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1. Introduction 
The SANDstorm hash family is designed for maximal cryptographic strength and high 
speed on most common architectures.  Other design features are: 
• Speed improvements strongly correlated with the number of processing elements in 

parallel and/or pipelined architectures. 
• Compression function with a novel structure that avoids known weaknesses in older 

hashes. 
• Prevention of length extension attacks. 
• Large internal state.  This increases the resistance to several kinds of attacks 

involving large messages or multi-collisions. 
• Friendliness to multi-algorithm usage.  SANDstorm uses the SHA family constants so 

that implementations that must support both the SANDstorm family and the SHA 
family need store only one set of algorithm-specific constants. 

• Reuse of the SHA strategy for obtaining 224 bit hashes.   The SANDstorm-224 
function is the same as for SANDstorm-256 except that different initialization 
variables are used. The same strategy is used for SANDstorm-384 and SANDstorm-
512. 

• Compatibility with the NIST standard for HMAC and randomized hashing schemes. 
This will allow “plug and play” with many of the data formatting mechanisms and 
program wrappers currently in use. 

 
The SANDstorm family achieves a great deal of mixing while performing on par with the 
SHA family of algorithms on the 32 bit architectures that we tested. Significant speed 
gains are realized on 64 bit architectures.  For either architecture, a few lines of assembly 
code realize further gains. 
 
Parallel implementations of two separate parts of SANDstorm account for its high speed 
potential.  The compression function is up to 10 times faster on parallel architectures.  
Similarly, the tree-based mode operation can be up to 1000 times faster. 
 
The SANDstorm family is API-compatible with the SHA family.  This makes 
SANDstorm suitable for the applications specified by the following publications:  

• FIPS 186-2, Digital Signature Standard;  
• FIPS 198, The Keyed-Hash Message Authentication Code (HMAC);  
• SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using 

Discrete Logarithm Cryptography; and  
• SP 800-90, Recommendation for Random Number Generation Using 

Deterministic Random Bit Generators (DRBGs).  
 
SANDstorm has a design that foils collision attacks, preimage attacks, and second 
preimage attacks.  We know of no design weaknesses that would render it less secure 
than the theoretic bounds for the output sizes. 
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Design Overview  
SANDstorm has 4 hashes in its family: 
 
• SANDstorm-256 and -224 Hash operates on 512 bit blocks, and the algorithm 

definition is based on operations using 64 bit words. 
• SANDstorm-512 and -384 Hash operates on 1024 bit blocks, and the algorithm is 

based on operations using 128 bit words. 
 
There are four main components in the design 

• Padding 
• Mode 
• Chaining 
• Compression 

Each of these will be explained in subsequent sections. 
 
All the hashes use a mode that is a modified and truncated tree with a finalization step.  
Within the mode, the Merkle-Damgard chaining has a novel structure that is notably 
different from the MD5 and SHA chaining.  The compression function is particularly 
efficient. 

Notation and Conventions 
Because the SANDstorm family has four hashes and two block sizes, we will use a 
shorthand notation in discussion of the algorithms.  For example, “a 512(1024) bit block” 
means “a 512 bit block for SANDstorm-224 and SANDstorm-256 (or a 1024-bit block 
for SANDstorm-384 and SANDstorm-512)”.  A similar interpretation applies to “a 
64(128) bit word”.  Section 4 below discusses other notations that apply to the two hash 
sets. 
 
The following section on notation and conventions was taken almost verbatim from 
various portions of FIPS PUB 180-3 dated October 2008; it can be found at: 
http://csrc.nist.gov/publications/PubsFIPS.html 
 
We have used the same notational conventions as in the FIPS documents. There are a few 
rearrangements and deletions of the FIPS text and also a few additions. 
 
Symbols 
The following symbols are used in the SANDstorm algorithm specifications, and each 
operates on w-bit words: 
 
& Bitwise AND operation 
⊕  Bitwise XOR (“exclusive-OR”) operation 
¬  Bitwise complement operation 
+  Addition modulo 2w 
*  Multiplication modulo 2w 
| Concatenation Operation 

http://csrc.nist.gov/publications/PubsFIPS.html
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<<  Left-shift operation, where x << n is obtained by discarding the left-most n bits of 
the word x and then padding the result with n zeroes on the right. 

>>  Right-shift operation, where x >> n is obtained by discarding the rightmost 
n bits of the word x and then padding the result with n zeroes on the left. 

ROTLn(x)   
The rotate left (circular left shift) operation where x is a w-bit word and n is an 
integer with 0 ≤ n < w, is defined by ROTLn(x) = (x << n) ⊕ (x >> w - n). Thus, 
ROTLn(x) is equivalent to a circular shift (rotation) of x by n positions to the left. 

 
Bit Strings and Integers 
The following terminology related to bit strings and integers will be used. 
1. A hex digit is an element of the set {0, 1,…, 9, a,…, f}. A hex digit is the 
representation of a 4-bit string. For example, the hex digit “7” represents the 4-bit string 
“0111”, and the hex digit “a” represents the 4-bit string “1010”. 
 
2. A word is a w-bit string that may be represented as a sequence of hex digits. To 
convert a word to hex digits, each 4-bit string is converted to its hex digit equivalent, as 
described in (1) above. For example, the 32-bit string 
 
1010 0001 0000 0011 1111 1110 0010 0011 
 
can be expressed as “a103fe23”, and the 64-bit string 
 
1010 0001 0000 0011 1111 1110 0010 0011 
0011 0010 1110 1111 0011 0000 0001 1010 
 
can be expressed as “a103fe2332ef301a”. 
 
3. An integer between 0 and 232-1 inclusive may be represented as a 32-bit word. The 
least significant four bits of the integer are represented by the right-most hex digit of the 
word representation. For example, the integer 291 = 28 + 25 + 21 + 20 = 256+32+2+1 is 
represented by the hex word 00000123. 
 
The same holds true for an integer between 0 and 264-1 inclusive, which may be 
represented as a 64-bit word. Similarly for other sized integers as well. 
 
A SANDstorm implementation usually operates on 64(128) bit words, but occasionally 
the words are broken into half-size pieces.  For example, for a 64 bit word,  if Z is an 
integer, 0 ≤ Z < 264, then Z = 232X + Y, where 0 ≤ X < 232 and 0 ≤ Y < 232. 
 
4. For the SANDstorm family of hash algorithms, the size of the message block depends 
on the algorithm. 
a) For SANDstorm-224 and SANDstorm-256, each message block has 512 bits, which 
are represented as a sequence of eight 64-bit words. Thus, a 512 bit data block D may be 
represented as D = (d0, d1, d2, d3, d4, d5, d6, d7) where the di are 64 bit words. In the 
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description below, 256 bit quantities are passed from one functional block to another and 
are represented as four 64 bit words, e.g. E = (e0, e1, e2, e3). 
b) For SANDstorm-384 and SANDstorm-512, each message block has 1024 bits, which 
are represented as a sequence of eight 128 bit words. Similarly, a 1024 bit data block can 
be represented as D = (d0, d1, d2, d3, d4, d5, d6, d7) where the di are 128 bits in length. 
 

2. The SANDstorm Padding and Message Length 
The message padding for SANDstorm is simple. A message is padded by appending a 1-
bit and then appending 0-bits until the result length is a multiple of the block length.  
 
Let B be the block length and η be the length in bits (before padding) of the message to 
be hashed. If η is a multiple of B, then a block consisting of a 1-bit followed by B-1 0-
bits will be appended to the message.  
 
The message length η must be passed into the mode for use in the finishing step.  
 
All members of the SANDstorm hash family support message lengths of 0 ≤ η < 2128. 

3. The SANDstorm Mode 
Many hash functions, such as SHA, use a mode based on the Merkle-Damgard chaining 
construction.  The chaining is deliberately sequential, and it does not benefit from parallel 
or pipelined implementations. Tree-based block combining is highly parallelizable, but its 
drawback is that the message size determines the depth of the tree and the amount of 
storage.  This variability makes the implementation of tree based hashing challenging. 
Also, latency issues may arise with a full tree-based approach.    
 
The SANDstorm mode is a truncated tree with bounded depth and storage.  It permits 
efficient parallel implementations.  The amount of intermediate storage is at most 10 
blocks.  For very long messages the algorithm could take advantage of up to 1000 
processing elements with near linear speed-up.  
 
Each level of the tree uses the SANDstorm chaining (described below) to build the tree. 
The mode also provides for a finishing step as well as an “early-out” option to speed-up 
small message processing. 
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Figure 1: SANDstorm Mode.  The red arrow always denotes the output of Level 0.  The rectangles with 
solid outlines represent functions. 
 

SANDstorm Mode Description 
In the following discussion, the reader should assume that the input message has been 
padded and parsed into an integral number of 512(1024)-bit blocks. 
 
The SANDstorm mode has five different levels; the number of levels actually used varies 
with the message length.  A level is a function that takes one or more blocks (or 
superblocks, defined below) as input and produces a list of blocks as output.  
 
• Level 0 and Level 4 are completed no matter the length of the input message, and 

each takes a single block as input.   The output from Level 0 is used in Levels 1, 2, 
and 3.   

• Use of Levels 1, 2, and 3 depends on the length of the message.  The following 
conditions define the “early out” mechanism: 

o If the input message has only one block, skip Levels 1, 2, and 3 
o If the output of Level 1 has only block, skip Levels 2 and 3 
o If the output of Level 2 has only one block, skip Level 3 

NB, if an application can guarantee that its messages will always be less than 11 
blocks in length, its implementation of SANDstorm need not include code for Level 2 
or Level 3.  Similarly, Level 3 can be eliminated if all messages are less than 1001 
blocks in length. 

• Level 4 is a finishing step.  
 
 
Superblocks.  Levels 1, 2 and 3 logically operate on block lists of length 10, 100, or 
unlimited, respectively.   We call these “superblocks”.    If the input to a chaining 

Level 0 

Level 1 

1 Block Initialization Step 

10 Blocks  10 Blocks  10 Blocks  10 Blocks  

Level 2 100 Blocks  100 Blocks  

Level 3 Number of blocks/1000   

Level 4 1 Block Finishing Step  

Hash Output  

… … … 

… … … 
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function is a quantity N consisting of n ordered blocks  N1, …, Nn, and if the superblock 
size parameter for that level is k, then we define the superblock Ti as a list 
  
     Ti = { Nk(i-1)+j }  1 ≤ i ≤ n/k, 1 ≤ j < k 
 
For all blocks except possibly the last, the superblock consists of exactly k of the Ni 
blocks.  For the last superblock, if n is not a multiple of k, then j runs from 1 to (n mod k). 
 
Within a level, the chaining function operates on the input blocks (or superblocks).  The 
chaining function computes 4 state variables for each block and carries these values 
forward for the next block.  After the last block is processed, the state variables are used 
to compute the output value for the level. 
 
Chaining Function.   Within the chaining function, there are 4 internal state variables 
that are the intermediate values of the generalized Merkle-Damgard chain. For each block 
position i within a super block and for 1 ≤ j ≤ 4 we have chain(j, i) as the chaining value. 
Below we define initialization constants and the so for 1 ≤ j ≤ 4 we have cj = chain(j, 0). 
Finally if the superblock is k long we have the output of the superblock processing is the 
four chaining values chain(j, k) for each 1 ≤ j ≤ 4. This notation assumes that the 
superblock in question is known. In reality each superblock is a function of level and 
position. To more fully show the superblock input we set, for a given superblock, Ti, we 
set, for 1 ≤ j ≤ 4, chn(j, Ti) to be the output of the superblock. Finally, the output of the 
superblock is processed to be fed into the next level of the tree.  

Chn(Ti, IV) →   (chn (1, Ti) ⊕  chn (3, Ti) | chn (2, Ti) ⊕  chn (4, Ti)) 
 
IV are the initialization constants cj mentioned above. The IV is a function of level and 
the input message block M0. The level initialization values are described in the 
“Initialization Constants” section and Figure 5. The level transition function Chn converts 
4 256(512) bit values into a single data block 512(1024) bits in length. 
 
Levels.    Up to five levels of processing are used, depending on the length of the 
message.  Longer messages use more levels.   Levels 1, 2, and 3 can begin their 
processing as soon as one superblock is available.  
 
Let M = M0, M1,…, Mm be the m+1 blocks of the input message after padding and 
parsing.  Each Mi is 512(1024) bits. 
 
���� If m = 0, then the flow of control uses only two levels.  Level 0 processes M0 and 
passes the output to the finishing step, Level 4.  This bypass of Levels 1, 2, and 3 is the 
most efficient case of “early out”. 
���� If m > 0, then Level 0 and Level 1 together partially compress M, creating an n-block 
quantity N = { Ni=1,n } where the Ni are 512(1024) bits in length.  The superblock size for 
level 1 is 10; the superblocks for Level 1 are derived from M.  If n is not an integer 
multiple of 10, then Nn is produced by SANDstorm chaining the last (n modulo 10) 
blocks of M.  
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Each Ni is the result of applying SANDstorm chaining (“Chn”) to superblock Ti . 
The output of Chn is a block formed by the concatenation of two bitstrings: 
 

Ni = (chn (1, Ti) ⊕  chn (3, Ti) | chn (2, Ti) ⊕  chn (4, Ti)) 
 

 
���� If n = 1, then N1 is fed directly into the finishing step of Level 4.  
 
����  If n>1, then the blocklist N is partially compressed in Level 2 to produce P = { Pi=1,p } 
where again the Pi are 512(1024) bits in length.  The superblock size parameter for level 
2 is 100.  Thus, 100 blocks of N are used to produce one superblock of P. If n is not an 
integer multiple of 100, then Pp is produced by SANDstorm chaining the last  
(n modulo 100) blocks of N. Here the superblocks are composed of the elements of N. 

 
Pi  =  (chn (1, Ti) ⊕  chn (3, Ti) | chn (2, Ti) ⊕  chn (4, Ti)) 

 
���� If p = 1, then P1 is fed into the finishing step of Level 4. Otherwise, the message P is 
fed into Level 3.   This level does not use superblock grouping.  It uses the chaining 
function on each ordinary input block in turn.   The output of the level is the single block 
formed by the operation of Chn as above. That output is the input to the Level 4 finishing 
step. 
 
Message Digest.  For SANDstorm hash-224, the final message digest is the XOR of all 
four 256 bit string outputs of Level 4, with the leftmost 224 bits retained. 
 
For SANDstorm hash-256, the final message digest is the XOR of all four 256 bit string 
outputs of Level 4. 
 
For SANDstorm hash-384, the final message digest is the XOR of all four 512 bit string 
outputs of Level 4, with the leftmost 384 bits retained. 
 
For SANDstorm hash-512 the final message digest is the XOR of all four 512 bit string 
outputs of the Level 4. 

SANDstorm Mode Performance 
Levels 1 and 2 can benefit from parallel processing architectures.  The levels have 
Merkle-Damgard chaining within the superblocks of size 10 and 100, respectively, but 
the superblocks themselves can be processed independently. For large messages, this 
allows a speed up to a factor of 1000 through mode parallelization.  Level 3 is processed 
sequentially. 
 
There is a good deal of flexibility in the construction, and larger messages can take 
advantage of even more parallel computation.  For example, if a message is larger than 
12 blocks, there is an opportunity to process two Level 1 superblocks of size 10, 
independently, which would approximately halve the computation time.   For messages 
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greater than 1002 blocks in length, implementers can take advantage of the parallelization 
in Level 2, with consequent speed-ups approaching a factor of 1000. 
 
On the other extreme, if one does not have the resources to exploit the parallelizability of 
the SANDstorm mode, then one pays a penalty of having to process the second and third 
levels of the tree. That then implies a slowdown of a factor of (1+1/10+1/(1000)) over 
straight sequential processing of the message blocks. That is less than an 11% slowdown 
for long messages.   
 
Because of the “early out” mechanism for short messages, the processing cost of the 
levels of the tree, including the impact of the finishing step, is mitigated for shorter 
messages. A message of length 0 ≤ η < 512(1024) bits will pad out to exactly one block.  
After Level 0 processing, the output will pass directly to Level 4.  Only two 
compressions are needed to process a message of that size. A raw input message that is 
between 1≤ k ≤ 11 blocks long would require k+1 compressions including the finishing 
step.  
 
The second level of the tree is not invoked unless the raw input message is at least 11 
blocks in length, requiring 14 compressions. Similarly, Level 3 is not invoked until the 
raw input message is at least 1002 blocks long. 
 
There is some latency associated with the last block to be processed. When the final 
message block is received, that block must be processed as it propagates through the 
levels of the tree. The latency depends on the length of the input message and ranges 
from two to four compression operations. For messages less than twelve blocks in length 
the final message block must be run through two compression functions. For messages of 
length greater than 1001 blocks, four levels must be traversed.  
 
The SANDstorm mode can benefit from precomputation.  A prerequisite for 
precomputation is a constant initial raw message block M0. The superblocks, especially in 
Level 1, may be computed independently of the other superblocks. This means that in 
cases where large messages need to be hashed many times with only small changes 
between hashings, then much of the hashing work associated with the unchanged portion 
of the message may be computed and stored. Only the change-affected superblocks in 
Level 1 and Level 2 need to be recomputed. Of course this may require additional 
storage. If the places of change are known and fixed in particular superblocks on Level 1, 
then most of the rest of the message may be processed down to Level 3. This would 
require the storage of a new message of size roughly m/1000 blocks in length and would 
see a speed up of nearly a 1000 over simple serial processing. Further, the Level 3 
computation could process up to the changed position, reducing the amount of needed 
storage and computation. 

Choice of Superblock Size 
The design uses architectural choices that are the result of trade-offs between 
performance and resources.  We want adopters of the hash to see performance benefits 
commensurate with the resources they can afford.  Our choices reflect a reasonable 
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compromise between speed on commodity hardware, speed on specialized parallel 
hardware, and usability on low-end embedded processors.  The design choices are 
reflected in: 
 
• Number of levels in the tree.  Each level uses intermediate storage; too many levels 

will be a burden on machines with limited storage.   The latency is directly related to 
the number of levels.  

• The superblock sizes for Levels 1 and 2.  The product of the superblock sizes 
determines the maximum advantage obtained with parallel processing.  The 
individual superblock sizes determine the minimum processing delay for a message.   

 

4. The SANDstorm Chaining 
In the usual iterative Merkle-Damgard construction, the chaining variable is a function of 
the previous chaining value and the i-th message block, i.e., hi = H(hi-1,Mi). Almost all 
implementations use XOR for combining the two inputs to H, such as setting hi = H(hi-1 
⊕ Mi).  This construction is antithetical to parallelization and/or pipelining and is why we 
chose a more general iterative form. 
 
Another of our design goals was to have a larger amount of internal state than is in the 
SHA family in order to add resistance to various types of attacks that exploit the size of 
the internal state, such as, long messages, multi-collisions, and herding, etc,. However 
there is a direct correlation between performance and the amount of state that is operated 
on during the course of the compression function.  
 
Our construction uses an iteration on 5 variables: 
 
  hi= { H(ai-1, bi-1, ci-1, di-1, Ni), hA(Ni), hB(Ni), hC(Ni), hD(Ni) } 
  where ai-1 = hA(Ni-1), bi = hB(Ni-1), ci-1 = hC(Ni-1), di-1 = hD(Ni-1) 
 
The functions H, hA, hB, hC, hD, are the same for each level.  The number of iterations of 
H is the number of rounds.  There are always five rounds. 
 
This iterative form allows us to parallelize within the chaining of the superblocks and to 
carry forward more internal state while retaining efficiency. 

SANDstorm Compression Description 
Suppose that M = M0,M1,…,Mm is the message to be hashed. Then M is operated on in 
the SANDstorm truncated tree mode in levels to produce successively more compressed 
data. The data will be operated on in superblocks of a given size as explained in the 
section describing the SANDstorm mode. Here we describe the data flows at the 
superblock level and show how to pass data from one level of the tree to the next. 
 
Level 0  
The input to Level 0 is the first 512(1024) bits of the padded and parsed message. 
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The compression function H has 5 rounds Ri, i=0,1,2,3,4. Each of those rounds takes 
input from a bank of pre-defined constants Ar,i (defined in the compression function 
definitions below),and from the message schedule. The input constants C0, C1, C2, C3, 
and C4 for each hash in the SANDstorm family are defined below.  
 
The output of Level 0 is the four 256(512)-bit strings S1, S2, S3, and S4. These four values 
are subsequently used as inputs for each superblock compression on levels 1, 2, and 3.   
 
If the input message is one block long, S1, S2, S3, and S4, are combined into an input 
block for Level 4: 

Level 4 Input = (S1 ⊕ S3 | S2 ⊕ S4) 

R0

R1

R2

R3

R4

C1

C2

C0

C3

C4

S4

S3

S2

S1

MS(4, M0)

MS(3, M0)

MS(2, M0)

MS(1, M0)

MS(0,M0)

R0

R1

R2

R3

R4

C1

C2

C0

C3

C4

S4

S3

S2

S1

MS(4, M0)MS(4, M0)

MS(3, M0)MS(3, M0)

MS(2, M0)MS(2, M0)

MS(1, M0)MS(1, M0)

MS(0,M0)MS(0,M0)

 
 
Figure 2: Level 0 
 
In figure 2, 
• Ri=0,1,2,3,4 are the round functions. 
• MS(r, M0) is the message schedule with a 256(512) bit output, which is a function of 

the round number and data block M0. 
R and MS will be explained in detail in the compression function section. 
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The input into R0 is C0 ⊕ MS(0,M0) 
For 0<i≤4 the input to Ri is  Ri-1 ⊕ Ci ⊕ MS(i,M0) 
 
For 1 ≤ i ≤ 3 the output Si = Ri ⊕ Ci+1 
The output S4 = R4 
 
Note that in the description of Level 0 we have used M0 as an input for the message 
schedule. Level 0 always operates only on the first message block M0. No other level 
does this. For the other levels, we use D in place of M because the blocks may be derived 
from computations on input message blocks. 

 
Levels 1, 2, and 3 
Levels 1, 2, and 3 chain multiple blocks of data together.  These blocks are the sub-
blocks of a superblock.  Given a sequence of j 512(1024) bit data blocks D1,D2, …,Dj we 
process these j blocks sequentially. Each data block is processed as in Level 0 except that 
the four 256(512)-bit output strings act as the input values ci for the next block. For 
instance, the output of round three in the compression function for block i will be part of 
the input for round three in block i+1. 
 
The following graphic illustrates the state transition from one block to another. 
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Figure 3: Two Block Superblock 
 
The illustration uses a superblock of size 2.  Each arrow represents 256(512) bits.  When 
an arrow joins another, the combiner operation is XOR.   
 
To extend this method to larger superblocks, one continues the construction for Ri+1 on 
block Dj by computing the XOR of 
• the output state Ri on block Dj 
• the chaining value from Ri+1 from the previous block Dj-1  

(forward the result to the combiner for the previous round Ri for the next block Dj+1 ) 
• the message schedule words MS(i+1, Dj) for round i+1. 
 
In other words, for 1≤ i ≤ 4 and 1 ≤ k ≤ j the input into round i at block position k is:  
R(i-1,k) ⊕ chain(i,k-1) ⊕ M(i,Dk) 
 
We also have for 1 ≤ i ≤ 3 and 1 ≤ k ≤ j   chain(i,k) = R(i-1,k) ⊕ chain(i+1,k-1) 
For 1 ≤ k ≤ j   chain(4,k) = R(4,k). 
 
This arrangement has two interesting facets.  (1) It’s pipeline friendly.  (2) The output of 
round 4 affects the input of round 4 for the next block, and the input of round 3 for the 
following blocks, and the input of rounds 2 and 1 of later blocks. 
 
Note that superblocks of many sizes are possible. In Level 1, the size is bounded by 10. 
In Level 2 the size is bounded by 100, and in Level 3 by roughly m/1000.   
 
Levels 1 and 2 have initialization values c0, c1, c2, c3, and c4.  Each of these values is a 
function of the Level 0 input constant Ci, the Level 0 output string Si , and the superblock 
number i.  Level 3 is similar, but the initialization does not depend on the superblock 
number.  The formulas for the ci are given below.  
 
At the end of the superblock compression the four 256(512)-bit output values of rounds 1 
through 4 (s1, s2, s3, and s4)  are combined to produce the 512(1024) bit input value for 
the next level of the tree:  (s1⊕ s3  | s2⊕ s4) 
 
Level 4 
The finishing step, Level 4, is similar to Level 0.  It operates on a single block of data of 
length 512(1024) bits. 
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Figure 4: Level 4 
 
The input values are defined below, and they are functions of the prepadded message bit 
length, η. The input message for Level 4 is the single block output D = (s5,s6) from one of 
the previous 4 levels, depending on the message length as explained in the SANDstorm 
mode section.  The final message digest of the message M is the XOR of the outputs from 
rounds 1 through 4: 
 

SANDstormHash(M) = out1 ⊕ out2 ⊕ out3 ⊕ out4 

Initialization Constants 
For each level of the SANDstorm mode, the values c0, c1, …, c4 are a function of C0, C1, 
…, C4 and S1, S2, S3, and S4. For Level 1 and Level 2 the constants are also a function of 
the block position. Since there is only one superblock on Level 3, that level does not 
include a superblock number. 
 
In the following, we assume the input is a padded and parsed message 
 M = M0,M1,…,Mm.  
 
For SANDstorm-256 and -224, Level 1 processes 10 blocks at a time. For superblock i, 
represent the index as i as a 128 bit number, and αi= (i,i) is 256 bits in length. For Level 
1, let k be the smallest integer greater than m/10, then the counter has values 1 ≤  i  ≤ k.  

R0 

R1 

R2 

R3 

R4 

c1 

c2 

c0 

c3 

c4 

out4 

out3 

out2 

out1 

MS(4,D) 

MS(3,D) 

MS(2,D) 

MS(1,D) 

MS(0,D) 
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SANDstorm-512 and -384 also have a message length bounded by 2128. The 128 bit 
counter i is viewed as a 256 bit integer so that αi = (i,i) is 512 bits in length. 
 
Level 2 processes the outputs of Level 1 in superblocks of size 100. Each data block in 
Level 2 is the result of SANDstorm chaining of 10 input messages blocks. So each 
superblock in Level 2 is a function of message blocks M(i-1)*1000 +1, M(i-1)*1000 +2,…, and 
M i*1000. Set βi = (i, i). For Level 2, let k be the smallest integer greater than m/1000, then 
the counter is in the range 1 ≤  i  ≤ k.  
 
As above, for SANDstorm-512 and -384 we have that βi = (i,i) is 512 bits in length. 
 
For SANDstorm-256 and -224 let c and d be defined as the first 64 bits of the fractional 
part of the fifth root of 5 and 7 respectively. Represented in hexadecimal notation: 
c = 6135f68d4c0cbb6f 
d = 79cc45195cf5b7a4 
Let β = (0, 0, 0, c)  and  δ = (0, 0, 0, d) be two 256 bit strings. 
 
For SANDstorm-512 and -384 let c and d be defined as the first 128 bits of the fractional 
part of the fifth root of 5 and 7 respectively.  Represented in hexadecimal notation: 
c = 6135f68d4c0cbb6fb43b47a245778989 
d = 79cc45195cf5b7a4aec4e7496801dbb9 
Let β = (0, 0, 0, c) and  δ = (0, 0, 0, d) be two 512 bit strings. 
 
The message length, before padding, η, in bits, is included in Level 4. Let ε = (¬η,η), 
which is viewed as a 256(512) bit string.  

 
 Level 0 Level 1 Level 2 Level 3 Level 4 

c0 C0 C0 ⊕ S4  
⊕ αi 

C0 ⊕ S4 ⊕ β  
⊕ βi 

C0 ⊕ S4 ⊕ δ C0 ⊕ δ 
⊕ ε  

c1 C1 C1 ⊕ S1  
⊕ αi 

C1 ⊕ S1⊕ β   
⊕ βi 

C1 ⊕ S1 ⊕ δ C1 ⊕ δ 
⊕ ε 

c2 C2 C2 ⊕ S2  
⊕ αi 

C2 ⊕ S2 ⊕ β   
⊕ βi 

C2 ⊕ S2 ⊕ δ C2 ⊕ δ 
⊕ ε 

c3 C3 C3 ⊕ S3  
⊕ αi 

C3 ⊕ S3 ⊕ β 
⊕ βi 

C3 ⊕ S3 ⊕ δ C3 ⊕ δ 
⊕ ε 

c4 C4 C4 ⊕ S4  
⊕ αi 

C4 ⊕ S4 ⊕ β 
⊕ βi 

C4 ⊕ S4 ⊕ δ C4 ⊕ δ 
⊕ ε   

 
Figure 5: Initialization Values 
 
C0, C1, …, C4 each are 256(512) bit words comprised of the SHA initialization constants. 
We denote those constants as H0, H1, H2, H3, H4, H5, H6, H7. 
 
C0 = ( H0, H1, H2, H3, H4, H5, H6, H7) 
C1 = ( H1, H2, H3, H4, H5, H6, H7, H0) 
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C2 = ( H2, H3, H4, H5, H6, H7, H0, H1)  
C3 = ( H3, H4, H5, H6, H7, H0, H1, H2) 
C4 = ( H4, H5, H6, H7, H0, H1, H2, H3) 
 
The following are the initial values for SHA-224, which are given in hexadecimal. These 
are used to create the Ci for SANDstorm-224.  These are the low 32 bits of the constants 
for SHA-384 (see below). 
 
H0  =  c1059ed8 
H1  =  367cd507 
H2  =  3070dd17 
H3  =  f70e5939 
H4  =  ffc00b31 
H5  =  68581511 
H6  =  64f98fa7 
H7  =  befa4fa4 
 
The following are the initial values for SHA256, which are given in hexadecimal, and 
which are obtained by taking the first 32 bits of the fractional part of the square root of 
the first eight prime numbers. These are used to create the Ci for SANDstorm-256. 
 
H0   =   6a09e667 
H1 = bb67ae85 
H2 = 3c6ef372 
H3 = a54ff53a 
H4 = 510e527f 
H5 = 9b05688c 
H6 = 1f83d9ab 
H7 = 5be0cd19 
 
The following are the initial values for SHA-384, which are given in hexadecimal. These 
words were obtained by taking the first sixty-four bits of the fractional parts of the square 
roots of the ninth through sixteenth prime numbers. These are used to create the Ci for 
SANDstorm-384. 
 

H0  =  cbbb9d5dc1059ed8 
H1  =  629a292a367cd507 
H2  =  9159015a3070dd17 
H3  =  152fecd8f70e5939 
H4  =  67332667ffc00b31 
H5  =  8eb44a8768581511 
H6  =  db0c2e0d64f98fa7 
H7  =  47b5481dbefa4fa4 
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The following are the initial values for SHA-512, which are given in hexadecimal. These 
words were obtained by taking the first sixty-four bits of the fractional parts of the square 
roots of the first eight prime numbers. These are used to create the Ci for SANDstorm-
512 
 

H0  =  6a09e667f3bcc908 
H1  =  bb67ae8584caa73b 
H2  =  3c6ef372fe94f82b 
H3  =  a54ff53a5f1d36f1 
H4  =  510e527fade682d1 
H5  =  9b05688c2b3e6c1f 
H6  =  1f83d9abfb41bd6b 
H7  =  5be0cd19137e2179 
 

Parameters and Performance 
In the SANDstorm chaining, if each message or data block is processed sequentially, as 
may happen in software, then the throughput associated with SANDstorm chaining in the 
superblocks is comparable to a standard Merkle-Damgard hash. However, if one has 
sufficient resources available, and can take advantage of the connections between rounds, 
pipelining can speed-up the computation. For example, each round might be a separate 
stage of the pipeline.  That pipeline will emit a result as often as the slowest round 
completes.  
 
For the SANDstorm compression function, about 60% of the work is done in the message 
schedule, which can be parallelized and pipelined, so if the resources are available, a 
factor of 7 increase in speed over sequential processing is possible.  This does not include 
any gains one might see by including additional resources to speed up the round function 
itself. 
 

5. The SANDstorm Compression Function 
The SANDstorm compression function H has two main components: the round function 
and the message schedule.  
 
• The SANDstorm round function R is a one-to-one function of 256(512) bits 

organized as four 64(128) bit words. R has two different sections, one more algebraic 
and the other more logical in nature.  

 
• The SANDstorm message schedule operates on eight 64(128) bit words in a one-to-

one fashion. 

SANDstorm-256 and -224 Compression Function Description 
 
General Functions  
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Let Z=X*232+Y be a 64 bit word, where Y and Z are 32 bits each. 
Define functions:  
• ROTLn(Z) is a left rotation of Z by n positions  
• F(Z) = X2+Y2 modulo 264 
• G(Z) = X2+Y2+ROTL32((X+a)(Y+b)) modulo 264 

The additions X+a and Y+b are taken modulo 232 before the product (X+a)(Y+b) 
is computed. The product is viewed as a 64 bit quantity and so the rotation is a 
swap of the high and low order halves. The constants a and b are defined below. 

• Ch(A,B,C) = (A&B)⊕(¬A&C) 
• SB(Z) = Z except that low order byte, z, of Z is replaced with the AES sbox(z)  
 
The constants a and b are defined as the first 32 bits of the fractional part of the fifth root 
of 2 and 3 respectively, with the high and low bits forced to one.  Represented in 
hexadecimal notation, they are: 
a = a611186b  
b = bee8390d  
 
 
BitMix Function 
The BitMix function operates at the bit level on four 64 bit state words to produce four 64 
bit state words. There are four 64 bit constants that select separate bit positions of a 64 bit 
word. Given in hexadecimal, these are: 
J8 = 8888888888888888 
J4 = 4444444444444444 
J2 = 2222222222222222 
J1 = 1111111111111111 
 
If A, B, C, D are all 64 bits in length, then (A’, B’, C’, D’) = BitMix(A, B, C, D), where 
A’ = (J8 & A) ⊕ (J4 & B) ⊕ (J2 & C) ⊕ (J1 & D) 
B’ = (J8 & B) ⊕ (J4 & C) ⊕ (J2 & D) ⊕ (J1 & A) 
C’ = (J8 & C) ⊕ (J4 & D) ⊕ (J2 & A) ⊕ (J1 & B) 
D’ = (J8 & D) ⊕ (J4 & A) ⊕ (J2 & B) ⊕ (J1 & C) 
 
The BitMix function can be viewed as a permutation of the bits in each column of the 64-
by-4 (128-by-4) bit matrix formed by A, B, C, D. 
 
Round Function 
The round function R consists of two parts. The first is a mixing of the four state words 
with, primarily an integer multiplication. The second is a bit mixing that helps destroy the 
algebraic properties associated with the multiplication.  
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Figure 6: Round Function 
 
Round Function 
The SANDstorm-224 and -256 round function is a one-to-one function operating on four 
64 bit words and producing four 64 bit words. 
 
For SANDstorm-224 and SANDstorm-256, for each round do the following: 
For i from 1 to 3  

Set Wi = ROTL25(SB ([Wi + F(Wi-1) + Ch(Wi-1,Wi-2,Wi-3) + A(r,i)] modulo 264)) 
Set (W0, W1, W2, W3) = BitMix(W0, W1, W2, W3) 
 
The A(r,i) are round constants defined below, where r is the round number and i is the 
word position number. In the For loop, the subscripts are taken modulo 4, and the 
computations of Wi are assumed to be iterative, so that as each value is updated the new 
value is used to update subsequent values. As mentioned earlier, the BitMix function can 
operate on the words in parallel.  
 
The effect of the tunable security parameter is to repeat Round 4 a specified number of 
extra times.  The default is to execute Round 4 exactly once with no extra repetitions.  
The repetitions re-execute the round function formula above with the round variable fixed 
at r=4, followed by the BitMix.  The parameter should be an even number between 0 and 
20.  The default value is 0. 
 
Message Schedule 
The message schedule receives a 512 bit block of data viewed as eight 64 bit words. 
Given input data block D = (d0, d1, …, d7) the eight words are expanded to a total of 33 
64 bit words. 
 
For i from 8 to 32 

Set di = ROTL27 (SB([di-8 + G(di-1)+Ch(di-1,di-2,di-3) + di-4 + Bi ] modulo 264)) 
 
In the SANDstorm chaining description we used the notation MS(r,D) to denote the 
contribution from the message schedule for round r as operated on data block D.  
MS(0,D) = 

BitMix(ROTL19 (d0) ⊕ d4, ROTL19 (d1) ⊕ d5, ROTL19 (d2) ⊕ d6, ROTL19 (d3) ⊕ d7) 
MS(1,D) = (d14,  d15,  d16, d17) 

Round Function 

W0 W1 W2 W3 

W0 W1 W2 W3 
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MS(2,D) = (d19, d20,  d21,  d22) 
MS(3,D) = (d24, d25,  d26,  d27) 
MS(4,D) = (d29, d30,  d31,  d32) 
  
Constants 
SHA-224 and SHA-256 use the same sequence of sixty-four constant 32-bit words. These 
words represent the first thirty-two bits of the fractional parts of the cube roots of the first 
sixty-four prime numbers. SANDstorm uses the first 50 of the SHA constants, K0, K1, …, 
K49. In hexadecimal, these 50 constant words are (from left to right) 
 
428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 923f82a4 ab1c5ed5 
d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deb1fe 9bdc06a7 c19bf174 
e49b69c1 efbe4786 0fc19dc6 240ca1cc 2de92c6f 4a7484aa 5cb0a9dc 76f988da 
983e5152 a831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967 
27b70a85 2e1b2138 4d2c6dfc 53380d13 650a7354 766a0abb 81c2c92e 92722c85 
a2bfe8a1 a81a664b c24b8b70 c76c51a3 d192e819 d6990624 f40e3585 106aa070 
19a4c116 1e376c08 
 

The constants Bi in the message schedule are 64 bits in length and are formed by 
concatenating the SHA-256 constants, that is: 
For i from 8 to 32 

Set j = i-8  
Set Bi = K2j*2

32
 + K2*j+1 

 
There are 20 constants A(r,i). They are equal to the Bi but are in reverse order, that is: 
For 0 ≤ r ≤ 4 and 0 ≤ i ≤ 3  

Set A(r,i) = B32-(4*r+i) 
 

SANDstorm-512 and -384 Compression Function Description 
The SANDstorm-512 and -384 round function is a one-to-one function operating on four 
128 bit words and producing four 128 bit words. 
 
General Functions  
Let Z = X*264+Y be a 128 bit word, where Y and Z are 64 bits each. 
Define functions:  
• ROTLn(Z) is a left rotation of Z by n positions  
• F(Z) = X2+Y2 modulo 2128 
• G(Z) = [X2+Y2+ROTL64((X+a)(Y+b))] modulo 2128 

o The additions Y+a and Z+b are taken modulo 264 before the product 
(X+a)(Y+b) is computed. The product is viewed as a 128 bit quantity and so 
the rotation is a swap of the high and low order halves. The constants a and b 
are defined below. 

• Ch(A,B,C) = (A&B)⊕(¬A&C) 
• SB(Z) = Z except that low order byte, z, of Z is replaced with the AES sbox(z)  
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The constants a and b are defined as the first 64 bits of the fractional part of the fifth root 
of 2 and 3 respectively, with the high and low bits forced to one. Represented in 
hexadecimal they are: 
 
a = a611186bae67496b 
b = bee8390d43955aed 
 

BitMix Function 
The bit mix function operates at the bit level on four 128 bit state words to produce four 
128 bit state words. There are four 128 bit constants that select separate bit positions of a 
128 bit word. Given in hexadecimal, these are: 
J8 = 88888888888888888888888888888888 
J4 = 44444444444444444444444444444444 
J2 = 22222222222222222222222222222222 
J1 = 11111111111111111111111111111111 
 
If A, B, C, D are all 128 bits in length, then (A’, B’, C’, D’)=BitMix(A, B, C, D), where 
A’ = (J8 & A) ⊕ (J4 & B) ⊕ (J2 & C) ⊕ (J1 & D) 
B’ = (J8 & B) ⊕ (J4 & C) ⊕ (J2 & D) ⊕ (J1 & A) 
C’ = (J8 & C) ⊕ (J4 & D) ⊕ (J2 & A) ⊕ (J1 & B) 
D’ = (J8 & D) ⊕ (J4 & A) ⊕ (J2 & B) ⊕ (J1 & C) 
 
 

Round Function 
For each round do the following: 
For i from 0 to 3  

Set Wi = ROTL57(SB ([Wi + F(Wi-1) + Ch(Wi-1,Wi-2,Wi-3) + A(r,i)] modulo 2128)) 
Set (W0, W1, W2, W3) = BitMix(W0, W1, W2, W3) 
 
The A(r,i) are round constants defined below, where r is the round number and i is the 
word position number. In the For loop the subscripts are taken modulo 4 and the 
computations of Wi are assumed to be iterative, so that as each value is updated the new 
value is used to update subsequent values. As mentioned earlier, the BitMix function 
operates on the words in parallel.  
 
The effect of the tunable security parameter is to repeat Round 4 a specified number of 
extra times.  The default is to execute Round 4 exactly once with no extra repetitions.  
The repetitions re-execute the round function formula above with the round variable fixed 
at r=4, followed by the BitMix. 
 
Message Schedule 
The message schedule receives a 1024 bit block of data viewed as eight 128 bit words. 
Given input data block D = (d0, d1, …, d7) the eight words are expanded to a total of 33 
128 bit words. 
 
For i from 8 to 32 



Page 23 of 39 

Set di = ROTL59 (SB([di-8 + G(di-1)+Ch(di-1,di-2,di-3) + di-4 +Bi ] modulo 2128)) 
 
In the SANDstorm chaining description we used the notation MS(r,D) to denote the 
contribution from the message schedule for round r as operated on data block D.  
MS(0,D) = 

BitMix(ROTL37 (d0) ⊕ d4, ROTL37 (d1) ⊕ d5, ROTL37 (d2) ⊕ d6, ROTL37 (d3) ⊕ d7) 
MS(1,D) = (d14,  d15,  d16, d17) 
MS(2,D) = (d19, d20,  d21,  d22) 
MS(3,D) = (d24, d25,  d27,  d27) 
MS(4,D) = (d29, d30,  d31,  d32) 
 
 
Constants 
SHA-384 and SHA-512 use the same sequence of eighty constant 64-bit words. These 
words represent the first sixty-four bits of the fractional parts of the cube roots of the first 
eighty prime numbers. SANDstorm-512 and -384 will use 50 of those constants, K0, K1, 
…, K49. In hexadecimal, these constant words are (from left to right) 
 
428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc 
3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118 
d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2 
72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694 
e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65 
2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5 
983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4 
c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70 
27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df 
650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b 
a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30 
d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8 
19a4c116b8d2d0c8 1e376c085141ab53 
 

The constants Bi in the message schedule are 128 bits in length and are formed by 
concatenating 50 of the the SHA-512 constants, that is: 
 
For i from 8 to 32 

Set j = i-8  
Set Bi = K2j*2

64
 + K2*j+1 

 
There are 20 constants A(r,i). They are equal to the Bi but are in reverse order, that is: 
For 0 ≤ r ≤ 4 and 0 ≤ i ≤ 4  

Set A(r,i) = B32-(4*r+i) 
 

SANDstorm Compression Function Performance  
SANDstorm relies on multiplication as a primary mixing agent. On most modern 
computers this operation is efficient. Since multiplication inherently does a very good job 
of mixing, we don’t need a great number of rounds to accomplish our design goals. Thus 
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we have a small number of rounds that heavily mix the data. The smaller number of 
rounds and relative speed of the individual operations allows for an efficient design. 
 
As mentioned above, the message schedule performs much of the mixing, and it does not 
depend on the state variables. That means a large fraction of the work in the compression 
function may be accomplished in parallel and/or pipelined processing elements.  
 
By having one round output feed forward as input in the same round of the next block, 
the latency associated with the typical Merkle-Damgard construction is reduced to 
something more manageable. One must account for the latency of a single round.  
 
There are implementations where one could expand the SHA initialization constants to 
create the SANDstorm initialization constants each time a new superblock is created. 
This would take a tiny fraction of the time required to compress one block of data. 
However, the more reasonable approach in most software applications is to expand the 
initialization values and fix them as part of the source code. In this case, there is no time 
required before Level 0 processing on the first block can commence. 
 
NIST has asked that submissions demonstrate that the algorithm uses all table values.  
The construction of SANDstorm ensures that every block will exercise every value in 
every table, with the exception of the sbox. 
 
The sbox table is used 45 times during one block compression (including computation of 
the message schedule).  A hash of 50 blocks will do 2250 sbox look-ups, averaging 8.8 
touches per table entry.  The expected number of untouched entries is about 256*e-8.8 = 
0.03.  It is probable that every table entry is touched at least once.   

6. Cutdown and Extension Alternatives 
NIST has asked submitters to provide appropriate cutdown functions for analysis and to 
provide a method to extend the algorithm to have more strength if deemed necessary. 
 
The simplest cutdown method would be to chop off some number of rounds starting with 
round 4. Round 0 is different than the rest and does not make for a good chopping point. 
The smallest reasonable place to cut to is right after Round 1. By chopping to Round 1 
there would still be a chaining value from previous blocks.  
 
Of course, if the algorithm is cut down to Round 1, the output size is only 256 bits. This 
small amount of chaining state necessarily would lose the resistance to multicollisions, 
herding, etc. 
 
Chopping other rounds, provided the appropriate chain forward values are kept, would 
keep in the spirit of the algorithm. We also assume that if rounds are cut out of one 
portion of the algorithm (Level in the mode) that all other compressions, no matter what 
level in the mode, will be cut in a similar fashion.  
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We don’t feel that there is a security risk in changing the predefined superblock sizes. 
However, we do not recommend using variable block sizes 
 
We don’t believe it is necessary to increase the strength of the algorithm, but since NIST 
requested it, we provide a couple of possibilities.  
 
Option 1:  
We may post process the chaining values as they are produced. The amount of state being 
carried from one block position to the next is significant, so additional processing of one 
or more of the chaining values may give the desired enhancement. In particular, the 
information as output from Round 4 is at least the size of the final message digest. 
Therefore processing that information further may be a simple and straightforward way to 
implement and provide whatever security enhancement is needed.  
 
For instance, Round 4 may be repeated a specified number of times. That is, we take the 
output of Round 4 and run it through the round function again. This does not include 
additional stepping of the message schedule, it just requires repetition of the For loop and 
the BitMix. Since all outputs are combined and eventually fed into Level 4, the finishing 
step provides additional strength.  We have implemented this option as a #define in the 
reference implementation.  The parameter should be an even number between 0 and 20; 
the default value is 0. 
 
Option 2:  
Increase the number of rounds. Extend the message schedule, computing five steps per 
round and using four.  The round functions can be added on, with the chaining values 
linking the last four rounds in the pattern above. There are a number of unused SHA 
constants. The Bi and the A(r,i) can be defined appropriately. 
 
This option makes most sense if changes are completed before widespread 
implementation. The issue is that the connections between rounds would have to be 
changed and the constants reworked to line up with the right rounds. This option may not 
be attractive if implemented after the fact.  
 

7. Design Choices 
In this section we discuss and elaborate on several design features of the SANDstorm 
family.  
 
• The method of padding for the SANDstorm family differs from that of the SHA 

family by not appending the length. The SANDstorm family uses a 128 bit length 
counter.  Appending the length counter would often add an extra block to the 
message.  Our mode includes superblock numbers in each superblock, and the 
finishing step includes the bit length. The finishing step prevents length extension 
attacks, and so SANDstorm’s padding is suitable and only rarely requires an extra 
block. 
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• The SANDstorm constants were chosen to be those either used by SHA-256 or 
derived in the same fashion.  This saves memory space in situations where both SHA 
and SANDstorm might be simultaneously implemented.  We also favor the SHA 
constants because and they are public and the generation method is well-known. 

• The constants a and b in the message schedule have high and low bits set to 1. This 
ensures a broader set of values as output of the multiplication. 

• Squaring and multiplication operations are the workhorses for effecting the bit mixing 
in the F and G functions. We use a function that was inspired by 1’s complement 
squaring but turns out to be better for mixing.  The function  
Z2 mod 264-1 has the property that each bit of output is a function of each bit of input, 
and thus this is a fairly good mixing agent. The downside to it is that low Hamming 
weight words stay low Hamming weight. In particular, a one bit change in a low 
weight input has limited effect on the output. The cross term in the function G(Z)= 
X2+Y2+ROTL32((X+a)(Y+b)) is designed to force a small change in low weight 
inputs to be noticeable. The ROTL32 is just an efficient approximation of what 
happens to the cross terms of the square mod 264-1. 

• The function F(Z) = X2+Y2 in the round function is an efficient version of G(Z). It 
doesn’t mix as well, but we wanted to make sure there was sufficient difference 
between the message schedule operations and the round function operations. 

• There is an application of the AES sbox in the low order byte of certain words during 
the round function and the message schedule. The AES sbox is highly non-linear and 
provides excellent mixing for the bits that it acts on. The choice to apply the sbox on 
the low order byte was for efficiency’s sake. Our sbox has at position x the value 
x ⊕ sboxAES(x)  
so that we can, with a single xor, replace x with sbox(x).  Indexing by any other byte 
position would require more operations.  
Further, the application of the sbox is not our primary mixing operation; it is there to 
defeat differentials in the low order byte position. To propagate small changes an 
attack would have to repeatedly avoid the low order byte.  
There are 45 applications of the sbox. Each is accompanied by a rotation; there are 
two different rotation constants. 

• The BitMix function was chosen as a method to break up any algebraic dependencies 
that might appear in the round function and cause further separation between the 
words in the message schedule.  

• The BitMix function depends on each state word within the round.  After the BitMix, 
each data nibble contains information from each word of the round state.  Mixing 
operations in the next round will destroy any correlations that may have existed in the 
inputs to BitMix. 

• The mode was designed specifically so that parallelization of superblock operations 
would be possible.   

• The structure of the chaining values between rounds has two benefits:  careful 
management admits some parallelization and pipelining within the round function; 
long message attacks are mitigated. 
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8. Security Discussions 
We believe that the SANDstorm family satisfies all of the usual security requirements for 
a cryptographic hash.  That is, for a w = 224, 256, 384, 512 bit message digest sizes the 
work required for function inversion (preimage) is on the order of 2w compressions. 
Similarly, the work to find collisions is on the order of 2w/2. In addition, the SANDstorm 
mode and chaining structures increase the work required for long message attacks to 
equal that of inversions. Removal of long message attacks adds significant resistance to 
second preimage attacks. Further, SANDstorm carries 4w bits of state from block to 
block. This means other attacks that randomly exploit the internal state and chaining 
values will be foiled. Thus, multicollision and herding type attacks will be infeasible. 
 

General Observations 
Collisions in the Chaining Values with changes in the message 
It is a straightforward exercise to show that if, for any i = 1 to 3, we have that  
MS(i,D) = MS(i,D’) and MS(i+1,D) = MS(i+1,D’), then D = D’. The function in the 
message schedule was designed to fill the gap in the values pulled out of the schedule. 
 
This means that if the message input (excluding the contribution to round zero) taken in 
adjacent pairs is the same, i.e. a collision on the message contribution, then the input 
messages have to be the same. This means that if D ≠ D’ there must be a difference in at 
least two non-adjacent contributions from the message schedule. 
 
From this we can show that, given a two strings of data blocks that are identical up to one 
point, the chaining values cannot collide at the point of difference. In a given superblock, 
suppose D and D’ are at block position j and suppose that the two data strings are equal 
up to that position. The chaining values coming into position j must be the same.  
 
Now suppose that the chaining values moving into position j+1 are equal. Starting with 
the last couple of rounds we have, by assumption, that chain(4,j) = chain’(4,j) and that 
chain(3,j) = chain’(3,j). For the first equality to hold, the inputs to Round 4 must be the 
same. The inputs are a sum of the chaining variables and the message schedule. For 
Round 4 we have that chain(3,j) ⊕ MS(4, D) = chain’(3,j) ⊕ MS(4,D’), and so MS(4,D) 
= MS(4,D’). Similarly by equating chain(2,j) and chain’(2,j) we determine MS(3,D) = 
MS(3,D’). From above, this means that D = D’. This means that a change in one data 
block will be guaranteed to propagate at least into the next block position.  
 
If the changed block happens to be at the end of a superblock, although the chaining 
values will be different, we would like to know that the resulting data feeding into the 
next level will be different.  We do not have a proof of this. 
 
 
Message Schedule Security 
Given an input data block D = d0, …, d7 the message schedule is a powerful mixing 
operation. From d8 through d32, each word is progressively less correlated with the 
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message input words.  The last word with measurable correlation is d12.  Our analysis of 
the correlation follows. 
 
Each bit of word d12 depends on each bit of d0, …, d7 except d3. The word d3 enters d11 as 
a simple sum of the other words, the low byte mapped with the sbox, and rotated. Deltas 
in d3 are passed directly into G(Z) in the computation of d12.  Empirically, there are a 
couple of weak bits, namely those d3 bits that rotate into bit positions 60-63.  We ran a 
series of tests comparing one bit deltas in each of the 512 input bits of the d0, …, d7. Bit 
position 36 of d3 yields noticeable non-uniform statistics in many bit positions of d12. To 
a much lesser degree, so do positions 35, 34, and 33 of d3.  
 
The rotation value of 27 was chosen so that d3 deltas in the low order byte are first 
operated on by the sbox and then rotated into bit positions 28-31. Other rotation amounts 
where the delta is not operated on by the sbox, but rotates into positions 28-31, will also 
give non-uniform results for d12. The rotation value of 27 was chosen to make sure that 
the sbox output sits in the top of the low order half of d12.  
 
Even though there a couple of weak bit positions in d3 as viewed from d12, the rest of the 
bit positions of  d0, …, d7 have a fairly uniform affect on d12 and there are no weak bits 
when viewed from d13. As a rough gauge of the mixing ability of the messages schedule, 
we have that each bit of di+13, di+14, di+15, is a strong function of each bit of di, …, di+7. 
The message schedule steps 25 times and so there are effectively three passes through 
input data. Each pass results in an excellent mixing of the previous eight words. Single 
bit differentials of random data do not propagate more than a few steps. Once the delta is 
operated on by G(X) an avalanche effect occurs.  
 
The SANDstorm message schedule skips the first six values and then outputs four. Each 
bit of MS(1,D) = (d14,  d15,  d16, d17)  is a strong function of each bit of D. Similarly, each 
bit of MS(2,D) = (d19, d20,  d21,  d22) is a strong function of each bit of (d6, …, d13) 
MS(3,D) = (d24, d25,  d27,  d27) is a strong function of each bit of (d11, …, d18) 
MS(4,D) = (d29, d30,  d31,  d32) is a strong function of each bit of (d16, …, d23) 
 
 
Round Function 
The round function is not quite as complex as the message schedule and so does not mix 
quite as well. However, the multiplications are still very effective. There are fewer 
mixing steps in the round functions than in the message schedule. However, the BitMix 
function removes the algebraic structures that may arise in the first part of the round 
function. Let (W0, W1, W2, W3) be the inputs to the round function, let (W’0, W’1, W’2, 
W’3) be what is produced by the For loop in the round function, and let (W”0, W”1, W”2, 
W”3) = BitMix(W’ 0, W’1, W’2, W’3).  AlthoughW’0 is not a strong function of all of the 
Wi , the strength increases with For loop iterations, and at the end, each bit of W’3 is a 
strong function of each bit of the input words, Wi. After the BitMix operation, each byte 
of each of the W”i has two bits from each of the W’i , and so we may say that each byte of 
W” i  is a strong function of each input bit of the Wi. The output of the For loop in the next 
round turns each bit of its output into a strong function of each input bit of the previous 
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round.  This means that the output of Round 4 has seen more than two full mixes of 
Round 0 inputs and two mixes of Round 1 inputs. Each of the chaining values is a full 
mix of the data two rounds previous.   
 

Specific Observations 
Second Preimage attacks 
One method of generating second preimages with very long messages in a typical 
Merkle-Damgard construction is to create a second message that varies from the original 
toward the beginning of the message but keeps the rest of the message the same.  Past the 
changed blocks, the message is the same, so if there is ever a collision in the chaining 
values, the collision will persist and the two messages will collide to create a second 
preimage. 
 
For a really long message, Level 3 acts like a typical Merkle-Damgard construction so it 
will be susceptible to the ills of that construction. That is, long message attacks, 
multicollisions and herding are all possible. However these methods of attack require one 
to get collisions in the chaining values. SANDstorm’s chaining values carry forward at 
least four times as much state as is in the final hashing value. These state bits are not 
completely independent, but we will show evidence that our constructions are strong 
enough to completely foil certain attacks. 
 
When applying the second preimage attack described above to SANDstorm, we suppose 
that for some very large t two data strings D = D1, …, Dt and D’ = D’1, …, D’t that the 
strings differ at the beginning of the message and agree after position K.  Assume that 
holds for K < j-2. Since the message schedule inputs are the same at position j-1 and j, we 
have that if we assume that chain(3,j-1) = chain’(3,j-1), then this implies that we 
necessarily have that chain(4, j-1) = chain’(4, j-1). If we assume further that chain(1, j) = 
chain’(1, j), it is an easy exercise to show that this forces chain(2, j) = chain’(2,j), 
chain(3, j) = chain’(3, j), and chain(4, j) = chain’(4, j) to also hold. So we have shown 
that if we assume that the two conditions  
 

chain(3,j-1) = chain’(3,j-1) AND  chain(1, j) = chain’(1, j) 
 

simultaneously hold, then the chaining values collide in the j-th position and the 
messages D and D’ collide.  
 
Now suppose that  chain(3,j-1) = chain’(3,j-1) but chain(1, j) ≠ chain’(1, j).  Then 
chain(4,j-1) = chain’(4,j-1) and chain(2, j) ≠ chain’(2, j).  Together these imply  
chain(3, j) ≠ chain’(3, j).  
 
Similarly, suppose that chain(1, j) = chain’(1, j) but chain(3,j-1) ≠ chain’(3,j-1).  Then 
chain(2, j) ≠ chain’(2, j). Both chain(1, j) and chain’(1, j) become inputs for position j+1. 
Since they are equal and the other inputs are equal too, then the outputs of Round 1 in 
position j+1 must be equal. However, chain(2, j) ≠ chain’(2, j), and both combine with 
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the outputs of Round 1 to create chain(1, j+1) and chain’(1, j+1) which forces them to be 
unequal, thus breaking the linking of the Round 1 chaining variables. 
 
These two cases show that if one pair of chaining values are equal but the other pair are 
unequal,  then the pair equality is guaranteed to be destroyed. That in turn means that if 
chain(3,j-1) = chain’(3,j-1) and chain(1, j) = chain’(1, j), which is enough to force a 
collision in the chaining values, those two conditions had to be met simultaneously. So 
with digest size w, the resistance is on the order of 2w-k bits for a message of size 2k bits. 
When k=w the success rate is on par with finding a single preimage, which requires work 
on the order of 2w operations.  
 
Collisions  
The previous section indicates that there is little advantage in using long messages to 
create collisions. This means that an attack might as well be based on short messages, or 
on somehow exploiting the level structure.  
 
The size of data being passed from one level to the next is 2w bits, in other words, twice 
that of the final message digest size. Any randomly generated attack to generate 
collisions in the superblock output will require work on the order of 2w operations. 
 
Multicollisions may be constructed by choosing messages that differ by a block but 
collide, then extending the message with two new blocks to collide starting with the 
collided chaining variable. In SANDstorm one may attempt this, but one must either 
force the chaining variables to collide or else force a collision in the level data. Both take 
work on the order of 2w. This effectively removes the possibility of success. Herding type 
attacks are similar and have the same work bounds.  
 
Our expectation is that collisions stemming from manipulation of the mode and chaining 
constructs will require on the order of 2w operations. This clearly requires more work 
than just finishing the hash and finding collisions in the message digest directly. 
 
 
Length Extension Attacks 
The final message digest is related to the chaining values in a complicated way. The 
finishing step, the padding and the length field in the finishing step of Level 4 effectively 
remove the possibility of doing length extensions. 

9. Application USE, HMAC, etc. 
In all ways, the SANDstorm family is designed to be a drop-in replacement for the SHA 
family, and for each digest size the SANDstorm family will be have strength equal to or 
greater than the corresponding member of the SHA family, no matter what the 
application, including any existing application of HMAC, Pseudo Random Functions, 
and Randomized Hashing.  



Page 31 of 39 

10. Computational Efficiency 
Our computational efficiency estimates are based on the reference platform indicated in 
the NIST documentation. Our tests were run on  
 
• NIST Reference Platform: Wintel personal computer, with an Intel Core 2 Duo 

Processor, 2.4GHz clock speed, 2GB RAM, running Windows Vista Ultimate 32-bit 
(x86) and 64-bit (x64) Edition.  

 
• Compiler (Note that the selection of this compiler is for use by NIST in Rounds 1 and 2, 

and does not constitute a direct or implied endorsement by NIST.): the ANSI C compiler 
in the Microsoft Visual Studio 2005 Professional Edition.  

 
Due to the method of construction, the timings for SANDstorm-224 and SANDstorm-256 
are virtually identical, similarly for SANDstorm-512 and -384. 
 
An optimized version of SHA-1 and SHA-256 were used as reference points of 
comparison. The NIST api seemed to get in the way and cause our timing routines to give 
odd results. The timings below bypass the more external functions and focus on the time 
to complete a single compression function. These do not count the finishing step, which 
may be amortized away with long messages.  
 
According to the call for proposals not much if any priority in Round 1 of the competition 
will be given to assembly coded implementations. However, we experience difficulty 
with the reference compiler during a multiplication of two 32 bit numbers where the 64 
bit output was retained. It had a tendency to convert the 32 bit numbers to 64 bit numbers 
and then do the multiplication. This irritating operation slowed down our implementation 
to a noticeable degree. To overcome it, we inserted a tiny amount of assembly code in a 
secondary implementation. Our assembly code focused only making sure that 32 X 32 bit 
multiply did not magically turn into a 64 X 64 bit multiply.  
 

 32-bit Machine 64-bit Machine 
 Optimized Assembly Optimized 

SANDstorm -224, -256 4600 4000 2340 
SHA-1 1200  930 
SHA-256 2600  2500 
    
SANDstorm-384, -512 38000  12200 

 
Figure 7: Timings in clock cycles of a single compression operation.  
 
Again, since assembly versions of the algorithm were not to be a priority in the Round 1 
of the competition, we did not include an assembly version for SANDstorm-512, nor did 
we port the small amount of assembly code to the 64 bit machine. In any event, we feel 
further optimizations are available with or without assembly. 
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Operation Counts 
SANDstorm-256 
During the operation of SANDstorm, there are several different logical operations that we 
will group into a single cost category. These are not always entirely the same, but close 
enough for this discussion. Logical operations include: Not, XOR, AND, Shift Left, Shift 
Right. 
 
There are two arithmetic operations: addition and multiplication. The additions are either 
modulo 264 or 232. On some architectures there may be a significant difference so, since 
the majority of the additions are 64 bits, these will be specified as adds, or +. The 32 bit 
additions will be called, 32 bit adds. The multiplications * are 32 x 32 to 64 bit 
computations. 
 
Similarly the BitMix function as written takes 28 logical operations, but it can be 
completed in 16 by doing the following four steps in turn 
T = (A⊕C)&6666666666666666; A = A⊕T; C = C⊕T;  
T = (B⊕D)&3333333333333333; B = B⊕T; D = D⊕T;  
T = (A⊕B)&5555555555555555; A = A⊕T; B = B⊕T;  
T = (C⊕D)&5555555555555555; C = C⊕T; D = D⊕T; 
where the numeric constants are represented in hexadecimal notation. 
 
• ROTLn(Z) requires a left and right shift and an XOR for three logical operations 
• F(Z) = X2+Y2 modulo 264 requires one + and two *.  
• G(Z) = X2+Y2+ROTL32((X+a)(Y+b)) modulo 264 

o X+a and Y+b are 32 bit additions. Additionally there is one rotate (3 Logical), 
three multiplications, and two 64 bit additions. 

• Ch(A,B,C) = (A&B)⊕(¬A&C) takes four Logical operations as written, but  it can be 
written as Ch(A,B,C) = C ⊕ (A&(B ⊕ C)) which is 3 logical operations 

 
• SB(Z) = Z  is an AES sbox look-up and replace. Our implementation requires two 

Logical operations and one look-up.  
 
The round function operates on four words in turn and then performs the BitMix 
operation. Recall each step in the round function (with the non-essentials for counting 
stripped out) is: 

ROTL (SB (Wi + F(Wi-1) + Ch(Wi-1,Wi-2,Wi-3) + A(r,i))) 
 
The message schedule repeats the following computation 25 times: 

ROTL (SB(di-8 + G(di-1)+Ch(di-1,di-2,di-3) + di-4 +Bi )) 
 
The message schedule and the chaining variables are XORed into the state variable, 
additionally there are a few extra operations required for the Round 0 input.  
 
The following table lists the operations for a single compression step. 
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 Logical 64 bit + * Look-up 32 bit + 
Round Function           
ROTL 12          
SB 8      4    
Additions   12        
F(Z)   4  8      
Choose 12          
BitMIX 16          
Total in one Round 48  16  8  4    
Total in five Rounds  240  80  40  20   
           
Message schedule           
ROTL 3          
SB 2      1    
Additions   4        
G(Z) 3  2  3    2  
Choose 3          
Total in one Step 11  6  3  1  2  
Total in 25 Steps  275  150  75  25  50 
           
State variables           
Round 0 36          
Rounds 1-4 32          
Total   68         
           
Total for one compression   583  230  115  45  50 

 
Figure 8: Operation Counts for a Single Compression Step 
 
On a 32 bit machine, if the logical operators and the 64 bit additions take twice as long as 
a 32 bit addition and if each multiplication takes 3 times as long as the 32 bit additions, 
and a table look up counts the same, then we have 2066 32-bit instructions. 
 
On a 64 bit machine, if the 32 bit additions and look up take as long as a 64 bit addition 
and the multiplication takes 3 times as long, then we have 1284 instructions.  
 
The operations in Figure are for a single compression and do not account for the mode.  
The SANDstorm mode includes up to five levels including a finishing step, which always 
occurs. Each time a superblock is begun, an additional 20 or so XORs for initialization 
must occur. Depending on the size of the superblock these may be in the computational 
noise.  
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The effect the mode has on the total operation counts depends on the length of the 
messages. For very long messages the finishing step may be amortized and the overall 
effect of the mode is an 11% increase in counts.  
 
For one block messages the finishing step will double the number of operations. For two 
block messages the overhead is 50% reducing rapidly (but not consistently) with message 
length down to the 11%. 
 
 

Cost Estimate of the SANDstorm Hash for an 8-bit Processor 
 
We selected the Z80 architecture for our estimate.  The Z80 is a well-known architecture 
(see http://en.wikipedia.org/wiki/zilog_Z80), is about 30 years old, and is available in a 
variety of implementations and simulations, including as an FPGA.  The speed, the 
number of clock cycles, and the relative timing for the instructions are all platform 
dependent.  Our performance cost estimate is simply a count of the number of 
instructions executed in a reasonable implementation of SANDstorm on the Z80.  The 
simplicity of the instruction set makes the instruction count a fairly platform-independent 
performance measure. 
 
Our estimate of the number of instructions required to compute the SANDstorm hash on 
a Z80 microprocessor is based on the following obervations:  For a 224 or 256 bit output, 
each use of the compression algorithm takes about 50,000 instructions when processing a 
block of 512 bits.  For a minimal message of up to 511 bits, two calls to compress are 
made, so a minimum hash will take 100,000 instructions for a 224 or 256 bit output. 
 
For a 384 or 512 bit output, each use of the compression algorithm takes about 160,000 
instructions, processing a block of 1024 bits. A minimal message of up to 1023 bits will 
take 320,000 instructions for a 384 or 512 bit output. 
 
For a long message, there are 1.1 compress calls per block.  The cost of a 224 or 256 bit 
output hash is about 110 instructions per input bit.  The cost of a 384 or 512 bit output 
hash is about 350 instructions per input bit. 
 
The details of our estimate are: 
 
Moving a 64 bit quantity:   11 instructions.  (3 setup, 8 data moves) 
Adding two 64 bit quantities:  26 instructions. (2 setup, 8 sequences of load, add/adc, 

store) 
XOR of two 64 bit quantities:  same as Add. 
Rotating a 64 bit quantity, one bit position:  10 instructions. 
Multiplying two 32 bit quantities, producing a 64 bit product:  270 instructions 

 (average).(Note, this is based on the comb algorithm: The multiplicand is added 
into the product register with any of four byte offsets, controlled by bits in four 
bytes of the multiplier.  The product register is then shifted left one bit, and the 
conditional additions are again performed, controlled by another four bits of the 
multiplier.  Eight cycles of this process develops the complete product.) 
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In SANDstorm-224/256: 
The F function (within the round function):  600 instructions.  (Two multiplications, one 

64 bit addition.) 
The G function (within the message schedule):  950 instructions.  (Three multiplications, 

two 32 bit additions, two 64 bit additions.) 
The Ch function: 40 instructions.  (CH(A,B,C) = C⊕ (A&(B⊕C).  

Load,Xor,And,Xor,Store,  8 times.) 
One 64 bit word of the Message Schedule: 1200 instructions.   
Bitmix on four 64 bit words:  500 instructions. 
The message schedule:  30,500 instructions.  (Twenty five result words, one Bitmix.) 
One 64 bit word within a round of the compression function:  750 instructions. 

(Three 64 bit additions, one call each to F and Ch, one sbox lookup, one 1-place 
rotation of a 64 bit quantity.) 

One round of the compression function: 3800 instructions.  (Four mixing operations, one 
Bitmix, two or three xors of 256 bit words.) 

Compressing one 512 bit block:  50,000 instructions.  (Message schedule, five rounds of 
compression.) 

 
For Sandstorm-384/512: 
The computation pattern of SANDstorm-384/512 is the same as SANDstorm-224/256, 
but the operands are twice as long: 128 bit arithmetic replaces 64 bit arithmetic.  For most 
operations, this simply doubles the number of Z80 instructions required.  However, the 
multiplication operation is different:  The cost of 64x64 bit multiplication is about 3.5 
times the cost of 32x32 bit multiplication when using the Karatsuba algorithm.   
In SANDstorm-224/256, 75% of the work is in the multiplications.  To estimate the cost 
for SANDstorm-384/512, we split the work of SANDstorm-224/256 into multiplication 
and non-multiplication parts, (37,500 + 12,500), and scaled by 3.5 or 2 respectively.  The 
total is about 160000 instructions, to run the compression algorithm for a 1024 bit input 
block. 
 
For 8 bit processors, most of the work goes into multiplications.  A processor with a 
hardware multiplication, such as the old M6809, will be much faster.  For the Z80, good 
results might be obtained with algorithms such as Quarter-Squares or Difference of 
Triangles, which use modest size tables to speed up multiplication. 
 

11. Memory Usage 
There are several ways to implement the SANDstorm family; some require more memory 
than another. This discussion focuses on a reasonable software implementation. 
SANDstorm-256 uses 50 of the 64 32-bit constants used by the SHA family, during the 
compression operation. SANDstorm also uses the same eight initialization constants as 
the SHA, these constants are expanded into five 256 bit initialization constants per level. 
Eight additional fixed constants are used. Two of the additional constants are 32 bits each 
and 6 are 64 bits. A reasonable software implementation of SANDstorm would 
precompute and store these constants. This is a total of 50*32 +5*5*256+448 = 8448 
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bits. A more conservative approach needs only the additional 448 constant bits that are 
separate from what is needed for an implementation of SHA-256. Of those 448 bits, 4*64 
bits are the selector bits in the BitMix function. These have a very simple bit pattern that 
may be recreated when needed to reduce the fixed storage. 
 
Both the round function and the message schedule use the AES sbox. There are 256 one 
byte entries. From a storage standpoint, an implementation of the SANDstorm algorithm 
has a high probability of being combined with AES encryption, so the sbox should be 
available for use, thus, possibly, reducing the total memory usage. Total 2048 bits. 
 
The message schedule computes 25 64 bit values after the 512 bit message is input. These 
25 values can be unrolled and stored or computed as needed. If completely unrolled and 
combined with the input message, there are 33*64 = 2112 bits. On the other hand, the 
message schedule may be thought of as a block of eight 64 bit words and processed in an 
as-needed fashion. In this case there are only 512 bits to store. 
 
In the compression function, there are five rounds, each with a chaining variable that is 
256 bits in length. (One of the chaining variables is actually a constant for a given 
superblock). Each of the five levels in the tree requires five chaining values that must be 
manipulated during the course of the algorithm. That is 5*5*256 = 6400 bits. However, 
Level 0 must be completed before Levels 1, 2, and 3 can begin. The values from Level 0 
are used as part of the initialization of the chaining values for those levels. Similarly, 
Level 4 is not invoked until all other levels are complete. At any given time at most three 
of levels require storage of the chaining values. That is 5*3*256 = 3840 bits.  
 
Data is also passed to from one level of the tree to the next. This requires at most  2 512 
bit values in addition to the message blocks being processed in Levels 0 and 1. The data 
for Level 4 does not get created until Level 3 is completed. So, a total of 1024 bits must 
be passed from level to level. 
 
The round function actively operates on four 64 bit state words at time, thus requiring 
256 bits. 
 
 

 Constant Volatile Active  
Constants 8448    
AES sbox 2048    
Message Schedule  512   
Chaining Variables  3840-6400   
Level Data  1024   
State Words   256  
Totals 10496 5376-7936 256 16128-18688 

 
Figure 9: Memory Usage in bits 
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Depending on the implementation, the total amount of RAM for function variables is 
about 2 KB. 
 
Note that short messages need less memory. For one block messages, when Level 0 
completes, the output can go directly to Level 4. At any given time only one set of five 
chaining values needs to be retained: 4352+512+5*256+256 = 4352+2048 = 6400 bits. 
 
Similarly, shorter messages will not use Level 2 or 3 and so will use fewer resources than 
longer messages. One would expect memory requirements to be around 4352 bits for 
fixed constants and between 2048 and 8192 additional bits required for processing, 
depending on message size and implementation.  
 
SANDstorm-224 storage requirements are the same as SHA-256. The constants are the 
same except for an additional eight 32 bit initialization values. SANDstorm-512 and -384 
require approximately twice the storage as SHA-256 and -224. 
 
Our reference implementation including .c and .h files including the handling api is on 
the order of 60 KB. A Linux executable is on the same order of magnitude in size. No 
effort was spent trying to minimize these numbers.
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