# Long Term Storage of Used Nuclear Fuel in the U.S.

## **PATRAM 2010**

Ken B. Sorenson, Ruth Weiner Sandia National Laboratories

Brady Hanson, Jim Buelt **Pacific Northwest National Laboratory** 

> Sandra Birk **Idaho National Laboratory**

> > October 7, 2010 London, England





# **Contents**

- Background
- Department of Energy Program
- Collaborations
- Conclusions



Source: Nuclear Regulatory Commission <a href="http://www.nrc.gov/waste/spent-fuel-storage/diagram-typical-dry-cask-system.html">http://www.nrc.gov/waste/spent-fuel-storage/diagram-typical-dry-cask-system.html</a>



Source: Connecticut Yankee http://connyankee.com/html/fuel\_storage.html

# **Background**

Policy — Issues — Consequences

# **Policy**

• The Administration's decision to cancel Yucca Mountain means that the U.S. will need to store used fuel for the foreseeable future (>120 yrs)

## <u>Issues</u>

- Licenses for long term storage of used fuel are issued for 20 years, with possible renewals up to 60 years. A new rule-making will allow the initial license for 40 years with one possible 40-year extension.
- Questions regarding:
  - extended storage beyond 60 to 80 years
  - retrieval and transport of used fuel after long term storage
  - storage and transportation of high burnup fuel (>45 GWD/MTU)

## **Consequences**

- Technical bases need to be developed to justify licensing:
  - used fuel storage beyond 60 to 80 years (up to 300 yrs)
  - retrievability and transportation of sued fuel after long term storage
  - storage and transportation of high Burnup fuel

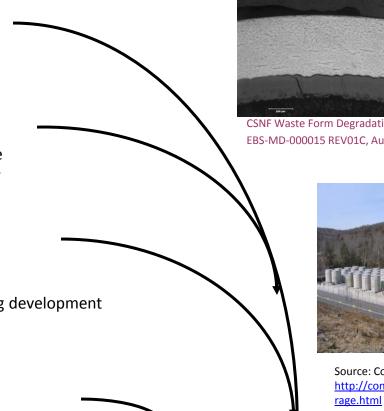


# **Department of Energy Program**

## R&D Opportunities

- Data gap analysis
- Plan to address gaps
- Development of technical basis

## Security


- Regulatory assessment
- Identify issues peculiar to long-term storage
- Evaluate vulnerability analysis methodology improvements

### Conceptual Evaluation

- Design process for development of technical basis
- Evaluate several scenarios for accomplishing development of technical basis
- Develop a systems framework for decision-making

## Transportation

- Data gap analysis
- Plan to address gaps
- Development of technical bases





CSNF Waste Form Degradation: Summary Abstraction, ANL-EBS-MD-000015 REV01C, Authored by J. Cunnane.



Source: Connecticut Yankee http://connyankee.com/html/fuel\_sto rage.html

## **Storage Implementation Plan Goals**

- 1 yr: Project Implementation Plan Framework
- 5 yr: Project Implementation Plan & Development of Technical Basis
- •10 yr: Field operating project

# **Department of Energy Program**

# **Preliminary R&D Technical Issues**

| SSC                  | Mechanism                                        | Influenced<br>by Longer<br>Times? | Influenced by Higher Burn-up? | Other Data<br>Needs?           | Priority of New<br>Research                     |
|----------------------|--------------------------------------------------|-----------------------------------|-------------------------------|--------------------------------|-------------------------------------------------|
| Cladding             | Embrittlement - Radiation Induced -<br>Annealing | Maybe                             | Maybe                         | Yes                            | Moderate                                        |
| Cladding             | Embrittlement - Hydride Induced                  | Maybe                             | Yes                           | Yes                            | High                                            |
| Cladding             | Creep                                            | Maybe                             | Maybe                         | Yes                            | Low                                             |
| Cladding             | Delayed Hydride Cracking                         | Maybe                             | Yes                           | Yes                            | High                                            |
| Cladding             | Phase change                                     | Maybe                             | Maybe                         | No: not likely to happen       | Very low                                        |
| Neutron shield       | Loss of shielding                                | Maybe                             | Maybe                         | No: no significant consequence | Very low                                        |
| Container            | Stress Corrosion Cracking of Closure<br>Welds    | Yes                               | No                            | Yes                            | High                                            |
| Container            | Degradation of Seals                             | Maybe                             | No                            | Yes                            | High                                            |
| Concrete<br>overpack | Degradation of concrete                          | Yes                               | No                            | Yes                            | Very low: potential<br>for aging mgt<br>program |
| Pad                  | Degradation                                      | Yes                               | No                            | Yes                            | Very low: potential<br>for aging mgt<br>program |

# **Department of Energy Program**

# **Preliminary Concept Evaluation Framework**

| DEMONSTRATION OPTIONS           |                                                |                                                      |                                                       |                                                                           |  |  |  |  |
|---------------------------------|------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|
|                                 | Monitor Existing ISFSI.                        | Modified ISFSI                                       | Demonstration<br>Facility at a DOE<br>Site            | Construct a New<br>Demonstration<br>Facility                              |  |  |  |  |
| Siting and licensing            | Licensed, may need NRC approval for operations | Licensed, may need NRC approval for operations       | Operates under DOE orders                             | Licensing (or DOE permission) needed                                      |  |  |  |  |
| Spectrum of UNF available       | Limited                                        | Full spectrum                                        | Full spectrum                                         | Full spectrum                                                             |  |  |  |  |
| Transportation requirements     | None or very limited                           | Transportation of fuels needed                       | Transportation of fuels needed, many may be available | Transportation of fuels needed                                            |  |  |  |  |
| Testing requirements            | Very limited                                   | Somewhat limited – transportation needed for testing | Generally available;<br>available in DOE<br>complex   | Either transportation<br>will be needed or<br>facilities must be<br>built |  |  |  |  |
| Construction/<br>operating cost | Minimal                                        | Minimal                                              | Moderate                                              | High                                                                      |  |  |  |  |
| Radiological controls           | Controls may need modification                 | Adequate controls exist                              | Adequate controls exist                               | Needed                                                                    |  |  |  |  |
| Waste mgmt                      | Needed                                         | Needed                                               | Needed                                                | Needed                                                                    |  |  |  |  |
| Security                        | Adequate                                       | Adequate                                             | Adequate                                              | Needed                                                                    |  |  |  |  |

# Nuclear Regulatory Commission Supports efforts on a collaborative basis

## **Collaborations**

### **DOE/NE**

Program Direction, Management

### DOE/RW, EM

Collaboration, experience from related programs

#### Nat'l Labs

SNL, PNNL, ANL, INL, SRNL Technical support for the 3 Work Packages

## <u>Industry</u>

EPRI, NEI, Utilities, Suppliers

EPRI Extended Fuel Storage Collaboration Program

(Nov 18-19, 2009 Wash DC; May 3, 2010 Baltimore)

NEI Dry Storage Information Forum

(May 4-6,2010 Baltimore)

### **International**

BAM (Germany), CRIEPI (Japan), United Kingdom

IAEA Int'l Conference on Management of Spent Fuel from Power Reactors

(Vienna, May 31-June 4, 2010)

INMM Annual Meeting (Baltimore, July 11-15,2010)

Special session at PATRAM 2010 on Used Fuel Dry Storage (London, Oct. 3-8, 2010)

International High-Level Radioactive Waste Management Conference (April 10-12, 2011)

# **Conclusion**

A comprehensive program has been established in the U.S. to develop the technical bases for extension of used fuel storage for up to 300 years with subsequent transportation. This program is structured to take full advantage of all available means to develop the technical arguments, including:

- comprehensive literature searches
- experimental testing
- analysis
- collaboration with industry
- collaboration with international organizations
- collaboration with the U.S. regulator