Existing Codes and Standards

Utility-Scale Grid-Tied PV Inverter Workshop

January 27-28, 2011
Albuquerque, NM

Greg Ball
BEW Engineering
BEW - ENGINEERING AND CONSULTING ACTIVITIES

• Project feasibility studies
• **Technical due diligence**
• Independent Bank’s Engineering
• Owner’s Engineering
• PV system design engineering
• “Bankability” reviews – including utility scale inverters
• Energy and performance modeling
• Utility grid interconnection studies, model and data preparation
• **Component design and prototyping**
• Intellectual property development
• Standards development and compliance assessment
• Co-convenor for TC82 Working Group 6, Balance of System
BEW RELIABILITY EVALUATION

- Field history
- Traditional reliability standards
 - MIL STD 217
 - Telcordia SS
- Halt Testing
- FMEA
- PV plant O&M modeling assumes parts, not unit replacement
 - Instead of replacing inverter after 5, 10, 12 years
 - Partial, component and sub-assemblies, after 10 years
 - Full unit after 20 years
OPERATIONS AND MAINTENANCE MODEL

• Developed by BEW
 • Detailed operations and maintenance cost model ($/kWhr)
 • Bottoms-up method with component and activity details
 • Time to fail and availability assumptions included
EXISTING PV INVERTER RELIABILITY STANDARDS
STANDARDS WITH SOME RELEVANCE

- ISO 3741
- ISO 3744
- ISO 7779
- ISO 9001
- ISO 9296
- ISO 10302
- IEC 60028-2-27
- IEC 60068-2-31
- IEC 60068-2-32
- IEC 60068-2-64
- IEC 60529
- IEC 60950-1
- IEC 61000
- IEC 61000-3-2
- IEC 61000-4-2
- IEC 61000-4-3
- IEC 61000-4-4
- IEC 61000-4-5
- IEC 61000-4-6
- IEC 61000-4-11
- IEC 61000-4-12
- IEC 62040-1-1
- IEC 61209
- IEC 61215
- IEC 62093
- EN 50116
- EN 55022
- EN 55024
- TELCORDIA
- GR-1274-C0
- SR332
- EIA/JESD22-A101
- JESD22-A108
- JESD22-A114
- JESD47
- UL 1741
- IPC J-STD-001
- IPC/ECA J-STD-002
- IPC/JEDEC J-STD-020
- IPC/JEDEC J-STD-033
- IPC-T-50
- IPC-A-610
- IPC-9591
- IPC-9592A
- IPC-9701
- CAN/CSA C22.2 No. 60950-1
- Others......
WHAT EXISTS FOR INVERTERS?

- UL 1741 and IEC 62109 – Safety Standards
 - Not reliability standards - BUT - some qualification and reliability addressed through safety requirements
 - Addresses failure vs. degradation over time for protective elements
 - If something is going to fail, fail safely – translates to some redundant elements
 - There is the option to add some level of reliability or qualification testing to these documents (per Tim Z)

- IEC 62093, MIL-Specs for components, JDEC Standards, Telcordia, IPC 9592A
What can we learn from module standards?
IEC 61215

- *Crystalline silicon terrestrial photovoltaic (PV) modules – Design qualification and type approval. 2nd edition, 2005.*

- Equivalent standards for other PV:
 - IEC 61646 – Thin film
 - IEC 62109 – CPV

- IEC 61730 – Safety Standard, references the qualification standards

- Scope: Design qualification and type approval of terrestrial photovoltaic modules suitable for long-term operation in general open air climates

- Objective: Determine electrical/thermal characteristics and demonstrate that the module is capable of withstanding prolonged exposure in climates
IEC 62093 – SCOPE

• Balance of system components for photovoltaic systems – Design qualification natural environments. 1st edition, 2005

• BOS components for PV systems, suitable for indoor our outdoor environments, protected or unprotected
 • Based on module standards IEC 61215 and 61646
 • Modified to reflect features of BOS components
 • Added dust, fungus, insects, shipping vibration, shock, and protection class (mechanical and environmental)
 • Covers a wide variety of equipment in addition to inverters, including batteries and charge controllers
IEC 62093 – OBJECTIVES

- Test sequence to determine performance characteristics
- Demonstrate components capable of maintaining performance after exposure to expected environmental conditions
 - Within reasonable constraints of cost and time
- “The actual life expectancy of components so qualified will depend on their design, their environment and the system conditions under which they are operated.”
- No claims on reliability (lifetime)
IEC 62093 – REFERENCES

• References numerous IEC standards for general environmental testing, i.e. cross industry
 • IEC 60068 Series covering:
 • Vibrations, robustness of terminations, shock, damp heat (steady state and cyclic, hammer, temperature/humidity chambers.
 • 60721 Classification of environmental conditions
 • 62262 – Enclosure protection from external mechanical impacts (IK code)
 • 60529 - Enclosure protection from environment (IP code) - similar to NEMA rating
• Report per requirements of ISO/IEC 17025
 • General requirements for the competence of testing and calibration laboratories
IEC 62093 – TEST PROCEDURES

• Visual inspection
• Functioning tests
• Specific performance tests for components
• Insulation test
• Outdoor exposure test
• Protection against mechanical impacts (IK-code)
• Protection against dust, water and foreign bodies (IP-code)
• Shipping vibration test
• Shock test
• UV test
• Thermal cycling test
• Humidity-freeze test
• Damp heat test
• Robustness of terminals test
• Damp heat, cyclic test
QUALIFICATION TEST SEQUENCE

3 pieces

- Visual inspection (VI) - all pieces
- Functioning test (FT) - all pieces
- Specific performance tests - 1 piece
- Insulation test (IT)

1 piece

- Outdoor exposure test
- Insulation test (IT)
- Functioning test (FT)

1 piece

- Handling shock test
- UV test
- Thermal cycling test, 50 cycles

1 piece

- Thermal cycling test, 200 cycles
- Humidity freeze test
- Robustness of terminals test

Basic environmental testing

Performance environmental testing

Repeat visual inspection, functioning, insulation

Damp heat, cyclic test - 1 piece

IK class

IP class

IEC 511/05
WHAT NEXT?

• What are the gaps in codes and standards specific to inverters and power electronics, or, what should inverter companies be doing outside of existing standards?

• IPC 9592A – Power conversion industry example
IPC 9592A

- Requirements for Power Conversion Devices for the Computer and Telecommunications Industries, 2010

- Scope: ac to dc and dc to dc modules, converters and power supplies
 - Specific requirement and methods to meet the performance parameters
 - Design for Reliability,
 - Design Qualification Testing,
 - Manufacturing Conformance Testing, and
 - Quality Processes.

- Purpose - create a set of consistent specifications and methods to assure suitability, quality, safety and reliability of PCDs for the electronics industry
IPC 9592A - WHAT’S IN IT?

• Extensive list of qualification tests – list reads like a combination of 62109 (electrical disturbance) and 62093 (environmental) tests

• Halt Testing

• Design for Reliability
 • FIT reliability prediction calculated using Telcordia Technologies SR-332
 • Component selection
 • Corrosion testing
 • Derating guidelines
IPC 9592A - WHAT’S IN IT?

• Design Failure Modes and Effects Analysis (DFMEA)
 • Recognize and evaluate the potential failure modes of each component in a product and its effects on the product.
 • Identify actions that could eliminate or reduce the chance of the potential failure occurring.
 • Document the process for improvement of future designs.

• Quality Processes
 • Statistical process control
 • Corrective action process
 • Calibration
 • Continuous improvement

• Manufacturing Conformance Testing
NEXT STEPS?

• Codes and standards can be viewed as cost constraints and a source for reliability improvement. How can these opposing elements be better synchronized?

• Qualification testing of some level should be applied. Module manufacturers didn’t like it at first but the value is clear.

• Create a standard with basic minimal qualification/reliability requirements with criteria of
 • improving performance and customer confidence, but
 • limiting imposed cost constraints
 • allowing innovation in internal approaches for companies to improve, stand out
IEC 62093 REVISION

- Standard is in “maintenance” cycle, for revision in TC82 Working Group 6
- Not a best seller
 - Sales from 2005 to 1st Q 2010 = 30 copies
- Suffers from poor name – Design Qualification Natural Environments???
- Spread too thin to encompass charge controllers, batteries, etc.
- Written with small inverter mindset.
- Ad hoc committee formed to review and make recommendations
 - Increase it’s value, acceptance, usage using 61215 model
 - Side by side review with IPC 9592A for more meat
 - Careful attention to small vs. large inverter protocols
THANK YOU!

FOR MORE INFORMATION:

GREG.BALL@BEWENGINEERING.COM

415-489-9494