, models for predicting the physical behavior and evolution of the repository 

(e.g., systems of ordinary and partial differential equations); and EN3, a characterization of the 

uncertainty associated with analysis inputs that have fixed but imprecisely known values (e.g., 

the appropriate value to use for a dose conversion factor) [45; 46]. The designators aleatory and 

epistemic are commonly used for the uncertainties characterized by entities EN1 and EN3 [9; 11-

15]. 

 

In the preceding, aleatory uncertainty is used in the designation of, in so far as our ability to 

predict the future is concerned, randomness in the possible future conditions that could affect the 

YM repository.  In concept, each possible future at the YM repository can be represented by a 

vector 

 

  1 2, , , ,nAa a aa  (2.1) 

 

where each ai is a specific property of the future a (e.g., time of a seismic event, size of a seismic 

event, …) and the random events characterized by the individual futures occur in a specified time 

interval [a, b] (e.g., [0, 20,000 yr] or [0, 1,000,000 yr] in the 2008 YM PA).  In turn, a subset  

of the set  of all possible values for a constitutes what is referred to as a scenario class in the 
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2008 YM PA.  As part of the 2008 YM PA development, a probabilistic structure is imposed on 

the set .  Formally, this corresponds to defining a probability space (, , pA) for aleatory 

uncertainty. As a reminder with respect to the properties of an arbitrary probability space (, , 

pA), the set contains everything that could occur in the particular “universe” under 

consideration; is a suitably restricted set of subsets of  for which probability is defined; and 

pA is a function that defines the probability of individual elements of  (see Ref. [47], Sect. IV.3, 

for additional discussion of probability spaces).  In the context of the 2008 YM PA,  is the set 

of all possible scenario classes, and pA is the function that defines scenario class probability (i.e., 

scenario class  is an element of  and pA() is the probability of scenario class ).  Formally, 

the probability space (, , pA) provides a characterization of aleatory uncertainty and 

constitutes the first of the three basic mathematical entities that underlie the determination of 

expected dose to the reasonably maximally exposed individual (RMEI) specified in 10 CFR Part 

63 and, in addition, many other results relevant to the performance of the YM repository. 

 

Although useful conceptually and notationally, the probability space (, , pA) is never 

explicitly defined in the 2008 YM PA.  Rather, the characterization of aleatory uncertainty enters 

the analysis through the definition of probability distributions for the individual elements of a.  

Conceptually, the distributions for the elements of a lead to a distribution for a and an associated 

density function dA(a). The nature of the probability space (, , pA) in the context of the 2008 

YM PA for events taking place over a specified time interval [a, b] is indicated in Table 1 (see 

Ref. [40], App. J, for additional information). Different, but closely related, probability spaces 

result for [a, b] = 20,000 yr and [a, b] = 1,000,000 yr and underlie different parts of the 2008 YM 

PA.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Table 1 Aleatory Uncertainty in the 2008 YM PA ([41], Table I) 

Individual Futures (i.e., elements of sample space ): 

 , , , , , , , , , , ,EW ED II IE SG SFnEW nED nII nIE nSG nSFa a a a a a a  

where, for a specified  time interval [a, b], nEW = number of early  waste package (WP) failures, nED = number of 
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early drip shield (DS) failures, nII = number of igneous intrusive events, nIE = number of igneous eruptive events, 

nSG = number of seismic ground motion (GM) events, nSF = number of seismic fault displacement (FD) events, 

aEW = vector defining the nEW early WP failures, aED = vector defining the nED early DS failures, aII = vector 

defining the nII igneous intrusive events, aIE = vector defining the nIE igneous eruptive events, aSG = vector 

defining the nSG seismic GM events, and aSF = vector defining the nSF seismic FD events. 

 
Sample Space for Aleatory Uncertainty: 

 

   : , , , , , , , , , , ,EW ED II IE SG SFnEW nED nII nIE nSG nSF a a a a a a a aA  

High-Level Scenario Classes (i.e., Elements of set ): 

Nominal,  :  and 0N nEW nED nII nIE nSG nSF       a aA A  

Early WP failure,  :  and 1EW nEW  a aA A  

Early DS failure,  :  and 1ED nED  a aA A  

Igneous intrusive,  :  and 1II nII  a aA A   

Igneous eruptive,  :  and 1IE nIE  a aA A  

Seismic GM,  :  and 1SF nSF  a aA A   

Seismic FD,  :  and 1SF nSF  a aA A   

Scenario Class Probabilities: 

 

pA (N) = probability of no disruptions of any kind 

pA (EW) = probability of one or more early WP failures  

pA (ED) = probability of one or more early DS failures 

pA (II) = probability of one or more igneous intrusive events  

pA (IE) = probability of one or more igneous eruptive events 

pA(SG) = probability of one or more seismic GM events 

 pA(SF) = probability of one or more seismic FD events 

 

 

 

 

The second of the three basic mathematical entities that underlie the 2008 YM PA is a model 

that predicts dose to the RMEI and many additional results. Formally, this model can be 

represented by the function 

 

 
   (  | ) dose to RMEI mrem/yr  at time   yr  conditional on the occurrence of 

the future represented by .

D  a

a
 (2.2) 

Technically, D( |a) is the committed 50 yr dose to the RMEI that results from radiation 

exposure incurred in a single year. Model uncertainty is present with respect to the appropriate 

choice of models to represent and calculate D( |a); examples of the uncertainty associated with 

such choices are the subject of this presentation. In the computational implementation of the 

2008 YM PA, D( |a) corresponds to the calculation performed for the particular analysis 

configuration defined for the future a.  In practice, many results are calculated for a in addition 
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to dose to the RMEI (e.g., see Ref. [40], Table K3-4); several of these results are used as 

examples in Sects. 37.  Thus, D( |a) is actually a vector D( |a) containing at least several 

thousand elements. The general nature of D( |a) is described in Ref. [40] and in the many 

specialized references cited in Ref. [40]. With respect to terminology, D( |a) is typically 

referred to as the Total System Performance Assessment-License Application (TSPA-LA) model 

in Ref. [40], and, similarly, the 2008 YM PA is referred to as the TSPA-LA analysis. As an 

example, the overall structure of the model involved in the determination of D( |a) for the 

igneous intrusive scenario class is shown in Fig. 1. In general, a variety of analysis results is 

associated with each of the individual models indicated in Fig. 1. 
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Fig. 1 Information transfer between model components and submodels for the igneous intrusive scenario 

class in the 2008 YM PA ([40], Fig. 6.1.4-4).    
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The third of the three basic mathematical entities that underlie the 2008 YM PA is a 

probabilistic characterization of epistemic uncertainty.  Here, epistemic uncertainty refers to a 

lack of knowledge with respect to the appropriate value to use for a quantity that is assumed to 

have a constant or fixed value in the context of a specific analysis. Specifically, epistemic 

uncertainty relates to a vector of the form 

 

 

 

 

1 2 , 1 2 ,

1 2

,

, , , , , , ,

, , , , ,

A M

A A A nAE M M M nME

nE

e e e e e e

e e e nE nAE nME



   

  

e e e

 (2.3) 

      

where 

  

 1 2 ,, , ,A A A A nAEe e e   e  

 

is a vector of epistemically uncertain quantities used in the characterization of aleatory 

uncertainty (e.g., a rate term that defines a Poisson process) and 

  

 1 2 ,, , ,M M M M nMEe e e   e  

 

is a vector of epistemically uncertain quantities used in the determination of dose and other 

analysis results (e.g., a distribution coefficient). Further, the individual elements of e are 

interpreted broadly enough to include designators for alternative models or model structures. As 

a result, model uncertainty formally enters into the 2008 YM PA through the specification of 

elements of e and the uncertainty associated with these elements.   

 

Epistemic uncertainty results in a set  of possible values for e.  In turn, probability is used 

to characterize the level of likelihood or credence that can be assigned to various subsets of .  In 

concept, this leads to a probability space (, , pE) for epistemic uncertainty. Like the 

probability space (, , pA) for aleatory uncertainty, the probability space (, , pE) for 

epistemic uncertainty is useful conceptually and notationally but is never explicitly defined in the 

2008 YM PA. Rather, the characterization of epistemic uncertainty enters the analysis through 

the definition of probability distributions for the individual elements of e.  These distributions 

serve as mathematical summaries of all available information with respect to where the 

appropriate values for individual elements of e are located for use in the 2008 YM PA.  

Conceptually, the distributions for the elements of e lead to a distribution for e and an associated 

density function dE(e). The nature of the probability space (, , pE) in the context of the 2008 

YM PA is indicated in  

Table 2; a full listing of the elements of e and sources of additional information are provided 

in Tables K3-1, K3-2 and K3-3 of Ref. [40]. 

 

 

Table 2 Examples of the nE = 392 Epistemically Uncertain Variables in the 2008 YM PA ([41], Table I)  
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ASHDENS - Tephra settled density (kg/m

3
). Distribution: Truncated normal. Range: 300 to 1500. Mean: 1000. 

Standard Deviation: 100. 

IGRATE - Frequency of intersection of the repository footprint by a volcanic event (yr
1

). Distribution: Piecewise 

uniform. Range: 0 to 7.76E07. 

INFIL - Pointer variable for determining infiltration conditions: 10
th

, 30
th

, 50
th

 or 90
th

 percentile infiltration scenario 

(dimensionless). Distribution: Discrete. Range: 1 to 4.  

MICPU239 - Groundwater biosphere dose conversion factor (BDCF) for 
239

Pu in modern interglacial climate 

((Sv/year)/(Bq/m
3
)). Distribution: Discrete. Range: 3.49E07 to 2.93E06. Mean: 9.55E-07. 

SZFISPVO - Flowing interval spacing in fractured volcanic units (m). Distribution: Piecewise uniform. Range: 1.86 

to 80.  

 

 With the introduction of the vector e of epistemically uncertain analysis inputs and the 

associated probability space (, , pE), the vector D( |a) of analysis results is now appropriately 

represented by D( |a, e) to indicate that its value is conditional on the vector e. Further, the 

elements of D( |a, e) have distributions that derive from the probability space (, , pE). In the 

2008 YM PA, the epistemic uncertainty associated with the elements of D( |a, e) is determined 

with use of a Latin hypercube sample (LHS)  

 

  , , 1, 2, , ,i Ai Mi i nLHS e e e  (2.4) 

 

 of size nLHS = 300 from the possible values for e generated in consistency with the 

distributions that define the probability space (, , pE) (see Refs. [48; 49] for details on Latin 

hypercube sampling). The 2008 YM PA was then carried out for each element of this sample. 

The results of these calculations are mappings of the form  
 

  , ( | ) , 1, 2, , 300,i i i nLHS  e D a,e  (2.5) 

 

between uncertain analysis inputs ei and uncertain analysis results D( |a, ei) for selected futures 

a. These mappings then formed the basis for extensive uncertainty and sensitivity analyses 

carried out as part of the 2008 YM PA (see Apps. J and K of Ref. [40]). Further, a small subset 

of these analyses is used in the illustration of the treatment of model uncertainty in the following 

five sections. 
 

3. Uncertain Model for Infiltration and Unsaturated Flow Properties 

 

 The appropriate representation of surface infiltration and unsaturated flow properties in the 

unsaturated zone (UZ) surrounding the excavated component of the YM repository is an 

important component of the 2008 PA for the YM repository. In general, both surface infiltration 

and unsaturated flow properties are functions of time t. Further, surface infiltration (units: 

m
3
/m

2
s) is a two-dimensional function I(x,y,t) of surface location in xy space, and unsaturated 

flow properties are a three-dimensional vector function u(x,y,z,t) of location in the UZ. Included 

in the unsaturated flow properties that constitute elements of u(x,y,z,t) are water flow in 

fractures, water flow in matrices surrounding fractures, water saturations in fractures and 
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surrounding matrices, and water flow between fractures and surrounding matrices. In the 2008 

YM PA, u(x,y,z,t) is estimated on the basis of three submodels: a model for climate change [50; 

51], a model for infiltration [52], and a model for two-phase unsaturated fluid flow [53]. 

Specifically, the model for climate change provides input to a surface infiltration model that 

determines I(x,y,t), and I(x,y,t) is an input to an unsaturated flow model that determines u(x,y,z,t). 

In turn, u(x,y,z,t) is then input to several other models in the 2008 YM PA.       

 

 The climate model is simple in the sense that it corresponds to a direct specification of future 

climate conditions rather than to an algorithmic or equation-based procedure for the calculation 

of future climate conditions [50; 51]. In particular, present day climate conditions are assumed to 

hold over the time interval [0, 600 yr] after repository closure; monsoonal climate conditions are 

assumed to hold over the time interval [600, 2000 yr]; glacial-transition climate conditions are 

assumed to hold over the time interval [2000, 10,000 yr]; and infiltration-related conditions 

deriving from climate change are specified by regulation for the time period following 10,000 yr. 

In addition, climate properties related to precipitation and temperature are specified for the first 

three time intervals. 

 

 The infiltration model is a complex mathematical model that calculates infiltration on the 

basis of a number of environmental and climate-related conditions (e.g., soil depth, precipitation, 

vegetative cover, plant rooting depth, bedrock saturated conductivity, …) [52]. The infiltration 

model determines the water flow downward across the upper boundary of the region in which 

two-phase fluid flow is modeled. Thus, in essence, the infiltration model determines the upper 

boundary conditions for the two-phase fluid flow model. 

 

 The two-phase fluid flow model is a system of nonlinear partial differential equations that are 

numerically solved with finite difference procedures [53]. Processes incorporated into the two-

phase fluid flow model include flow in both fractures and porous material, coupling of flow in 

fractures and porous material, specification of different properties for individual geologic strata, 

and explicit incorporation of the locations and properties of major faults. Evaluating the two-

phase fluid flow model entails significant computational cost. 

 

 The 2008 YM PA felt that it was important to incorporate the effects and implications of 

uncertainty in the combined infiltration and unsaturated flow model. However this had to be 

done in a way that held computational costs to a reasonable level. This was accomplished by 

making an assessment of the uncertainty in the function u(x,y,z,t). Then, u(x,y,z,t) could be 

treated as simply one more epistemically uncertain input to the 2008 YM PA. 

 

 The uncertainty associated with u(x,y,z,t) was characterized as follows. First, it was decided 

to treat u(x,y,z,t) as being piecewise constant for the time intervals [0, 600 yr], [600, 2000 yr], 

[2000, 10,000 yr] and [10,000, 1,000,000 yr] obtained from the climate model. Then, the 

uncertainty in infiltration was assessed for each of the preceding time intervals. For the 

individual time intervals [0, 600 yr], [600, 2000 yr] and [2000, 10,000 yr], the uncertainty 

associated with infiltration was initially assessed by (i) developing probability distributions to 

characterize the epistemic uncertainty in the variables used as inputs to the infiltration model for 

each time interval, (ii) generating and pooling two LHSs of size 20 from the uncertain variables 

for each time interval (Note: These LHSs are different from the LHS indicated in Eq. (2.4)), (iii) 
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calculating an infiltration field for each LHS element (Reminder: infiltration is variable at the 

surface in xy space), and then (iv) identifying 0.1, 0.3, 0.5 and 0.9 quantile infiltration fields on 

the basis of spatially-averaged infiltration across each field ([52], Sect. 6.5). This results in four 

infiltration fields for each of the time intervals [0, 600 yr], [600, 2000 yr], and [2000, 10,000 yr]. 

For notational convenience, the resultant 12 infiltration fields are represented by Iq(x,y | [a, b]) 

for q = 0.1, 0.3, 0.5 and 0.9 and [a,b] =  [0, 600 yr], [600, 2000 yr] and [2000, 10,000 yr]. 

 

 For the [10,000, 1,000,000 yr] time interval, 0.1, 0.3, 0.5 and 0.9 quantile infiltration fields 

were developed from the 12 infiltration fields Iq(x,y | [a, b]) on the basis of NRC regulatory 

requirements. Specifically, NRC regulations mandated the distribution to be used to characterize 

the epistemic uncertainty in downward water flow at the location of the waste disposal drifts 

associated with the YM repository for the [10,000, 1,000,000 yr] time interval. To implement 

this requirement, the four infiltration fields with the highest spatially-averaged infiltration were 

selected from the 12 infiltration fields Iq(x,y | [a, b]) and denoted I1(x,y), I2(x,y), I3(x,y), I4(x,y). 

Further, the infiltration fields Ii(x,y), i = 1, 2, 3, 4, are ordered so that the spatially-averaged 

infiltration associated with infiltration field Ii(x,y) is less than the spatially-averaged infiltration 

associated with infiltration field Ii+1(x,y) for i = 1, 2, 3. Then, the infiltration fields Ii(x,y) were 

linearly scaled to produce new infiltration fields SIi(x,y) defined by 

 

    , ,i i iSI x y k I x y  (3.1) 

 

 for i = 1, 2, 3, 4, where the ki are constants such that the spatially-averaged infiltrations 

associated with SI1(x,y), SI2(x,y), SI3(x,y) and SI4(x,y) are equal to the spatially averaged 

downward water flows at the location of the waste disposal drifts corresponding to the  0.1, 0.3, 

0.5 and 0.9 quantiles, respectively, of the NRC specified distribution. Consistent with this 

scaling, SI1(x,y), SI2(x,y), SI3(x,y) and  SI4(x,y)  were taken to be the 0.1, 0.3, 0.5 and 0.9 quantile 

infiltration fields for the [10,000, 1,000,000 yr] time interval ([53], Sect. 6.1.4). As above, these 

four infiltration fields are represented by Iq(x,y | [10,000, 1,000,000 yr]) for q = 0.1, 0.3, 0.5 and 

0.9. 

 

 The infiltration fields Iq(x,y | [a,b]) defined above were then used to define time-dependent 

infiltration fields for the time interval [0, 1,000,000 yr]. Specifically, the assumption is made that 

the infiltration fields across time associated with a given quantile value should be combined to 

obtain the corresponding infiltration field for the time interval [0, 1,000,000 yr]. Logic for this 

combination procedure is that the same underlying physical and environmental conditions should 

cause correspondingly low and high infiltration results across the different climate conditions. As 

a consequence, the infiltration filtration fields for the time interval [0, 1,000,000 yr] are defined 

by  

 

 

( , , ) ( , | [0,600 yr]) for 0 600 yr

( , | [600,2000 yr]) for 600 2000 yr

( , | [2000,10,000 yr]) for 2000 10,000 yr

( , | [10,000,1,000,000 yr]) for 10,000 1,000,000 yr

q q

q

q

q

I x y t I x y t

I x y t

I x y t

I x y t

  

  

  

  

 (3.2) 

  



 11 

for q = 0.1, 0.3, 0.5 and 0.9.   

 

 The indicated 16 individual infiltration fields were determined using only information about 

climate and near surface conditions. However, field data on properties of conditions below the 

near surface provide additional information on the potential appropriateness of the individual 

flow fields Iq(x,y | [0, 600 yr])  developed for the [0, 600 yr] time interval. Specifically, chloride 

and temperature data from the unsaturated zone at YM were used in conjunction with a 

generalized likelihood uncertainty estimate (GLUE) methodology to determine probabilities for 

the four flow fields developed for the [0, 600 yr] time interval ([53], Sect. 6.8.2). The steps in the 

GLUE methodology are (i) determine prior probabilities for each infiltration field, (ii) perform 

UZ flow and transport calculations for each infiltration field and, based on model results and 

observed temperature and chloride data, determine likelihood values, and (iii) obtain new 

infiltration field probabilities from the prior probabilities and associated likelihoods ([53], Sect. 

6.8.5.1). Specifically, the resultant probabilities characterizing epistemic uncertainty in the 

appropriateness of the 0.1, 0.3, 0.5 and 0.9 quantile infiltration fields Iq(x,y | [0, 600 yr]) for the 

[0, 600 yr] time interval are 0.62, 0.16, 0.16 and 0.06, respectively ([40], Table 6.3.1-2). Further, 

because of the anticipated similarity of physical and environmental effects across climate 

conditions, the same probabilities are assumed to also characterize the epistemic uncertainty 

associated with the time-dependent flow fields Iq(x,y,t) defined in Eq. (3.2).  

 

 In addition, the four present day infiltration fields Iq(x,y | [0, 600 yr]) were used for model 

calibration, and the resultant calibrated parameters were used as input to the unsaturated flow 

model. Specifically, the calibrated parameters for Iq(x,y | [0, 600 yr]) were used in unsaturated 

flow calculations associated with the infiltration fields Iq(x,y | [0, 600 yr]), Iq(x,y | [600, 2000 

yr]), Iq(x,y | [2000, 10,000 yr]) and  Iq(x,y | [10,000, 1,000,000 yr]) for q = 0.1, 0.3, 0.5 and 0.9 

([53], Sect. 6.2.5 and Table 6.2.6). The four infiltration fields Iq(x,y | [0, 600 yr]) were calibrated 

against measured water saturation, water potential, perched water occurrences, and pneumatic 

data ([53], Sect. 6.2). The calibrated parameters included intrinsic permeabilities of the matrix 

and fracture systems and van Genuchten and m parameters for describing the saturation-

capillary pressure relationships in the fracture and matrix systems ([53], App. B, Tables B1-B4). 

For notational convenience, the three dimensional calibrated parameters for each infiltration field 

Iq(x,y | [0, 600 yr]) can be represented by a vector xq for q = 0.1, 0.3, 0.5 and 0.9.   

   

  The resultant calibrated parameters xq were used as input to the unsaturated flow model. 

Specifically, the calibrated parameters xq for Iq(x,y | [0, 600 yr]) were used in unsaturated flow 

calculations associated with the infiltration fields Iq(x,y | [0, 600 yr]), Iq(x,y | [600, 2000 yr]), 

Iq(x,y | [2000, 10,000 yr]) and  Iq(x,y | [10,000, 1,000,000 yr]) for q = 0.1, 0.3, 0.5 and 0.9 ([53], 

Sect. 6.2.5 and Table 6.2.6). The result of the indicated calculations is a sequence of vectors 

uq(x,y,z | [0, 600 yr]), uq(x,y,z | [600, 2000 yr]), uq(x,y,z | [2000, 10,000 yr]) and uq(x,y,z | 

[10,000, 1,000,000 yr]) of UZ properties for q = 0.1, 0.3, 0.5 and 0.9. In the preceding, uq(x,y,z | 

[0, 600 yr]) is a function of both xq and Iq(x,y | [0, 600 yr]); similar dependencies hold for 

uq(x,y,z | [600, 2000 yr]), uq(x,y,z | [2000, 10,000 yr]) and uq(x,y,z | [10,000, 1,000,000 yr]). 

 

 Time-dependent vectors of UZ properties are now defined by  
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( , , , ) ( , , | [0,600 yr]) for 0 600 yr

( , , | [600,2000 yr]) for 600 2000 yr

( , , | [2000,10,000 yr]) for 2000 10,000 yr

( , , | [10,000,1,000,000 yr]) for 10,000 1,000,000 yr

q q

q

q

q

x y z t x y z t

x y z t

x y z t

x y z t

  

  

  

  

u u

u

u

u

 (3.3) 

 

for q = 0.1, 0.3, 0.5 and 0.9. The vector functions uq(x,y,z,t) are treated as epistemically uncertain 

inputs to the 2008 YM PA with the corresponding probabilities of 0.62, 0.16, 0.16 and 0.06 

determined for Iq(x,y | [0, 600 yr]) and q = 0.1, 0.3, 0.5 and 0.9. In the 2008 YM PA, the 

uncertain input uq(x,y,z,t) is incorporated into the analysis through an epistemically uncertain 

quantity designated INFIL as a mnemonic derived from the role of infiltration in the 

determination of uq(x,y,z,t). Specifically, INFIL assumes the possible values of 1, 2, 3 or 4 with 

probabilities of 0.62, 0.16, 0.16 and 0.06, respectively; in turn, INFIL is one of the 392 

epistemically uncertain variables sampled in the 2008 YM PA, with INFIL = 1 designating the 

use of u0.1(x,y,z,t) in PA calculations and analogous designations occurring for INFIL = 2, 3 and 

4. Additional information and references on the development and use of uq(x,y,z,t) in the 2008 

YM PA are available in Sect. 6.3.1 of Ref. [40]. 

 

 The vector functions uq(x,y,z,t) play an important role in the 2008 YM PA and are involved 

in the definition of seepage into the engineered barrier system (EBS) corresponding to the 

excavated component of the repository system, the determination of thermal and chemical 

conditions in the EBS, and the representation of radionuclide transport in the UZ beneath the 

EBS. As single example, the effects of uq(x,y,z,t) on seepage into the EBS above a commercial 

spent nuclear fuel (CSNF) waste package (WP) in percolation bin 3 under nominal conditions are 

shown in Fig. 2. With respect to terminology, percolation bin 3 is the most extensive of five 

regions into which the repository footprint is divided for the purpose of calculating seepage into 

the repository (see [40], Fig. 6.1.4-2), and nominal conditions is a designator for repository 

conditions that have not been altered by any type of disruptive event (e.g., a seismic event or an 

igneous event).    

 

 

(a) (b) 

(c) 
(d) 
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Fig. 2 Seepage rates (SPRATECS, m3/yr/WP) above CSNF WPs in percolation bin 3 under nominal 

conditions obtained with an LHS of size 300: (a) Time-dependent values for SPRATECS, (b) Box plots 

for SPRATECS at 1000 yr conditional on individual values for INFIL, (c) stepwise rank regression for 

SPRATECS at 1000 yr, and (d) scatterplot for SPRATECS at 1000 yr versus ALPHAL ([40], Figs. K4.3-1 

and K4.3-2). 

  

The time-dependent seepage rates (SPRATECS, m
3
/yr/WP) above individual CSNF WPs in 

percolation bin 3 are shown in Fig. 2a. Each curve in Fig. 2a was generated with one of the 300 

LHS elements used in the propagation of epistemic uncertainty in the 2008 YM PA and was 

calculated with a specific value for uq(x,y,z,t) identified by the sampled pointer variable INFIL. 

Because SPRATECS tends to increase with increasing values for surface infiltration, there is an 

ordering of the curves in Fig. 2a, with lowest curves associated with u0.1(x,y,z,t), the next highest 

set of curves associated with u0.3(x,y,z,t), and similarly increasing values for SPRATECS for 

u0.5(x,y,z,t) and u0.9(x,y,z,t). This pattern can be seen in the box plots in Fig. 2b for the values of 

SPRATECS at 1000 yr conditional on individual values for INFIL. With respect to notation, the 

“box” in the indicated box plots extends from the 0.25 quantile to the 0.75 quantile of a 

distribution; the “bar and whiskers” extend outward to the 0.1 and 0.9 quantiles of the 

distribution; the solid “dots” represent individual observations outside the 0.1 to 0.9 quantile 

range of the distribution; and the horizontal line within the box corresponds to the median (i.e., 

0.5 quantile) of the distribution. If the individual curves in Fig. 2a were coded with different 

colors to identify the corresponding sampled value for INFIL, the pattern of effects for uq(x,y,z,t) 

shown in the box plots in Fig. 2b would be seen to be consistent through time (see [40], Fig. 

K4.3-1a). The effects of climate change can also be clearly seen in Fig. 2a as the discontinuities 

in the individual curves tend to take place at times associated with changes in surface infiltration 

associated with changes in climate. 

 

 The box plots in Fig. 2b conditional on individual values for INFIL, and hence on individual 

values for uq(x,y,z,t), constitute one form of sensitivity analysis that shows the importance of 

uq(x,y,z,t) with respect to the epistemic uncertainty associated with possible values for 

SPRATECS. As an example, more formal sensitivity analyses can be performed with procedures 

based on stepwise rank regression (Fig. 2c). Specifically, the stepwise rank regression in Fig. 2c 

for SPRATECS at 1000 yr shows the variables in the order that they were selected in the stepwise 

selection process, the cumulative R
2
 value with the entry of each variable into the regression 

model, and the standardized rank regression coefficients (SRRCs) for the individual variables in 
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the final regression model [24]. As indicated by an R
2
 value of 0.67 and a SRRC of 0.83 for 

INFIL, uq(x,y,z,t) is the greatest contributor to the uncertainty in SPRATECS at 1000 yr. 

 

 In addition to INFIL, the following variables have lesser effects on the uncertainty in 

SPRATECS at 1000 yr: SEEPPRMN (mean fracture permeability in nonlithophysal rock units, 

m2; as sampled, SEEPPRMN is actually the logarithm of the indicated permeability), ALPHAL 

(capillary strength parameter in lithophysal rock units), SEEPPRM (mean fracture permeability 

in lithophysal rock units, m2; as sampled, SEEPPRM is actually the logarithm of the indicated 

permeability), and SEEPUNC (pointer variable used to determine local seepage rates) (Fig. 2c). 

The negative effects for SEEPPRMN and SEEPPRM) result from their role in increasing water 

flow around the drifts. The negative effect for ALPHAL results from increasing the capillary 

“hold” on water in the drift walls. Finally, increasing SEEPUNC tends to increase seepage into 

the EBS through an upscaling of base seepage rates. Thus, although the uncertainty in uq(x,y,z,t) 

dominates the uncertainty in SPRATECS at 1000 yr, several other variables also contribute to this 

uncertainty.  The variables INRFRCTC (initial release fraction of 
99

Tc from a CSNF WP)  and 

CORRATSS (stainless steel corrosion rate, m/yr) with no significant effect on the final R2 value 

are also selected at the end of the stepwise regression in Fig. 2c. The selection of these two 

variables is probably spurious as the selection of one or more spurious variables with little effect 

near the end of a stepwise regression with a large number of candidate variables for inclusion in 

the regression model is a common occurrence. 

 The examination of scatterplots is often a useful visual supplement to the results obtained in 

a stepwise regression analysis. The utility of such plots has already been illustrated by Fig. 2b, 

which clearly shows the effect of INFIL, and hence uq(x,y,z,t), on SPRATECS at 1000 yr. In 

addition, the spread in results shown by the individual box plots in Fig. 2b also clearly indicates 

that other variables in addition to uq(x,y,z,t) are affecting the uncertainty in SPRATECS at 1000 

yr. As another example, the scatterplot in Fig. 2d clearly shows both the dominant positive effect 

of uq(x,y,z,t) on SPRATECS at 1000 yr and the lesser negative effect of ALPHAL on SPRATECS 

at 1000 yr.  

4. Uncertain Model for CO2 Partial Pressure in Waste Disposal Drifts 

 The calculation of the partial pressure of CO2 in the waste disposal drifts of the YM 

repository after final repository closure (PCO2, bars) is difficult because PCO2 is the result of a 

number of competing processes, including evaporation, degassing, precipitation, diffusion, 

advection of gas in fractures, and scavenging of CO2 by condensation at the cooler ends of the 

waste disposal drifts. Instead of attempting to incorporate the inherent complexity of a 

mechanistic model of PCO2 into the 2008 YM PA, a simpler approach was taken. Specifically,  

two bounding models for PCO2 were initially developed ([54],  Sect. 6.3.2.8): 

(i) Model 1:  Estimates maximum possible CO2 drift partial pressure MXCO2(t|eM) at 

time t conditional on vector eM of epistemically uncertain analysis inputs,   

(ii) Model 2: Estimates minimum possible CO2 drift partial pressure MNCO2(t|eM) at 

time t conditional on vector eM of epistemically uncertain analysis inputs. 
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As defined, MXCO2(t|eM) and MNCO2(t|eM) produce values for PCO2 above and below the 

ambient value of 10
3

 bars at the elevation of the waste disposal drifts in YM. The value for 

PCO2 defined by MXCO2(t|eM) results from regarding the waste disposal drifts as a closed 

system with the maximum partial pressure for CO2 determined by the equilibrium between 

gaseous and aqueous phases of CO2 at the evaporation front in the host rock. In contrast, 

MNCO2(t|eM) is obtained under the assumption that gas moves freely through fractures in the 

host rock surrounding the waste disposal drifts with the minimum partial pressure for CO2 

determined from the amount of CO2 in atmospheric air in the drifts (which may be displaced by 

water vapor) and the amount of CO2 released from evaporating water. It was felt that the 

appropriate value for PCO2 should be somewhere between the ambient partial pressure of CO2 at 

the elevation of the waste disposal drifts in YM (i.e., 10
3

 bars) and the bounding values defined 

by MXCO2(t|eM) and MNCO2(t|eM). The epistemic uncertainty with respect to the appropriate 

model to determine PCO2 was incorporated into the 2008 YM PA by introducing a variable 

designated DELPPCO2 with a uniform distribution on [1, 1] that characterized both the 

uncertainty with respect to whether a model that predicted PCO2 to be above 10
3

 bars or a 

model that predicted PCO2 to be below 10
3

 bars was appropriate and also the extent to which 

the model predictions should deviate from 10
3

 bars. Specifically, a specified value for 

DELPPCO2 defined the corresponding epistemically uncertain value for the function PCO2(t| 

eM) by 

 

3 3

3 3

10 2 2( | ) 10  if 2 0 

2( | )  

10 | 2 | 2( | ) 10  if 2 0.

M

M
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 

 

    
  

 
    
 

e
e

e

 (4.1) 

    

The preceding specification incorporates (i) a degree of belief probability of 0.5 that the 

appropriate model to predict PCO2 should give a value above 10
3

 bars, (ii) a degree of belief 

probability of 0.5 that the appropriate model to predict PCO2 should give a value below 10
3

 

bars, (iii) a uniform distribution for PCO2 between 10
3

 bars and MXCO2(t|eM) if PCO2 should 

be modeled as being greater than 10
3

 bars, and (iv) a uniform distribution for PCO2 between 

MNCO2(t|eM) and 10
3

 bars and if PCO2 should be modeled as being less than 10
3

 bars. 

Additional discussion and references are available in Sects. 6.3.4.2 and 6.3.5.2.3 of Ref. [40].  

 Similarly to INFIL, DELPPCO2 was one of the 392 epistemically uncertain analysis inputs 

sampled in the 2008 YM PA. Each sampled value for DELPPCO2 resulted in a different time-

dependent model for PCO2 as indicated in Eq. (4.1) (Fig. 3). Specifically, the 300 time 

dependent values for PCO2(t|eM) that result from the use of an LHS of size 300 are shown in   

Fig. 3a. In addition, the scatterplot in Fig. 3b shows the relationship between PCO2 and 

DELPPCO2 at 1000 yr. The linear effects of DELPPCO2 on PCO2 are apparent in this 

scatterplot. Further, none of the other epistemically uncertain variables affect PCO2 for partial 

pressures less than 10
3

 bars. However, for partial pressures greater than 10
3

 bars, it is also 

apparent that PCO2 is affected by additional epistemically uncertain variables that collectively 

determine the equilibrium between gaseous and aqueous phases of CO2 at the evaporation front 

in the host rock. These variables include the composition of seepage water (SEEPWAT) and 
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variables that affect water temperature, i.e., infiltration level (INFIL) and thermal conductivity in 

the host rock surrounding the waste disposal drifts (THERMCON) ([54], Sect. 6.15.1). 

 

 

Fig. 3 Partial pressures (PCO2, bars) for CO2 in waste drifts for CSNF WPs experiencing dripping 

conditions in percolation bin 3 under nominal conditions obtained with an LHS of size 300: (a) Time-

dependent values for PCO2, and (b) Scatterplot for PCO2 at 1000 yr versus DELPPCO2 ([40], Figs. 

K.4.3-7 and K.4.3-7).  

 

5. Uncertain Model for Plutonium Solubility 

 Plutonium solubility in the EBS in the 2008 YM PA is modeled as function of pH and the fugacity of 

CO2. At the simplest, this results in a model of the form 

 

  ( | ) ( | ), 2( | ) ,M M MS t f pH t fCO te e e  (5.1) 

 

where (i) S(t|eM) is plutonium solubility (mg/L) at time t, (ii) pH(t|eM) is pH at time t, (iii) 

fCO2(t|eM) is the fugacity of CO2 at time t, (iv) the values for the preceding quantities are 

dependent on epistemically uncertain analysis inputs contained in eM, and (v) f is an 

appropriately defined function of pH(t|eM) and fCO2(t|eM). However, two potentially important 

effects were felt to be absent from the preceding model: (i) the potential effects of uncertainties 

in thermodynamic properties on the definition of the function (i.e., model) f, and (ii) the potential 

effects of fluoride concentration on plutonium solubility. 

 

 To account for the uncertainty resulting from the two missing effects, two uncertain scale 

factors were incorporated into the solubility model in Eq. (5.1). With this incorporation, the 

solubility model for plutonium becomes 

 

    1
2( | ) 10 ( | ), 2( | ) ( | ) ,M M M MS t f pH t fCO t N pH t

  e e e e  (5.2) 

 

(a) 
(b) 
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where (i) 110
 is a scale factor introduced to incorporate the effects of uncertainties in 

thermodynamic properties into the solubility model, (ii) N[pH(t|eM)] is a function that 

incorporates the effect of fluoride on plutonium solubility as a function of pH, and (iii) 2 is a 

scale factor introduced to incorporate the  effects of uncertainties in the definition of N[pH(t|eM)] 

into the solubility model. 

 

 The uncertainty terms 1 and 2 are further refined by specifying uncertainty distributions that 

are conditional on environmental conditions ([40], Table 6.3.7-44). Specifically, 1 is assumed to 

have a truncated normal distribution on the interval [1.4, 1.4] with mean 0 and standard 

deviation 0.7 when ionic strength is less than 1.0 molal and to have a truncated normal 

distribution on the interval [1.52, 1.52] with mean 0 and standard deviation 0.76 when ionic 

strength is between 1.0 molal and 3.0 molal. Further, the two indicated distributions for 1 are 

assumed to have a rank correlation of 1.0. Similarly, three triangular distributions with rank 

correlations of 1.0 are defined for 2 for three different sets of conditions. Specifically, each LHS 

element has two values for 1 obtained from the two indicated truncated normal distributions and 

three values for obtained from the three indicated triangular distributions. In addition, the two 

values for 1 have a rank correlation of 1.0 over the entire LHS, and similarly, the three values 

for 2 have a rank correlation of 1.0 over the entire LHS. 

 

 As an example, the effect of 1 on the release rate of dissolved 
239

Pu from the EBS as a 

consequence of an igneous event at 10 yr that destroys all WPs in the repository is illustrated in 

Fig. 4. Time-dependent release rates of dissolved 
239

Pu from the EBS (ESPU239, g/yr) are 

shown in Fig. 4a. Each curve in Fig. 3a was generated with one of the 300 LHS elements used in 

the propagation of epistemic uncertainty in the 2008 YM PA and was calculated with the values 

for 1 and 2 in that LHS element.  
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Fig. 4 Release rate of dissolved 239Pu from the EBS (ESPU239, g/yr) as a consequence of an igneous 

event at 10 yr that destroys all WPs in the repository obtained with an LHS of size 300: (a) Time-

dependent values for ESPU239, (b) Time-dependent partial rank correlation coefficients (PRCCs) for 

ESPU239, (c) scatterplot for ESPU239 at 10,000 yr versus EP1LOWPU, and (d) Box plots for ESPU239 

at 10,000 yr conditional on individual values for INFIL ([40], Figs. K6.3.1-7 and K6.3.1-8).  

  

A sensitivity analysis based on partial rank correlation coefficients (PRCCs) is presented in 

Fig. 4b. Because of the rank correlations associated with the two values for 1 and the three 

values for 2, only one of the two values for 1 is included in the analysis, and similarly, only one 

of the three values for 2 is included in the analysis. This is necessary because both regression 

analyses and partial correlation analyses perform poorly and produce potentially noninformative 

and/or misleading results when highly correlated predictor variables are present. Only the 

included value for 1, denoted EP1LOWPU in the 2008 YM PA, was identified as contributing to 

the epistemic uncertainty associated with ESPU239. As shown by the PRCCs in Fig. 4b, 

EP1LOWPU is the single most important variable affecting the epistemic uncertainty associated 

with ESPU239, with ESPU239 tending to increase as EP1LOWPU increases. This effect is not 

surprising given that the scale factor (i.e., 110
 ) defined by EP1LOWPU in Eq. (5.2) introduces 

almost three orders of magnitude of uncertainty into the model for plutonium solubility, which in 

turn has a similar effect on ESPU239.  

  

(a) (b) 

(c) 
(d) 
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After EP1LOWPU, the PRCCs in Fig. 4b indicate smaller effects on ESPU239 for 

DELPPCO2 (scale factor used to incorporate uncertainty into the value for the partial pressure of 

CO2), INFIL (infiltration level), and PHCSS (pointer variable used to determine pH in CSNF 

cell 1 under liquid influx conditions). The variables DELPPCO2 and INFIL have positive effects 

on ESPU239 because (i) increasing DELPPCO2 increases the partial pressure of CO2, which, 

although decreasing pH, also increases the solubility of Pu and thus has a net effect of increasing 

the amount of dissolved 239Pu and (ii) increasing INFIL increases water flow through the EBS. 

In contrast, increasing PHCSS has a negative effect on ESPU239 because increasing PHCSS 

increases pH, which (as long as pH is below about 9) tends to decrease Pu solubility. 

 

 The PRCCs also indicate effects for THERMCON (host rock thermal conductivity level) 

prior to 1,000 yr. Unfortunately, the effects associated with THERMCON result from an 

implementation error in the version of the model used in these analyses that incorrectly allowed 

drift-wall condensation to occur after an igneous intrusion ([40], App. P, Table P-6). When 

condensation occurs, water flow through the waste is increased by the condensation, resulting in 

the transient spikes in release rates and also in the correlation of release rates and cumulative 

releases with THERMCON. For an igneous intrusion, the indicated cooling occurs but there is no 

exposed drift wall on which condensation can occur. Further, the variable WDCRCDEN (scale 

factor to convert area on a WP experiencing stress corrosion cracking to a resultant diffusive 

area) should have no effect on ESPU239 for igneous intrusive events and thus its selection is 

most likely spurious as a result of a slight nonrandom pattern in the mapping between the 

sampled values for WDCRCDEN and the calculated values for ESPU239 

 The dominant effect of EP1LOWPU on ESPU239 can be clearly seen in the scatterplot in 

Fig. 4c. Further, the secondary effect of INFIL can be seen in the individually identified points in 

Fig. 4c and also in the box plots in Fig. 4d. Thus, although the model uncertainty associated with 

plutonium characterized by EP1LOWPU dominates the uncertainty in ESPU239, the model 

uncertainty associated with UZ flow properties indexed by INFIL also has a significant effect on 

ESPU239. 

6. Uncertain Model for Poisson Process 

 Igneous events are important contributors to expected dose to the RMEI in the 2008 YM PA. 

In this analysis, the occurrence of igneous events is assumed to follow a Poisson process defined 

by a rate  (yr
1

). However, significant uncertainty exists with respect to the appropriate value to 

use for in the 2008 YM PA. The nature of presents an example of the difficulty of drawing a 

clear distinction between parameter uncertainty and model uncertainty. From one perspective, a 

Poisson process is a model defined by the single parameter with the result that uncertainty 

associated with the appropriate value to use for  should be viewed as parameter uncertainty. 

From another perspective, the uncertainty associated with the appropriate value to use for  

derives, at least in part, from uncertainty inherent in the models for igneous processes used in the 

estimation of with the result that the uncertainty associated with  can be viewed as having a 

component that derives from model uncertainty. This is a common situation in many analyses, 

where the uncertainty associated with a single parameter in one model derives in part from 

uncertainty in one or more models that underlie the determination of that parameter. 
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 In the 2008 YM PA,  is (i) represented by the variable IGRATE, (ii) assigned a piecewise 

uniform distribution on the interval [0, 7.7610
7

 yr
1

], and (iii) included in the LHS of size 300 

used in the propagation of epistemic uncertainty. The effect of this propagation on expected dose 

to the RMEI (EXPDOSE, mrem/yr) resulting from potential igneous events over 20,000 yr is 

shown in Fig. 5. Specifically, Fig. 5a shows the 300 time-dependent values for EXPDOSE that 

result from the indicated uncertainty propagation. Each individual curve in Fig. 5a is a plot of the 

points 

   , ( | , ) ,0 20,000 yr,A II ME D   a e  (6.1) 

  

where (i) ( | , )II MD  a e is the dose to the RMEI (mrem/yr) at time yrresulting from igneous 

intrusive events associated with future a, and (ii)  ( | , )A II ME D  a e corresponds to EXPDOSE 

and is the expected value of ( | , )II MD  a e  over aleatory uncertainty (i.e., over the possible 

values for a). Specifically,  ( | , )A II ME D  a e  is defined by 

  
0

( | , ) ( | , ) d ,A II M II ME D D t t


   a e e  (6.2) 

 

where ( | , )II MD t e is the dose to the RMEI (mrem/yr) at time  resulting from an igneous 

intrusive event at time t (yr) (see [40], App. J, for additional discussion). As indicated, 

( | , )II MD  a e and ( | , )II MD t e are conditional on the values for the epistemically uncertain 

analysis inputs that constitute the elements of eM. Further,  is an epistemically uncertain input 

involved in the characterization of aleatory uncertainty and, as a consequence of this role, is an 

element of the vector eA defined in conjunction with Eq. (2.3). 

   
 As shown by the PRCCS in Fig. 5b, the uncertainty in EXPDOSE is dominated by the 

uncertainty associated with IGRATE, with EXPDOSE tending to increase as IGRATE increases. 

This pattern can be seen in the scatterplot in Fig. 5c, where the uncertainty in EXPDOSE is 

clearly dominated by the uncertainty associated with IGRATE. 
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Fig. 5 Expected dose to the RMEI (EXPDOSE, mrem/yr) resulting from potential igneous intrusive 

events obtained with an LHS of size 300: (a) Time-dependent values for EXPDOSE, (b) Time-dependent 

partial rank correlation coefficients (PRCCs) for EXPDOSE, (c) scatterplot for EXPDOSE at 10,000 yr 

versus IGRATE, and (d) scatterplot for EXPDOSE at 10,000 yr versus SZGWSPDM  ([40], Figs. K6.7.1-1 

and K6.7.1-2). 

 

 In addition to IGRATE, smaller effects are indicated for SZGWSPDM (groundwater specific 

discharge multiplier for the saturated zone (SZ); as sampled, SZGWSPDM is actually the 

logarithm of the indicated multiplier), SZFIPOVO (flowing interval porosity in the volcanic unit 

of the SZ), SZCOLRAL (colloid retardation factor in the alluvial unit of the SZ, dimensionless; as 

sampled, SZCOLRAL is actually the logarithm of the indicated retardation factor), INFIL 

(infiltration level), and SZDENAL (density of the alluvial unit of the SZ, kg/m3) (Fig. 5c).  The 

variables SZGWSPDM and INFIL have positive effects on EXPDOSE, with these effects 

resulting because increasing SZGWSPDM increases water flow in the SZ and increasing INFIL 

increases water flow through the EBS and UZ. The variables SZFIPOVO, SZCOLRAL and 

SZDENAL have negative effects on EXPDOSE, with these effects resulting because increasing 

SZFIPOVO slows flow in the SZ and increasing SZCOLRAL and SZDENAL increases retardation 

in the alluvial unit of the saturated zone.  

 For perspective, the scatterplot for EXPDOSE versus SZGWSPDM is shown in Fig. 5d. The 

positive effect of SZGWSPDM on EXPDOSE can be seen in this scatterplot in consistency with 

the PRCCs for SZGWSPDM in Fig. 5b. However, again in consistency with the PRCCs in Fig. 

(a) (b) 

(c) 
(d) 
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5b, comparison of the scatterplots for IGRATE and SZGWSPDM clearly shows the dominant 

effect of IGRATE on the uncertainty in EXPDOSE. 

 As discussed at the beginning of this section, uncertainty in  could be viewed as either 

parameter uncertainty or model uncertainty. One step up in complexity involves an analysis that 

must incorporate a hazard curve rather than a simple stationary Poisson process as in the 

example of this section. As used here, a hazard curve corresponds to a function that defines the 

annual frequencies at which an occurrence of interest produces an effect that exceeds a given 

size. For example, (N) could be a hazard curve where (N) is the annual frequency (yr
1

) at 

which igneous events occur at the YM repository that damage N + 1 or more WPs; as another 

example, S(v) could be a hazard curve where S(v) is the annual frequency (yr
1

) at which 

seismic events occur at a given nuclear power plant that have peak ground velocities that exceed 

v. Uncertainty in the appropriate definition of a hazard curve can be appropriately viewed as 

model uncertainty as hazard curves arise from a combination of data and modeling. 

7. Uncertain Model for Dose Conversion 

 The appropriate consideration of the uncertainty inherent in the calculation of potential 

environmental radiation exposures was an important part of the 2008 YM PA. Core components 

of this calculation are dose conversion factors that convert environmental radionuclide 

concentrations (e.g., Bq/L) to dose to the RMEI (e.g., mrem/yr) [55]. The consideration of over 

20 radionuclides and several different environmental conditions resulted in a large number of 

dose conversion factors for incorporation into the 2008 YM PA. Further, extensive correlations 

exist between the individual dose conversion factors as a result of the use of the same uncertain 

quantities in the calculation of many different dose conversion factors. When considered in the 

large, the dose conversion model can be viewed as a complex model that produces a vector of 

dose conversion factors. Because of the many uncertainties involved in the calculation of dose 

conversion factors, significant uncertainties and correlations are present in the dose conversion 

factors produced by this model. Because of their overall complexity, these uncertainties and 

correlations can be collectively viewed as a form of model uncertainty. 

 The incorporation of the uncertainty in the dose conversion factors into the determination of 

dose to the RMEI was a major challenge in the 2008 YM PA. The development of a complex 

correlation structure involving the dose conversion factors and the incorporation of this 

correlation structure into the LHS used in the propagation of epistemic uncertainty was not 

practicable as a consequence of the large number of dose conversion factors involved.  Instead, 

the strategy described in the next paragraph was employed. 

 A separate uncertainty analysis using an LHS of size 1000 was carried out for the dose 

conversion model. This analysis sampled nU = 309 uncertain quantities used in the determination 

of dose conversion factors ([55], Table 6.6-2). For each LHS element, the dose conversion model 

calculated the resultant vector of dose conversion factors. The result was 1000 vectors of dose 

conversion factors. Further, the appropriate correlation structure exists across these vectors of 

dose conversion factors because the dose conversion factors in each vector were calculated with 

the same set of values for uncertain quantities used as input to the dose conversion model. The 

result of this analysis was then incorporated into the final analysis for the 2008 YM PA through 

the use of a pointer variable that had a uniform distribution on the integers 1, 2, …, 1000, where 
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each integer designates one of the 1000 previously generated vectors of dose conversion factors. 

Specifically, each element of the final LHS of size 300 had one sampled value for this pointer 

variable, and the corresponding vector of dose conversion factors was then used in all dose 

calculations for that LHS element. With this approach, the uncertainty and appropriate 

correlation structure for the dose conversion factors was incorporated into the 2008 YM PA 

without having to include all the dose conversion factors in the generation of the final LHS used 

in the 2008 YM PA and also without having to deduce the complex correlation structure 

associated with the dose conversion factors and then incorporate this correlation structure in the 

final LHS. 

 As an example, results for dose to the RMEI from 
99

Tc (DOTC99, mrem/yr) resulting from 

an igneous intrusion at 10 yr that destroys all WPs in the repository are shown in Fig. 6. 

Specifically, Fig. 6a shows the 300 time-dependent values for DOTC99 that result from the 

indicated uncertainty propagation. Because no solubility limit or chemical retardation is assumed 

for 
99

Tc in the 2008 YM PA and the igneous event under consideration is assumed to destroy all 

WPs in the repository, the repository’s 
99

Tc inventory is quickly released from the EBS and 

transported to the location of the RMEI. This behavior can be seen in Fig. 6a in the rapid peaking 

in DOTC99 at about 1000 yr followed by a steady decrease in DOTC99 after this peak.  
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Fig. 6: Dose to the RMEI from 99Tc (DOTC99, mrem/yr) resulting from an igneous intrusion at 10 yr 

that destroys all WPs in the repository obtained with an LHS of size 300: (a) Time-dependent values for 

DOTC99, (b) stepwise rank regression for DOTC99 at 10,000 yr, (c) scatterplot for DOTC99 at 10,000 yr 

versus MICTC99, and (d) Box plots for DOTC99 at 10,000 yr conditional on individual values for INFIL 

([40], Figs. K6.6.1-9 and K6.6.1-10). 

 

 A sensitivity analysis for DOTC99 at 10,000 yr based on stepwise rank regression is 

presented in Fig. 6b (see discussion associated with Fig. 2c for a description of stepwise rank 

regression). The first variable picked in the analysis is the dose conversion factor MICTC99 

(dose conversion factor for 
99

Tc for modern interglacial climate, (rem/yr)/(pCi/L)), with 

DOTC99 tending to increase with increasing values for MICTC99 as indicated by the the positive 

SRRC. This effect can also be seen in the scatterplot in Fig. 6c. After MICTC99, three variables 

having negative effects on DOTC99 are selected: INFIL (infiltration level), SZGWSPDM 

(groundwater specific discharge multiplier for the SZ; as sampled, SZGWSPDM is actually the 

logarithm of the indicated multiplier), and SZFISPVO (flowing interval spacing in the volcanic 

unit of the SZ, m). The negative effects associated with these variables results because increasing 

their values increases the early release of 
99

Tc (i.e, in the vicinity of 500 - 1000 yr; see Fig. 6a) 

and thus results in less 
99

Tc at the location of the RMEI at 10,000 yr. As an example, the effect 

of INFIL can be seen in the scatterplot in Fig. 6d, with DOTC99 decreasing with increasing 

values for INFIL. This effect results because increasing INFIL increases water flow through the 

(a) 
(b) 

(c) 
(d) 
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EBS, which in turn increases early removal of 
99

Tc from the EBS and thus results in less 
99

Tc 

being present at later times to result in dose to the RMEI.  After INFIL, SZGWSPDM and 

SZFISPVO, small positive effects are indicated for CSNFMASS (scale factor used to characterize 

uncertainty in amount of CSNF in CSNF WPs) and SZDIFCVO (logarithm of effective diffusion 

coefficient in fractured volcanic units, m
2
/s), with the positive effect of CSNFMASS resulting 

from its role in defining the amount of 
99

Tc in the repository and the positive effect of 

SZDIFCVO resulting from its role in slowing the transport of 
99

Tc in the saturated zone. The 

selection of KDRACOL (distribution coefficient for reversible sorption of radium onto 

uranophane colloids, mL/g) at the end of the regression is spurious. 

 

8. Summary Discussion 

 

 As indicated by the five presented examples, there is no clear dividing line between 

parameter uncertainty and model uncertainty. Rather, there is a gradation from situations that 

correspond more closely to the concept of model uncertainty as the existence of different 

possibly appropriate conceptual structures to represent a complex process (e.g., the examples in 

Sects. 3-5) to situations that correspond more closely to the concept of parameter uncertainty as 

the lack of knowledge with respect to the appropriate value to use for a single real-valued 

quantity that is an input to a model (e.g., the examples in Sects. 6-7). Complicating the 

distinction between model uncertainty and parameter uncertainty is that most single real-valued 

quantities used as input to a model for a complex process (e.g., a spatially averaged permeability 

used as input to a model for radionuclide transport in flowing ground water) are actually 

summaries in the uncertainty of what would be the outcome of a very complex modeling process 

if all the factors that gave rise to the single value under consideration were taken into account. As 

a consequence, many ostensible parameter uncertainties are, at least in part, summaries of the 

implications of model uncertainty.  

 Model uncertainty should be thought of in terms of appropriateness for a particular analysis. 

No model for a complex process is correct in the sense of having complete fidelity with respect 

to all aspects of the process under consideration. As a result, no model is fully correct. Thus, 

when probability is used to characterize model uncertainty, the question being asked should be 

with respect to appropriateness for use in a particular analysis rather than with respect to 

correctness in some absolute sense. 

 Verification and validation are important components in the assessment of model uncertainty, 

where (i) verification is the process of determining that a model implementation accurately 

represents the developers’ conceptual description of the model and the solution to the model, and 

(ii) validation is the process of determining the degree to which a model is an accurate 

representation of the real world from the perspective of the intended uses of the model (p. 3, 

[56]; [5; 6; 57-60]). Verification is important to reducing, and hopefully eliminating, the part of 

model uncertainty that derives from concerns with respect to the correctness of the 

computational implementation of a model. Further, model validation is an important contributor 

to the insights that ultimately lead to a characterization of model uncertainty. 
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 As a consequence of the diverse sources of information that will often underlie the 

quantification of model uncertainty in a particular analysis, it is likely that such quantification 

will involve some form of expert review process [61-72]. For such review, it is very important 

that the reviewers understand the details of the particular analysis under consideration so that 

their assessments of model uncertainty are with respect to the appropriateness of the potential 

models for that analysis.    

 In developing probability distributions to characterize model uncertainty, the goal should be 

to develop distributions that provide an unbiased characterization of the uncertainty with respect 

to the appropriate model to use in the analysis under consideration.  In particular, such 

distributions should provide uncertainty characterizations that are neither deliberately pessimistic 

(i.e., conservative) nor deliberately optimistic (i.e., nonconservative). The importance of 

avoiding conservative analyses has been emphasized by a number of individuals, including a 

chairman of the NRC [73-77]. Ideally, if deliberate conservatism is to be included in an analysis, 

this conservatism should be incorporated after a nonconservative analysis has been performed.  

With this approach, the shifting of the results of the analysis by the addition of one or more 

conservative assumptions can be clearly identified and understood.  For example, such an 

analysis could be of benefit in making a convincing argument for the safety of the system under 

consideration.  However, without first carrying out an unbiased analysis, there is no way to 

meaningfully assess the effects, and hence the potential benefits and detriments, of skewing 

analysis results through the imposition of conservative assumptions.  As an example, this 

approach underlies the compliance certification for the Waste Isolation Pilot Plant (WIPP), 

where an initial PA was carried out by the DOE [78; 79] and then a modification of this PA was 

carried out with changes specifically requested by the EPA [80]. 

 Probability is the mathematical structure that has traditionally been used to represent model 

uncertainty. However, other mathematical structures exist that could potentially be used to 

represent model uncertainty (e.g., interval analysis, fuzzy set theory, possibility theory, evidence 

theory) [81-91]. It is possible that some of these other structures for the representation of 

uncertainty might be of use in characterizing model uncertainty. In particular, evidence theory is 

appealing because it provides a way to distinguish between the amount of information that 

supports a proposition and the absence of information that refutes a proposition 
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