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SunEdison Overview 

We develop, build, finance, and operate turnkey solar power plants 
to provide our customers electricity at predictable and competitive 
prices. 
 

One of the largest solar energy service providers in the world 
 Over 600 solar power plants, built, financed, and/or under O&M 

 ~600 MW of 100% renewable electricity installed 

 One of the Europe’s largest utility scale solar plants  (70 MWp) 

Demonstrated track record with financial institutions 
 Over $2.5bn in financing experience 
 Ground-breaking $1.5 billion fund with private equity investor, First 

Reserve  
 Systems operating at 100% of underwritten investment 

Pioneer provider of solar systems and services 

 Founded in 2003 to make solar energy a competitive alternative 

 First to provide solar PPA - commercial turnkey solar power plants 



Rationale 

 Real-world examples of variability metrics  
– across an extended period (11-months: Sep 1, 2010 – Jul 31, 2011) 
– across different time-scales (1-, 10-, 60-minutes) 
– based on peak production hours (10:00 – 14:00 local standard time) 

 
 Impact of fleet composition on the variability metrics 

 
 Potential impact on grid planning/operating reserve 

 
 Output variability of large utility scale solar plants 

 
 PV output variability and grid voltage 



PV system map – small ensembles (~440 kWp) 
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PV system map – large ensembles (~1000 kWp) 
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Measured AC output aggregated over 11 systems (2011-04-29)  



Variability metrics 

Goal:  
Characterize the distribution of step changes in power output 
ΔP = P(t+Δt) – P(t) 
– Δt: 1, 10, 60 minutes 

 Standard deviation of step changes 
– Most common metric 
– Intuitive but of limited practicality 

 κ3σ: likelihood of extreme events compared to normal dist. 
 
 

 Maximum step change for a given probability 
 Probability of exceeding a ramp rate threshold 

σ
κ σ

percentileth7.99
3 =



High-frequency step changes exhibit longer tails 

 The distribution of step changes in the output of a PV 
plant is not normal: 
– Its tails contain more events than the tails of a normal distribution 

 
 
 
 
 
 

 
 Widely distributed fleets => fewer “extreme” events 



Is the standard deviation of step changes a practical metric? 

† A. Mills, R. Wiser, “Implications of Wide-Area Geographic Diversity for Short-Term Variability of Solar Power”, LBNL-3884E, 
Lawrence Berkeley National Laboratory, 2010. 

σ
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κ3σ > 3 means that a ±3σ interval contains fewer than 
99.7% of step changes 



Maximum step change for a given probability 

10-minute step changes 
N~180’000  (11 months) 



Planning for reserves based on probabilities (p95) 
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Fraction of step changes (ramp rates) above a threshold 

10-minute step changes 
N~180’000  (11 months) 



Fraction of ramp rates > 3% per minute (Δt = 10 min) 

(*) CEC Intermittency Analysis Project Study “Appendix B—impact of intermittent generation on operation of California power grid,” Jul. 2007 

40 km 90 km 40 km 0 km 155 km 90 km 50 km 

440 kWp 1000 kWp 

A steam plant can ramp at ~3% per minute* 



Potential impact on grid planning/operating reserves 

 Fleet topology: 
– Easiest to mitigate: The aggregate output variability of a geographically distributed 

fleet of “many” similarly sized systems. 
– If a large system accounts for most of the fleet’s capacity it will dominate the 

aggregate variability behavior. 
 

 Reserve planning:  
– Regulation and load following: 95% of the step changes in aggregated PV output are 

less than 5-10% of the fleet’s nameplate capacity for a fleet with many similarly sized 
systems, depending on the fleet topology 

• At 20-30% PV penetration (wrt peak load) this is equivalent to a 1-1.5% of the 
load, which is comparable to typical regulation reserve considered for the load. 

• The maximum delta jumps by about 2x as the confidence interval is increased 
from 95% to 99.7%. 

– Contingency reserve : Because individual solar systems are relatively small, they may 
not affect the contingency reserve requirement.  

– Ramp rate: In theory, a steam plant could respond to 99.7% of the 10-min deltas (and 
100% of the 60-min deltas) of a PV fleet of equal nameplate capacity, if adequate 
forecasting and spare capacity were available, but a smaller gas-fired plant would be a 
far more practical choice. 



Power Output from Rovigo (70 MWp) 



What happens to variability from 1 MWp to 70 MWp? 

 For constant area, normalized variability is 
independent of density (Wp/m2),. 

– Covering 200 acres with more systems will not have a 
dramatic impact on normalized variability (as a 
percentage of nameplate capacity). 

 
 

 For constant capacity, variability is proportional 
to density (Wp/m2),. 

– Distributing 40 MW over more acres (e.g. 200 vs 100) 
will reduce variability. 

 
 

 For constant density (Wp/m2), normalized 
variability is inversely proportional to area. 

– A 20-MW system will have lower normalized variability 
than a 10-MW system (as a percentage of nameplate 
capacity). 

 

 
 

 

nV1          ≈          nV2 

nV1          >          nV2 

nV1          >          nV2 



PV output variability and grid voltage* 
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* R. Aghatehrani and T Golnas, “Reactive power control of photovoltaic systems based on the voltage sensitivity analysis,” Accepted for IEEE 
PES GM 2012. 

IEEE 123-bus distribution system Bus 28 voltage  
UPF (red), APF(blue)  



Wavelet based voltage fluctuation power index (cfp) 
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Fluctuation Power Index (cfp): mean value of square of wavelet coefficients (Wj,q) on 
each scale (j)*. 
 
Wavelet transform: 

* A. Woyte, V. Thong, R. Belmans and J. Nijs, “Voltage fluctuations on distribution level introduced by photovoltaic systems,” IEEE Trans 
Energy Convers., vol. 21, pp. 202-209, Mar. 2006. 

Voltage cfp with adjusted power factor Voltage cfp with unity power factor 



Conclusions 

 Fleets of widely distributed, uniformly sized PV power plants provide 
natural mitigation against variability. 
 

 Study of fleets with different characteristics yields information that 
can be used in optimal-cost planning of reserves. 
 

 Study of large contiguous PV plant in Europe shows that the outer 
extent of the area occupied by an array is the biggest determinant of 
variability. 
 

 Methodical Power Factor adjustment of an inverter can reduce 
voltage variability caused by the variability of PV systems. 
 



Thank you for your attention! 
 
 
 

 



What happens to variability from 1 MWp to 70 MWp? 

 The area covered by the fleet or the plant determines the normalized 
variability. 

– Normalized variability: variability (standard deviation of step changes) normalized 
by the nameplate capacity of the power plant or fleet. 

 

Rovigo PV plant (70MW) 

standard deviation of step 
changes 
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PV Grid Integration Challenges --- Motivation 

Strategy at Different Timescales 
• Immediate Grid Stability (milliseconds to minutes) 

... Develop Grid Controls & Inverter capability to 
Support Grid Reliability & Stability 

• Fleet Operation (hours to days) 
... Address PV Variability Issues e.g., forecasting, 
ramp rates 

• Long Term Resource Planning (years) 
... Address integration of PV as part of a Full 
Generation Resource Portfolio 
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PV Variability … what does it look like? 
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Cost Impact of Variability 

Source:” Implications of Wide-Area Geographic 
Diversity for Short-Term Variability of Solar 
Power”; 
 Andrew Mills and Ryan Wiser  
Lawrence Berkeley National Laboratory 
September 2010 



©
 C

op
yr

ig
ht

 2
01

2,
 F

irs
t S

ol
ar

, I
nc

. 

6 

Need to Solar Power Variability Model …. 
Wouldn’t it be nice 
• to be able to determine how much of a reduction in variability 

will occur in transitioning from a GHI point sensor to an entire 
power plant for any plant?  

• In order to address how to integrate PV into the grid, we need 
to have an understanding of the variability.  

• How does plant size (footprint and capacity) affect the 
reduction in variability?  

• What is the difference between central and distributed plants?  
• How does this relationship vary geographically (coastal vs. 

inland, by latitude, etc.)? To answer these questions, a solar 
power variability model is needed.  

⁻ Source: Lave et al of Sandia Labs 
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Power Plant Overview 

Solar Module Array 

Inverter B 

Transformer 

Power Conversion 
Station (PCS) 

Inverter A 

Substation 

Photo Voltaic  
Combining Switchgear 

(PVCS) 

34.5KV AC 

Power Grid 

POI Power 
Meter 

Plant Network 

POI Voltage/ 
POI Current 

Set Points 

HMI Data 

SCADA HMI 

Inverter 
Commands 

Plant Controller 

Combiner Box 

Combiner Box Solar Module Array 
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Meteorological & Other Instrumentation 

2-6 Sensor Sets per Plant 
depending upon the size of the plant 

• Plane of Array and Global Horizontal Solar 
Irradiance)  Accuracy: +/- 2% 

• Temperature  Accuracy: +/- .3°C 

• Humidity  Accuracy : +/- 2% 

• Wind Speed  Accuracy +/- 2.0 % 

• Wind Direction  Accuracy +/- 3.0 % 

• Barometric Pressure   
• Rainfall 

 
• Reference Module (~3 per block) 
• Module Surface Temperature Sensors 
• DC Current Transducer 

 
• Energy Meter at Various Levels 
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Typical SCADA Data 

Plant Level Data 
• Avg Plant POA Irradiance 
• Avg Plant Global Horizontal 

Irradiance 
• Avg Plant Panel 

Temperature  
• Avg Plant RM Temperature 
• Avg Plant Amibient Temp 
• Avg Plant Wind Speed  
• Total Energy Meter Reading 
• Total Energy Delivered 
• Total Energy Received  
• Total Plant Power  
• Total Reactive Power of the 

plant  
• Total Plant kVA  

Inverter Data 
• DC Current on CB1 … CB9 
• Fault Status  
• Line Frequency  
• Inverter Phase A/B/C 

Current 
• Inverter State  
• AC Output kWh  
• AC Output kW  
• Inverter kVAR  
• Matrix Temperature  
• inverter  Internal Air Temp 
• PV Current  
• PV kW  
• PV Voltage  
• Operating Time  

Other Data 
• Pressure  
• Rainfall  
• Relative Humidity  
• POR Irradiance  
• Global Irradiance  
• Air Temperature  
• Wind Direction  
• Wind Speed  
• Module Surface 

Temperature  
• RM Irradiance  
• RM Temperature  
• Main Breaker Status  
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EPC Project Overview 

Project Details 

Yuma County 

Dateland, AZ 

2,400 Acres 

39,000 Tons Steel 

PPA – PG&E 

EPC/O&M - NRG 

First 2008 EPC Project 
Sempra – El Dorado 

10MW 

North America Largest 
PV Plant: 

Enbridge - Sarnia  
80 MW 

NRG – Agua / 392 MW dc  

http://powerprojects.firstsolar.com/epc2010/AguaCaliente290/Photos/Agua Site Aerial November 2011.jpg�
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EPC Project Overview 

NRG - Agua  
392 MWdc 

NextEra / GE – Desert Sunlight – 570 MWac (725 MWdc) 
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Power Output Variability Analysis (Hoff & Perez) 
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Measured 10-second data from high-density, 400 meter x 400 meter grid in  
Cordelia Junction, CA on November 10, 2010 
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Irradiance 
  1 Location 
25 Locations 

14 
Source: Incorporating Correlation into a PV Power Output Variability Analysis, Thomas E. Hoff and 
Richard Perez, Clean Power Research, Preliminary Results 
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Plant Data Sample 
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One Second Plant Level Data 
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What is the smoothing effect in a large PV system 
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One-Minute Ramps for 5 and 80 MW Plants 

Source: Empirical Assessment 
of Short-term Variability from 
Utility Scale Solar-PV Plants 
Rob van Haarena,, Mahesh 
Morjariab and Vasilis Fthenakisa 
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One-Minute Ramps Using Sub-Plant Data 
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Minute-averaged Ramp Rate CDF: Shells Method - 48 MW plant, 2011

 

 

0.5 MW
2 MW
4.5 MW
8 MW
12.5 MW
18 MW
24.5 MW
32 MW

Increasing 
Sub-Plant Size 

0.5 MW 32 MW 

Source: Empirical Assessment 
of Short-term Variability from 
Utility Scale Solar-PV Plants 
Rob van Haarena,, Mahesh 
Morjariab and Vasilis Fthenakisa 
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Session 2A. Data & Models for High Penetration  

Array 2 

Array 1 Array 3 Array 5 

Array 6 

Array 7 

Array 8 
Array 9 

Array 10 

Array 4 

• Opening Remarks Mahesh Morjaria, First Solar  

• Solar Data Inputs  Josh Stein, Sandia  

• Distributed PV Monitoring Kristen Nicole, EPRI 

• PV Plant Variability,  Rasool Aghatehrani, SunEdison 
Aggregation, & Impact on Grid Voltage   
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A Solar Future for World 

Reliable 
Local 
Abundant 
Cost Effective 



Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed 
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.  

Photos placed in horizontal position  
with even amount of white space 

 between photos and header 

Solar PV Data for Distributed Grid 
Integration Modeling 

Joshua Stein, Matthew Lave, Matthew Reno, Robert 
Broderick, and Abraham Ellis 

April 19, 2012  Tucson, AZ 



Outline 

 Introduction 
 Why is solar variability important for distribution planning? 

 What information is needed for distribution planning studies? 
 What do we know about PV output variability? 
 How to describe and classify PV and irradiance variability? 
 Example application of the Wavelet Variability Model 

 Generation of PV output profiles 
 Project involving Sandia, EPRI, and Georgia Power (Southern Company)  

2 



Why is solar variability important? 
   Solar Variability is important to study because it can cause problems on 

electric grids with high penetrations of PV (Flicker, Voltage changes, 
equipment wear, etc.) 

 Geographic diversity reduces variability but does not eliminate it.   

3 

477 residential 
PV Systems 

Las Vegas, NV Ota City, Japan 



What information is needed? 

 Answer: PV power output as a function of time and space (correlated with 
load). 

 Grid integration studies need estimates of PV power output in space and 
time for a period in the past when load data is available. 

 This is difficult because: 
 High frequency (1-sec) irradiance data is rarely available when and where you 

want it (EPRI is beginning to address this). 
 Geographic diversity reduces variability in complex ways (time and space 

dependent) 
 PV performance is influenced by many variables other than irradiance (design, 

technology (module, inverter, BOS), weather, and environment.   
 Tracking and orientation can significantly affect variability magnitude and timing 

4 



What do we know about PV variability?  
 On clear days PV variability can be predicted quite accurately 

(diurnal, temperature and atmospheric factors) 
 Even without detailed design information  

 Clear Sky Irradiance Modeling (Reno et al., 2012) 
 Neural Networks: (Riley et al., 2011) 

 On partly cloudy days PV variability is primarily controlled by 
cloud shadows 
 Point irradiance measurements overestimate variability from PV systems and 

fleets 
 Ota City study of 553 homes (Lave et al, 2011) 
 NV Energy integration study (e.g., Hansen et al., 2011) 

 Need methods to represent geographic diversity and smoothing 

 On overcast days PV variability is low 

5 



Geographic Diversity 

Larger PV plant footprints or distributed PV reduces variability 
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Describing Irradiance Variability 
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Global Horizontal Irradiance
Clear Sky Irradiance
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Variability Index metric described Stein et al. (2012) 



Example application of the Wavelet 
Variability Model 
 Uses EPRI’s Distributed PV Monitoring (DPV) system 

data from a single feeder 
 Wavelet Variability Model (WVM)(Lave et al, 2012) 

 Developed at UCSD as part of Matthew Lave’s Ph.D. dissertation 
 Refined and validated in partnership with Sandia National Labs 

 Predict PV output power time series that reflect expected 
geographic smoothing 
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Wavelet Modes Example 

Simulated wavelet 
modes derived 
from GHI wavelet 
modes 
 
 
 
 
 
Modeled and 
measured power 
compare well 

9 



Layout 
 6 PV sensors provided by EPRI 
 Plane of array (POA) irradiance at 1-sec resolution for 1-year (2011) 
 Maximum distance between sensors ~2km 
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Geographic Diversity 
 Even at such short distances between sensors, we see a large amount of 

geographic diversity. 
 Mean of all 6 sensors shows a strong reduction in average and maximum RRs 
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Wavelet Variability Model (WVM) 

PV Footprint 

Point Sensor Timeseries 

PV Plant Density 

Model Inputs Model Outputs 

Plant Areal Average 
Irradiance 

determine variability reduction 
(smoothing) at each wavelet timescale 

Plant Power Output 

irradiance to 
power model 
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is the timescale 
ρ=0 when dm,n is very large or t is very small 
ρ=1 when dm,n is very small or t is very large 



Pick PV Scenarios 
 7MW central (yellow), 3MW central (red), and 1MW distributed (blue) PV 

plants were simulated. Central densities were about 30 W/m2 and distributed 
about 8 W/m2, consistent with previous PV plants. Plants are assumed to have 
PV modules at fixed latitude tilt. 

13 



Pick input point sensor 
 Choose July 22nd, 2011 as a test day since it is highly variable. 
 Use PV sensor 2. This is the closest sensor to both the 7MW central and 1MW 

distributed plants. It was also used at the 3MW distributed plant to allow for 
easy comparison between the 3 scenarios.  
 

14 



Determine A value 
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A value changes by day 

16 

largest A value small A value 

 Sites weakly correlated – small clouds.  Sites highly correlated – large clouds. 
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Plant Average Irradiance 
 WVM simulates plant average POA irradiance. 
 7MW plant is most smoothed due to its size. 1MW distributed is slightly more 

smooth than 3MW central, due to added geographic diversity. 
 

17 



Plant Power 
 For this example, we simulate plant power output using a simple linear 

irradiance to power model*.  
 

18 *A more complicated irradiance to power output model may be used to increase accuracy. 



Look at RRs 

19 

 Absolute RRs increase with increasing 
capacity.  

 Relative RRs show strong difference 
between point sensor and area 
averaged irradiance.  

Relative RRs 

Absolute RRs 

cdfs of extreme RRs (>75th percentile) 
on July 22nd, 2011 



Summary 
 Prediction of PV output variability is important to support increased 

penetration of PV on distribution feeders 
 High frequency irradiance and PV data are needed as input for these 

predictions and for validation of models. 
 Models such as WVM can be used to simulate nearly any PV scenario if 

irradiance data is available. 
 If measured irradiance data is not available, methods exist to simulate 

irradiance (adds to the uncertainty) 
 Classification schemes (e.g., Variability Index) provide a way to represent 

variability for a range of representative conditions without needing to run 
every day and location. 
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Southern Company 

Will Hobbs 



Hickory Ridge Landfill 

• Customer owned 
• ~1MWdc thin film laminated on cap membrane  



DPV Feeder 

• Happens to be on a DPV feeder 
• Feeder will be modeled in Open DSS 
• 1 sec power and PQ events will be metered 



Other perspectives on DPV 

• Significant resource data 
– Validate weather models 
– Forecasting? 

• Interconnection study validation 
 



Kristen Nicole 
Tom Key 

Chris Trueblood 
 

19 April 2012 

Distributed PV Monitoring 
Highlights for PV Grid Integration Workshop 

Tucson, Arizona 
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Overview of EPRI’s DPQI and DPQII Power 
Quality Monitoring Studies 

 
DPQ Phase I 

 
DPQ Phase II 

Number of Sites 277* 480** 

System Level Monitored 3 8 

Monitor●Days 146,661 541,399 

* 300 sites were selected during site selection 

** 493 sites were selected during site selection 



3 © 2012 Electric Power Research Institute, Inc. All rights reserved. 

EPRI’s DPQI and DPQII Power Quality 
Monitoring Studies  

• Since DPQI Phase I completion in 1995, many utilities have 
implemented system-wide PQ monitoring programs on 
distribution and transmission.  

• Wealth of data provided unique opportunity for Round II, 
DPQ. (2001-2002) 

• DPQI PQ along the feeder (sub, middle, end), DPQII 
(various locations on feeder) 
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Sag and Interruption Annual Rates 
(Magnitude/Duration Histogram) 
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Distributed PV Monitoring 
An EPRI Research Project 

Field monitoring to characterize PV 
system performance & variability 

 
• Utility interactive PV systems 
 Single modules on poles 
 1MW plants 
 200+ sites committed nationwide 
 

• Field measurements for 1+ years 
 AC power meter  
 Plane-of-array pyranometer 
 Module surface temperature 
 …More sensors on select sites 

 
• Data acquisition 
 1-second resolution 
 Time synchronized 
 Automated uploads to EPRI 
 Structured data storage at EPRI 

1MW 

Region 
0.2kW 

Circuit Area 

Alabama Georgia 
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PV systems small and large are monitored 
High definition monitoring captures 1-sec data on any size PV system 

2kW tracker in TX 

1MW ground in TN 

0.2kW pole in AL 

200kW roof in CA 
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Monitoring for Central Inverter PV Systems 
Instrumentation for solar resource, selected dc points, and ac output 

Solar Resource 
• Irradiance: plane-of-array, 

global horizontal 
• Weather: temperature, 

humidity, wind, rain 

PV Array 
• Module: dc voltage, 

current, back temperature 
• Combiner box: dc voltage, 

string currents 

Inverter 
• Input: dc voltage, current 
• Output: ac power, energy 

totals (real & reactive), 
voltage, current 

Data acquisition: up to 1-second recording, automatic 
data transfers, internet time synchronization, remote login 

Instrumentation designed, assembled, configured, and tested by EPRI for field installation 
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High Resolution Field Data & Geospatial Analytics 
Distributed PV Monitoring supports EPRI’s core PV research areas 

Bulk 
System 

Distribution 
System 

Distributed 
PV 

Monitoring 

Renewable 
Generation 

Operations & 
Maintenance 

Utilities & 
System 

Operators 

PV System 
Owners & 

Stakeholders 
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Processed 
Data 

Analysis and Reporting Plan - DPV Data Flow 
Measurement data feeds website, site analysis, and OpenDSS 

Participants Measurement 
Data 

Aggregated Results 
• Ramp rate distributions 
• Variability correlations 
• Performance characterizations 

Member Dashboard 
• Site info and map 
• Time series graphs 
• Near real-time data 

Error handling 
Time aggregation 

Post-processing 

Data extraction 

Measurements 

OpenDSS 

Distribution 
System Simulator 

Other 
Public 

Generic Results 
PV 

Sites 
DOE 

Solar Portal 
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Site Analysis of Distributed PV Systems 
Many sites have 1+ year of field data, ripe for site-level analysis 
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Distributed pole-mount PV sites in Arizona 
Six single-module systems installed, data collection began June 2011 

Substation 

Circuit 
Area 

Site 1 

Map data © 2012 Google 



12 © 2012 Electric Power Research Institute, Inc. All rights reserved. 

Daily Maximum Changes in Power, Irradiance 
 Aggregated from 6 pole-mount PV sites on an Arizona distribution circuit 

• Aggregated Power (from six 190W PV modules) 
– Max 10-sec change about 30% of rated power 
– Max 1-minute change about 55% of rated power 

• Aggregated Irradiance (plane-of-array pyranometers) 
– Max 10-sec change about 35% of full sun (1000 W/m2) 
– Max 1-minute change about 60% of full sun 
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Max changes in power/irradiance are consistent across fall months Sept-Nov 2011 
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Daily Maximum Changes in AC Output Power 
Aggregated from 6 pole-mount PV sites on an Arizona distribution circuit 
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1MW PV System in Tennessee 
Solar resource and AC output recorded at 1-sec resolution 

Imagery ©2011 DigitalGlobe, GeoEye, U.S. Geological Survey, USDA Farm Service Agency, Map data ©2011 Google 

8 Pyranometers 
• 7 on PV system 
• 1 on single-module 
• Plane-of-array 
• 25° fixed tilt, south 

1.0 MWdc 
• 3.5 acre property 
• 4,608 PV modules 
• Four 260kW inverters 
• Installed Aug 2010 
• Data began Oct 2011 

Pyranometer 
Single Module 
& Data Logger 
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Solar Resource Calendar – Single Pyranometer 
December 2011 at 1MW PV site in Tennessee 

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

Thu Fri SatSun Mon Tue Wed
December 2011: Tennessee Plane-of-Array Irradiance

Calendar profiles are 1-minute averages derived from 1-sec data 
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Solar Resource Calendar – 1MWAC Output Power 
December 2011 at 1MW PV site in Tennessee 

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

Thu Fri SatSun Mon Tue Wed
December 2011: Tennessee 1MW PV System Power

Calendar profiles are 1-minute averages derived from 1-sec data 
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Example Ramp Events on Partly Cloudy Day 
Six-minute view of AC power profile of 1MW system at 1-sec resolution 
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1MW PV System Power Production Profile

Local Date & Time (Eastern)

X: 29-Sep-2011 13:11:40
Y: 927.6

X: 29-Sep-2011 13:09:55
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X: 29-Sep-2011 13:10:20
Y: 165.6

–743kW in 25 sec 

(2.9% per sec) 

+770kW in 25 sec 

(3.0% per sec) 
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Local Date & Time (Eastern)

X: 14-Nov-2011 12:56:41
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AC Power and Irradiance on Partly Cloudy Day 
4-minute period shows time-shifted effect of passing clouds over 1MW 

Ramp down 
-536kW in 20 sec 
(-2.6% per sec) 

Orange line shows 
average irradiance 

Gray lines show individual 
pyranometer values 

Blue line shows ac 
power production 
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Added Value with Utility Line Crew Participation 
Hands-on approach yields PV savvy crews 

T&D World 
February 2012 

Georgia Power installs project’s first 
pole-mount systems in Dec 2010 
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