SCE Solar Photovoltaic Program (SPVP) O&M Overview

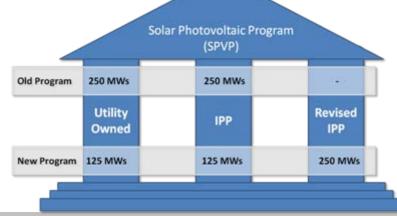
Rudy Perez

EPRI-Sandia Solar O&M Workshop

Palo Alto, California

April 29, 2013

SOUTHERN CALIFORNIA EDISON


Existing Solar Photovoltaic Program (SPVP) Overview

- Solar Photovoltaic Program (SPVP)
 - Existing SPVP Program (250 MW UOG + 250 MW PPAs) approved June 2009
 - 250 MW of Utility-Owned Generation
 - Primarily 1 to 2 MW projects installed on commercial warehouse rooftops, with up to 10% (25 MW) groundmount
 - 50 MW per year with an average cost of \$3.97/Watt (\$ '11)*
 - 250 MW from IPP PV Solicitation
 - RAP coordinates annual solicitations for up to 50 MW per year for 5 years
 - Price capped at the utility LOCE, 26 cents per kWH
 - Other terms similar to UOG constraints

* Reasonableness cap approved in 2008 is \$3.85/w dc installed. \$3.97/w is escalated to 2011 dollars.

Petitions For Modification (PFM) to SPVP

- SPVP PFM filed 2/11/2011, Decision received 6/19/12
 - PFM requested:
 - 250 MW cut from the UOG and Original IPP SPVP (125 UOG/ 125 IPP) and create a new 250 MW revised IPP solicitation for competitively priced PV projects in the 1 – 20 MW range
 - Increase the ground-mount allotment to 20% in the UOG and Original IPP to accommodate existing obligations
 - Justifications for PFM
 - Estimated customer savings of \$300M PVRR
 - Main SPVP Program goals have been met (i.e. PV market transformation)
 - SCE will continue to share lessons learned with the State and energy industry
 - Second PFM submitted 11/12 to further reduce program to 91 MW (current build)

SPVP Status

➤UOG SPVP has 84.3 MW of projects completed and interconnected

- 23 sites 22 rooftops and 1 ground-mount (1 to 10 MW sites)
 - There is one project under construction 6.7 MW Redlands #10
 - Dexus in Perris a 10 MW rooftop largest single rooftop in the US.
 - Program to complete by YE 2013

SPVP 042 – Porterville

6.77 MWdc - 29,428

Trina Modules

33 acres

10 Satcon Inverters

SPVP 007 - PLD Redlands 3 3.20 MWdc - 10,840 SunPower Modules 446,000 Square ft. 5 Satcon Inverters

SOUTHERN CALIFORNIA EDISON

Data Needs – Who Needs What

- CAISO Real-time and Settlements
- GCC Real-time Operations
- ES&M Scheduling and Settlements
- Field Engineering Grid Planning and Development
- O&M Asset Management and Operations
- Regulatory Filings
- R&D What if?

Data Acquisition System - Data Needs

SCADA – Site data acquisition

- 70 data points per inverter
- 1 16 inverters per site
- 2 weather stations at 6 sites
- Meter data from all 25 sites

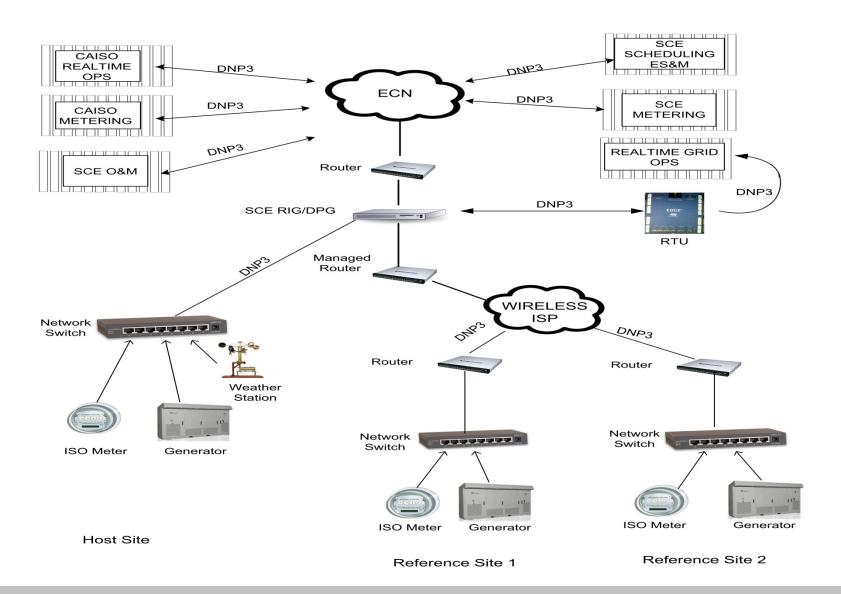
CAISO

- 27 data points per site
- 4 seconds
- 99.7% reliability
- ECN connectivity with cyber security

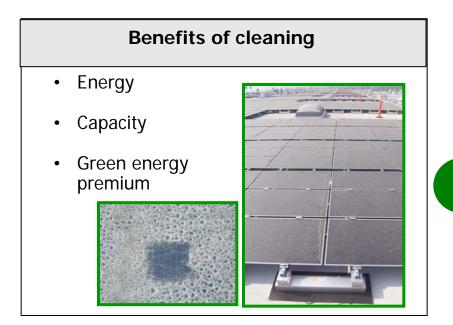
Power Systems Controls

- 2 data points (Watts and VARs)
- Weather Station data
- 4 seconds
- Circuit specific data

ES&M


- 2 Site data points (Watts and unit on-line status)
- 1 Inverter Status point
- Aggregated data
- Engineering and R&D
 - All data points
 - 1 second data

DATA SYSTEM DESIGN


SOUTHERN CALIFORNIA EDISON

Panel Cleaning and Output Optimization

- 15-25% Degradation in panel output regained after cleaning depending on panel and tilt.
 Within 4 weeks output was normally back to original degraded condition
- Costs of rooftop cleanings estimated at \$8,000/MW with some waste water environmental concerns
- Economics do not seem to pan out if solar valued at \$125/MWH. Pre-Summer cleaning (May) would provide maximum benefits.

÷

If so, when (which month) does it make the most sense to clean?

Costs of cleaning

- Labor
- Materials
- Waste water routing
- Scaffolding and / or manlift use
- Skylight protection
- Safety monitors

Note: Panels on left are especially dirty due to installation debris, and will be cleaned before project launch

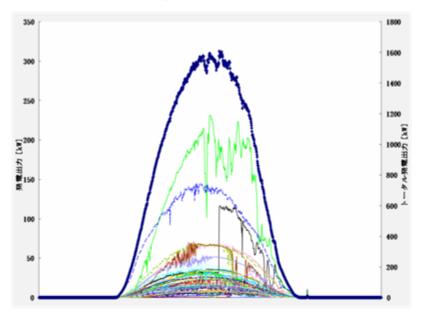
Rooftop Fire Concern and Corrective Action – Risk of Roof-top PV Fires Is Small but damage can be large

- Percentage of CA PV roof-top fires is ~0.2% (based upon incidents reported to fire departments).
- Cal-Fire November 2010 report listed 18 PV roof-top fires in CA over two years (2007-2008). Number of PV projects estimated in CA is >11,000 (data up to 2009).
- SCE risk of roof-top fires may be less due to utility grade design and construction, but our plants are unmanned (if buildings have tenants, then tenants could report a fire).
- May be some additional risk of unmanned plants if less time when people are around to inform the fire department of fires.

8

Corrective Action – Installation of Ground Fault Detection System

- Bender RCMS ground fault relays (field tested and proven for all SPVP technologies). 70 years of experience in ground faults.
- Bender telecommunication com unit to coordinate with Operations (Emerson system)
- Bender current transformers to detect ground faults
- Gigavac contactors to isolate fault upon relay trip
- Competitive bid control box
- Standard load center
- Standard control power transformer
- Arc Fault Detection System demos
 - Sensata, Eaton, Solar Bos, etc.



SPVP Integration Concerns

- Grid Control required Remote Control Disconnect Switch at each site
 - Cost of \$125K per site
 - Control from Alhambra Control Center
- Penetration Level
 - Originally 15 % circuit rule would have limited SPVP to 1-2 MW per circuit
 - Latest studies allow for up to 8 MW on a circuit if near the substation
 - Dedicated circuits needed if PV exceeds circuit capacity.
 - Costly (\$100K/site) Remote Controlled Disconnect Switches current requirement. Inverters can be controlled via internet if deemed reliable
- Active Voltage Regulation
 - Rule 21, Para D2a prohibits the generator from any active voltage regulation –
 - Utilities don't want DG units to control voltage is because our "not smart" grid has no way to monitor & control customer generation.
 - Customers will want to be paid for their services and we have no CPUC approved way to do this.
 - Possible solution is to have utility owned generation - even DG- to be treated and considered differently from customer or IPP units.
- System Disturbance Ride-through
 - Rule 21, Para D2b3 has tight voltage limits which basically prevent any ride thru of a distribution system disturbance.
 - PV systems may have value during disturbances that we want to keep them on-line

- Harmonics
 - Concerns over harmonics from PV Inverters seemed to have allayed, Further study may be needed to guarantee this concern.
- Intermittency SCE / NREL Study may allay concerns.
 - Overall distributed PV "smoothing effect" reduces impact

Smoothing Effect of Multiple PV

Leading the Way in Electricitysm

Backup Slides

SPVP O&M Overview

- O&M Overview
 - Roles and Responsibilities
 - Labor Requirements PLA
 - Output and Scheduling Requirements
- Performance Optimization
 - Panel cleaning
 - Data Monitoring
- Monitoring and Routine Maintenance
 - Warranties panels, inverters, etc.

- Safety
 - Roofs
 - Electrical
- Key Liabilities
 - Roof Maintenance
 - Insurance Concerns
- Site relationship
- Construction Techniques to aid O&M

Note: SCE budgets \$30K/MW per year for O&M costs- excluding site lease costs.

Assumes an internal work force of 11 personnel

Rooftop O&M Challenges

Wrinkles

Ponding

- SCE responsible for to repair damage caused by Solar System as well as moving system out of the way for re-roofing activities.
- 20 to 25 year projects on 10 to 15 year warranty roofs is a concern.
- Roof Wind Loading leads to
 additional ballast weight concerns
- Seismic Constraints in California are challenging

The primary maintenance challenge is to balance the costs and potential benefits of inspection and ensuing repairs/replacements.

MAINTENANCE OVERVIEW

Primary Issue(s)

Recommendations

	Prever (Pre-sch		Forced (Something breaks)
	Under Warranty	No Warranty	 Know when PV installation behaves abnormally in real-time. Inverter Level Monitoring Diagnose cause of abnormal behavior Decide when (or if) to replace broken component
	Check & replace faulty components before warranties expire	Balance benefits of preventative maintenance and cost of inspection	
	 Schedule component inspections one month before warranties expire* Comply with "active" maintenance provisions in inverter warranties* Establish a time- sensitive process for replacing faulty components 	 Minimize inspection cost (e.g. combine with annual cleaning) Establish cost effective inspection procedures. Typical inspection examples include: Panel "I-V" curve trace Fuse replacement Visual inspection Inverter service 	 Establish "active alerts" system which notifies operators of site production abnormalities Link notifications to 24-7, 365-day centralized monitoring authority In situations where the cause is not readily apparent, establish inspections dispatch Establish procedure for replacing/repairing damaged components based on C/B analysis <i>Cost Variables</i> (component(s) and labor) <i>Benefit Variables</i> (Remaining project life; energy, capacity, and green premium lost)

Ensuring the safety of crew and equipment is the first priority during any maintenance or cleaning activity.

SAFETY OVERVIEW

Primary Risks

- Bi-directional energy flow on distribution grid downstream of PV rooftop sites
- Working on elevated surfaces (hazards with skylights, man-lifts, and unprotected roof edges)
- Numerous diverse parties (e.g. building tenants and potentially management, various SCE groups) require notification and training on PV safety issues
- Materials hazards during emergency (fire, earthquake)

Current Activities & Next Steps

- Update all distribution grid maps with PV generating sites (e.g. OMS and FIM).
- Continue robust site "Lockout Tagout" procedures.*
- Re-train all relevant crews on bi-directional flow
 "Lockout Tagout" safety procedures.
- Establish and install safety measures when applicable (e.g. skylight covers, temporary railings, harnesses) to prevent falls.
- Ensure consistent standards, site-specific safety documentation, and the transfer of knowledge from installation to maintenance crews during project "go-live" and interconnection.
- Establish and train a single SCE point of contact for all parties during an emergency.
- Educate local/city first responders and non-SCE building maintenance personnel about PV safety procedures and risks.

Construction Techniques to aid O&M Combiner Boxes

Original Design

- No fuse indicators
- Maintenance requires full inverter shutdown
- Must open every string disconnect to perform work
 - About 1400 in 60 boxes

Modified Design

- Blown fuse indicators
- > Window in door for visibility
- Isolation switch

Leading the Way in Electricity^{ss}

Construction Techniques to aid O&M Raceway Design - Conduit to Cable Tray

Original - Conduit

Modified - Cable Tray

Construction Techniques to aid O&M Master Fuse Box (Recombiner)

Original Design

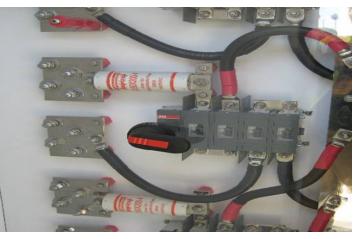
- Mechanical lugs
- No isolation

Modified Design

- Isolation switches both poles
- Crimped bolted lugs
- Bolted fuses
- Cable arrangement

Construction Techniques to aid O&M Fuse Clips

Original Design



Spring Clip Fuses

Modified Design

Bolted Fuses

Construction Techniques to aid O&M Transformer

Original Design

Dry Type Exposed to Moisture

Modified Design

Oil Filled