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Introduction
• Salt repository is one of four generic disposal system (GDS) 

options currently under study by U.S. DOE
– Stable geology 
– Chemically reducing condition
– Self-healing by creep deformation
– Limited water availability and movement

• The salt GDS study is to support the development of a long-
term strategy for geologic disposal of high-level nuclear 
waste in a salt formation

• The immediate goal is to develop the necessary modeling 
tools to evaluate and improve understanding on the 
repository system response and relevant processes
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Conceptual Model
• Assume saturated, reducing condition

– Repository in a bedded salt formation 
below a carbonate aquifer

• Isothermal condition at ambient 
temperature

• Reference (or Undisturbed) Scenario
– RNs released into and transported in an 

interbed (1 m thick, relatively more 
permeable anhydrite layer) below 
repository

• Disturbed Scenario
– “stylized” human intrusion scenario
– A single borehole penetration at 1,000 

years
– Sample the number of affected waste 

packages (WPs) (between 1 and 5)

Brine Reservoir

Salt Bed

Overlaying Carbonate Aquifer

Repository

Near-field/far-field interface 
for human intrusion

Borehole penetrating 
repository and brine reservoir 
for human intrusion scenario

Interbed

– RNs from affected WPs released directly to overlying aquifer by pressurized brines with 
steady-state flow rates

– Not consider potential dose impacts of waste brought up by drilling activities
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Waste Inventories and Scenarios

• Waste types 
– Commercial used nuclear fuel (UNF) (140,000 MTU)

• Convert the total inventory to equivalent pressurized water 
reactor (PWR) inventory for simplification 

• 32,154 UNF WPs (10 assemblies per WP)  
• Isotope inventory based on the PWR UNF

– 60 GWd/MTHM burn-up
– 4.73% enrichment
– 30 yrs after discharge from reactor

– Vitrified existing DOE high-level radioactive waste (HLW) 
• 5,003 WPs (5 canisters per WP)
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Waste Inventories and Scenarios
(continued)

• Assume a square repository footprint
– Spacing between emplacement tunnels: 25 m
– Spacing between WPs: 6 m

• Waste inventory case for Reference Scenario
– UNF plus DOE HLW

• A total of 37,157 WPs
• A square repository footprint with a side of 3,270 m

• Waste inventory case for Disturbed Scenario
– Assume only UNF WPs affected by human intrusion
– No additional WP failures by nominal degradation process
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Radionuclide Mobilization and Transport

• Not consider WP containment barrier performance
– Waste form degradation and RN release at the beginning of simulation
– Treat the WP interior as porous medium of corrosion products of WP, 

internal components and waste form
• Fractional degradation rate model for waste form degradation

– Commercial UNF: log-triangular: min = 10-8/yr, mode = 10-7/yr, max = 10-

6/yr
– Glass waste form: log-uniform: min = 3.4x10-6/yr, max = 3.4x10-3/yr

• Model the repository disposal area as a large mixing cell
– Not consider RN sorption on corrosion products and geologic materials

• Radio-element solubility for two redox conditions
– Near-field brines (reducing condition)
– Far-field brines (less reducing or slightly oxidizing condition)

• RN sorption in the near-field and far-field transport
– Linear equilibrium sorption (Kd) model for interbed and overlying 

carbonate aquifer
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Radionuclide Mobilization and Transport
(continued)

• Brine pore flow velocity in the repository and interbed (Reference 
Scenario)
– Time-dependent flow rates (<10-16 m/yr to 10-6 m/yr) from BRAGFLO 

analysis
• Pore flow velocity in overlying carbonate aquifer (Disturbed Scenario)

– Log-uniform (3.1x10-3 m/yr, 31 m/yr) (consistent with WIPP modeling)
• Performance measure matrix

– Mean mass flux from major system components (e.g., near-field and far-
field boundaries)

– Mean annual dose at “hypothetical” accessible environment (AE)
• 5 km down-gradient from the edge of repository
• IAEA BIOMASS Example Reference Biosphere 1B (ERB1B) dose model
• Dilution rate of 1x104 m3/yr in aquifer
• Individual water consumption rate of 1.2 m3/yr

• The salt GDS model implemented in the Goldsim framework
– Probabilistic performance analysis with 100 realizations for a time 

period of 1 M years
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Abstraction for BRAGFLO Analysis Results 
for Brine Flow

• Assume initial dry-out zones around waste disposal area and isothermal 
condition at ambient temperature

• 100 time-dependent brine flow rate histories at two locations
– Edge of the initial dry-out zone below waste disposal area
– Underlying interbed (used also for brine flow in the far-field interbed)
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Major Conservative Bounding Assumptions
• No containment barrier performance of waste package
• Not consider RN release delays during initial dry-out period 

around the waste disposal area due to waste decay heat
– The extent and duration of dry-out depending on many factors 

such as repository thermal loading, WP heat output 
characteristics, repository thermal-hydrologic response, etc.

• No RN sorption on degradation products of EBS 
components and geologic materials in the mixing cell 
representing waste disposal area

• Use of brine pore velocity in the near-field interbed for the 
far-field interbed for the entire simulation period (Reference 
Scenario)

• Continuous steady-state upward brine flows through the 
borehole for the entire simulation period (Human Intrusion 
Case)
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Preliminary Results for Nominal Scenario
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Preliminary Results for Nominal Scenario
(continued)
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• Slow, diffusion-dominated 
transport in interbeds

– Very low brine pore flow velocities 
in interbeds

• RN transport further retarded in 
the interbed by sorption

• Non-sorbing or weakly sorbing
RNs (I-129, Cl-36) with a 
significant inventory are released 
from the far-field interbed

• I-129 is the dominant long-term 
dose contributor

– Unconstrained solubility
– Extremely long half-life (~16 M yrs)
– Significant inventory in the waste
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Preliminary Results for Disturbed Scenario
(Human Intrusion Case)
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• Higher dose estimates than for 
nominal scenario although available 
inventory is much smaller

– RNs transported at much higher rates in 
the overlying aquifer than in the interbed

• Actinides contribute due to direct 
release into the overlying aquifer with 
higher water flow rates and higher 
solubility limits

• Np-237, Pu-239, and Pu-242 are the 
dominant dose contributors

– I-129 is no longer a dominant dose 
contributor because of its limited inventory 

– Only one to five WPs fail

WM Symposia 2012; Paper #12173; 3/1/2012 13



Summary and Conclusions

• Developed a performance assessment model for a generic salt 
repository
– Incorporated, where applicable, representative geologic settings 

and features adopted from literature data for existing salt 
repository sites

• RN release pathways and scenarios are important to the 
response of a generic salt repository
– Improved conceptual models that are more representative of a 

generic salt repository
• Soluble, non-sorbing fission products (I-129, Cl-36) are the 

major dose contributors for Nominal Scenario
– Uncertain solubility and sorption behavior in chemically reducing 

geologic environments
• Actinides are dominant dose contributors for Human Intrusion 

Case
– Direct releases of the RNs into the overlying aquifer
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Summary and Conclusions
(continued)

• Need to evaluate impact of the conceptual model 
simplification and bounding conservative assumptions
– Brine movement under thermal perturbation
– WP performance
– Geologic behaviors of key RNs (I, Cl)
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Future Work

• Develop analysis tools for thermal loading and thermo-
hydrologic response in generic salt repository, 
incorporating associated processes
– Salt creep deformation and consolidation
– Brine movement

• Improve near-field geochemistry for generic salt repository 
environment
– High ionic strength, elevated temperature, reducing condition
– Solubility and sorption of RNs in near-field environments

• Degradation of WP, waste forms and other EBS 
components in generic salt repository environment 
– Characterization and quantification of gases generated from 

corrosion in concentrated brine under reducing condition
• Brine flow and RN transport in the far-field of generic salt 

repository
– Transport in generic interbed

WM Symposia 2012; Paper #12173; 3/1/2012 16




