

Rapid Flaw Detection in Wind Turbine Blade Assemblies Using Phased Array Ultrasonics

Wind Turbine Blade Workshop

Dennis Roach, Stephen Neidigk Randy Duvall, Tom Rice Sandia National Labs

May 31, 2012

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Blade Reliability Collaborative Advanced Manufacturing Initiative Objectives

Create the ability for manufacturers to determine the quality of their product before it leaves the factory

Program Thrusts to Improve Wind NDI

- Use of NDI reference standards to form sound basis of comparison & ensure proper equipment set-up
- Use of material property & calibration curves (attenuation, velocity)
- Human factors adjust procedures, automate, streamline
- Improved flaw detection:
 - Advanced NDI max signal-to-noise; image-based; sensitivity
 - Hybrid inspection approach stack multiple methods which address array of flaw types (data fusion)

Required Relationship Between Structural Integrity and Inspection Sensitivity

Engineered Flaws in NDI Feedback Specimens Shear Web & Foam Core Specimens

Shear Web/Spar with Disbonds and Delaminations

Dry fabric areas

Grease

Mold Release

Pillow Insert

Materials inserted into multiple layers

Samples of Different Flaw Types Engineered into Carbon NDI Ref Standards

Pillow Insert

Pre-Preg Backing

Pull Tab Disbonds

Grease Contamination

Flaws were placed at varying depths and locations using a template

Glass Microballoons in Bond Line

Completed NDI Reference Standards for Use at Blade Manufacturing Facilities

- Develop and test NDI technology
- Train inspectors and familiarize them with carbon material
- Calibrate and set up NDI equipment
- Ultrasonic flaw signal characterization
- Inspection procedure development

MAUS P-E UT with Focused Probe (1 MHz/2") and Adjustable Water Path

Pulse-Echo Inspection of Bond Joint

Phased Array UT Using Water Shoe

Advantages of using water shoe:

- Better/cleaner scanning signal response (less noise) which results in a better signal-to-noise ratio for flaw detection
- Better coupling no signal dropout and easier clean-up than couplant
- Easier to deploy over scanned surface

Inspections must address all field deployment issues:

- Vertical and horizontal inspection surfaces
- Hand scan vs. attachable scanner
- Signal coupling water flow, air bubbles
- Wide range of thicknesses (gate adjustments)
- Quantitative information
- Ease and rate of inspection

Use of Position Encoder

NDI Ref Std – Adhesive Step Wedge

Adhesive Wedge NDI Reference Standard

Goal: Develop and assess methods to rapidly inspect/quantify bond line thickness

Tapered Adhesive Wedge

Adhesive Thickness Measurements with Phased Array UT

Omniscan UT Device 1.5L16 (1.5 MHZ) Phased Array Water Box REF-STD-F6-086-TW-A

Use of Dual Gates to Quantify Bond Thickness

Amplitude C-Scan Produced by Green (B) Gate Set Across Proper Bond Line Thickness

Design of Delay Lines to Avoid Signal Interference

Water Box Signal Analysis - 25mm compared to 40mm; Moves harmonic return signal outside area of interest.

1.5 MHz Phased Array UT Probe

Sandia has focused on a sealed couplant box that:

- Adjusts to slight curvature in surfaces
- Eliminates water flow to open box
- Maximizes signal strength
- Accommodates necessary standoffs for signal clarity
- Easily saves scanned images for reference using a wheel encoder

Probe Housing Development for Factory/Field Deployment

Goal is to develop a sealed water path that produces clear signal through a wide range of <u>thicknesses</u> (up to 2.5 inches) and <u>curvatures</u>

25 mm Sealed Box

40 mm Sealed Box

Spar Cap and Shear Web

NDI Feedback Specimen No. 6

Thicker specimen: REF-STD-6-202-250-SNL-1

Spar Cap and Shear Web NDI Feedback Specimen No. 6

REF-STD-6-202-250-SNL-1 Omniscan Phased Array with 1.5 MHz & 40 mm Water Box

Backwall Signal From Adhesive Bondline at Shear Web

Frequency Characteristics of UT Pulser

Sandia has requested increase of

pulse width to 1 micro second, which is half of 0.5MHz wave length

Optimal excitation for depth of penetration

National Laboratories

Ultrasonic Characterization of Solid Laminates and Adhesive - Porosity

Goal: work with wind blade manufacturing sites to accumulate a series of porosity measurements, along with corresponding UT attenuation and velocity and UT property measurements to generate calibration curves for use in production QA

Porosity Measurements -Optical Microscopy and Ignition Loss of Fiber/Resin

Quality Assurance Calibration Curves

How could quality assurance curves be used by inspectors to determine the quality of a blade?

Response calibration curve that can be used for QA – family of curves could produce an envelope of acceptable attenuation levels

Wind Blade Probability of Detection Experiment

- Representative blade specimens; realistic flaw types
- Blind experiment: type, location and size of flaws are not know by inspector
- Statistically relevant flaw distribution Probability of Detection (POD)
- Used to analytically determine the performance of NDI techniques – hits, misses, false-calls, flaw sizing

Review Committee

NREL UpWind

DOE

Clipper

LM Wind Power

Gamesa

WINDIE – Advanced NDI Screening Activity

Leading Innovation >>>

MICROWAVE NDE TECHNOLOGY

MOVIME

custom imaging solutions

Evolution of NDI for Wind Turbine Blades

- Develop array of inspection tools to comprehensively assess blade integrity (determine needs, challenges, and NDI limitations)
- Achieve this while considering time, cost, & sensitivity issues (minimize production & maintenance costs)
- Develop NDI solutions in concert with related studies: effects of defects, field surveys, analysis, certification, standards
- Identification of impediments to be overcome and develop NDI ref stds
- NDI investigation has produced promising results thus far & may lead to hybrid approach with multiple NDI tools
- NDI to extend blade design life (??)

Dennis Roach Sandia National Labs (505)844-6078 dproach@sandia.gov

