The SANDstorm Hash

Mark Torgerson and Richard Schroeppel
Tim Draelos, Nathan Dautenhahn, Sean Malone, Andralker,
Michael Collins, Hilarie Orman*

Cryptography and Information Systems Surety Department
Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-0785

*Purple Streak, Inc.

500 S. Maple Dr.
Woodland Hills, UT 84653

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Page 1 of 39

Table of Contents

IO 1 {0 Lo L8 Td 1o] o PP PP TP 3
DESIGN OVEIVIEW ...evttiiiiiieiee e e e ettt ettt e s e s e e e e e e e e e e e e et eeeettebaasa s s e e e e e eeaeaeeeaeeeeessnnnnes 4
NOtatioN aNA CONVENTIONS.uuuiiiiiiiiiiiiiit it e e e e e r e e e e e e e e e e e aeaesassaaananane 4

2. The SANDstorm Padding and Message Length.............uuuuiiiiiiiniiieeen 6

3. The SANDSIOIM MOGEuuiiiiiiiiiiiiiiiie e e e e e e e e e e e e e e e e e s s aanees 6
SANDSIOrM MOAE DESCHPLION.ttt e e e e e e e 7
SANDStOrm Mode PerfOrManCe.........coooiiiiiiiiiiiiiit ettt 9
Choice Of SUPEIDIOCK SIZE......uueeiiie e 10

4. The SANDSIOrM ChaiNiNg.........uuuuiiiiiieiee e eeee e e e e e e e e e e e e e e e eeeeeeran s 11
SANDstorm Compression DESCHPLION..........uuuuurieiiiiee e e 11
INIGIANIZAtION CONSTANTSevieiiiiiiiiiiiee et 15
Parameters and PerfOrManCe.........ooooo oo e e e e 18

5. The SANDstorm Compression FUNCLONcooviiuiiiiiiiiiins e e 18
SANDstorm-256 and -224 Compression Function Descriptioneevvvveveiiinnnennn. 18
SANDstorm-512 and -384 Compression Function Description...............eevvvvvvviineennnn. 21
SANDstorm Compression Function Performance...........ccccoovvvvviiiiiiiiiiiiiinee e, 23

6. Cutdown and EXteNsion ARLEINALIVES.euuuuuiiiiiiiiie e 24

A LS [| T 4 T o = PSS 25

8. SECUILY DISCUSSIONS ...cevteittiniiiaee e e e e e e e e e e e eeeeeeeettta s s e e e e e e e eaaeeaeeeeeessassaan e e e eeaaeeaaaeeeeees 27
GENEral ODSEIVALIONSuuuiiiiiiiiiiiiiiiie e e et e e e e e e e e e e e e e e e e aa s s e e annnnes 27
SPECIIC ODSEIVALIONS ...ttt e e e e e e e e e e e e eeeeeseannee 29

9. Application USE, HMAC, EIC.vuuuiiiiiiiiiiie e ettt s s e e e e e e e e e e e eeaeseanna s 30

10. Computational EffICIENCYuuuueiiiiiieee s 31

AV T=T 0 g Lo Y U EST= T [P PPPPRPPIN 35

APPENAIX A TESE VECTOIS. ...ttt e e e e e e e e e e et ee e et a e e e e e e e e eaaeeeees 38

List of Figures

Figure 1: SANDstorm Mode. The red arrow always denotes the output of Level 0. The

rectangles with solid outlines represent fUNCLIONS.ccoeviiiiiieiiiiiiiccee e, 7
FIQUIE 2: LEVEI .t e e e e e e e e e e e e e e e e e e b b e as 12
Figure 3: TWOo BIOCK SUPEIDIOCKuiiiiiiii e 14

FIQUIE 4. LEVEI 4 ... e e e e e e e e e e e e e e a e b as 15
Figure 5: INitialization VAIUESccoiiiiiii i e e e e e e e e e aaes 16

Figure 6: ROUN FUNCLIONooiiiiiiiiiiee e 20
Figure 7: RelatiVe TiMINGSuuueiiiiie ettt s eeaaaes 31
Figure 8: Operation Counts for a Single Compression Step.........coovvvvvveiiiiiiiiiiiinnieee e 33
Figure 9: Memory USage iN DILSeeuuiieiiiiiiee e e e e e e e e e e e e e 36

Page 2 of 39

1. Introduction

The SANDstorm hash family is designed for maximal cryptographic strengthgimd hi

speed on most common architectures. Other design features are:

» Speed improvements strongly correlated with the number of processing elément
parallel and/or pipelined architectures.

» Compression function with a novel structure that avoids known weaknesses in older
hashes.

* Prevention of length extension attacks.

» Large internal state. This increases the resistance to several katticks
involving large messages or multi-collisions.

* Friendliness to multi-algorithm usage. SANDstorm uses the SHA familyastdaso
that implementations that must support both the SANDstorm family and the SHA
family need store only one set of algorithm-specific constants.

* Reuse of the SHA strategy for obtaining 224 bit hashes. The SANDstorm-224
function is the same as for SANDstorm-256 except that different initiakiza
variables are used. The same strategy is used for SANDstorm-384 and SAMNDst
512.

* Compatibility with the NIST standard for HMAC and randomized hashing schemes
This will allow “plug and play” with many of the data formatting mechasismd
program wrappers currently in use.

The SANDstorm family achieves a great deal of mixing while performmpgar with the
SHA family of algorithms on the 32 bit architectures that we tested. Seymifspeed
gains are realized on 64 bit architectures. For either architecture Jiadswf assembly
code realize further gains.

Parallel implementations of two separate parts of SANDstorm account fioglitspeed
potential. The compression function is up to 10 times faster on parallel archgecture
Similarly, the tree-based mode operation can be up to 1000 times faster.

The SANDstorm family is APIl-compatible with the SHA family. This makes
SANDstorm suitable for the applications specified by the following pubicst
* FIPS 186-2, Digital Signature Standard;
* FIPS 198, The Keyed-Hash Message Authentication Code (HMAC);
* SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography; and
* SP 800-90, Recommendation for Random Number Generation Using
Deterministic Random Bit Generators (DRBGS).

SANDstorm has a design that foils collision attacks, preimage attacks,camdi se

preimage attacks. We know of no design weaknesses that would render it less secure
than the theoretic bounds for the output sizes.

Page 3 of 39

Design Overview
SANDstorm has 4 hashes in its family:

» SANDstorm-256 and -224 Hash operates on 512 bit blocks, and the algorithm
definition is based on operations using 64 bit words.

* SANDstorm-512 and -384 Hash operates on 1024 bit blocks, and the algorithm is
based on operations using 128 bit words.

There are four main components in the design

» Padding
* Mode
* Chaining

e Compression
Each of these will be explained in subsequent sections.

All the hashes use a mode that is a modified and truncated tree with a fioalg&ap.
Within the mode, the Merkle-Damgard chaining has a novel structure that is notably
different from the MD5 and SHA chaining. The compression function is particularly
efficient.

Notation and Conventions

Because the SANDstorm family has four hashes and two block sizes, we will use a
shorthand notation in discussion of the algorithms. For example, “a 512(1024) bit block”
means “a 512 bit block for SANDstorm-224 and SANDstorm-256 (or a 1024-bit block
for SANDstorm-384 and SANDstorm-512)". A similar interpretation applies to “a
64(128) bit word”. Section 4 below discusses other notations that apply to the two hash
sets.

The following section on notation and conventions was taken almost verbatim from
various portions of FIPS PUB 180-3 dated October 2008; it can be found at:
http://csrc.nist.gov/publications/PubsFIPS.htmi

We have used the same notational conventions as in the FIPS documents. There are a few
rearrangements and deletions of the FIPS text and also a few additions.

Symbols

The following symbols are used in the SANDstorm algorithm specifications, ahd ea
operates on w-bit words:

Bitwise AND operation

Bitwise XOR (“exclusive-OR”) operation
Bitwise complement operation

Addition modulo 2

Multiplication modulo 2

Concatenation Operation

4+ 1 O

Page 4 of 39

http://csrc.nist.gov/publications/PubsFIPS.html

<< Left-shift operation, where x << n is obtained by discarding the left-mbi$s of
the word x and then padding the result with n zeroes on the right.
>> Right-shift operation, where x >> n is obtained by discarding the rightmos
n bits of the word x and then padding the result with n zeroes on the left.
ROTL"(x)
The rotate left (circular left shift) operation where x is a w-bit word andm is a
integer with 0< n < w, is defined by ROTIx) = (x << n) (x >>w - n). Thus,
ROTL"(x) is equivalent to a circular shift (rotation) of x by n positions to the left.

Bit Strings and Integers

The following terminology related to bit strings and integers will be used.

1. A hex digit is an element of the set {0, 1,..., 9, a,..., f}. A hex digit is the
representation of a 4-bit string. For example, the hex digit “7” represenskit string
“0111”, and the hex digit “a” represents the 4-bit string “1010".

2. A word is a w-bit string that may be represented as a sequence of hex digits. T
convert a word to hex digits, each 4-bit string is converted to its hex digit equiaaent,
described in (1) above. For example, the 32-bit string

1010 0001 0000 0011 1111 1110 0010 0011
can be expressed as “al03fe23”, and the 64-bit string

1010 0001 0000 0011 1111 1110 0010 0011
0011 0010 11101111 0011 0000 0001 1010

can be expressed as “al03fe2332ef301a”.

3. An integer between 0 an&’2L inclusive may be represented as a 32-bit word. The
least significant four bits of the integer are represented by themigéithex digit of the
word representation. For example, the integer 2912 + 2' + = 256+32+2+1 is
represented by the hex word 00000123.

The same holds true for an integer between 0 &hdl clusive, which may be
represented as a 64-bit word. Similarly for other sized integers as well.

A SANDstorm implementation usually operates on 64(128) bit words, but occasionally
the words are broken into half-size pieces. For example, for a 64 bit word, if Z is an
integer, < Z < 2% then Z = 3X + Y, where 0< X < 2*?and 0< Y < 2*2

4. For the SANDstorm family of hash algorithms, the size of the messadedejpends

on the algorithm.

a) For SANDstorm-224 and SANDstorm-256, each message block has 512 bits, which
are represented as a sequence of eight 64-bit words. Thus, a 512 bit data block D may be
represented as D =q(d;, tp, O3, ds, G5, s, d7) Where the dare 64 bit words. In the

Page 5 of 39

description below, 256 bit quantities are passed from one functional block to another and
are represented as four 64 bit words, e.g. b,e(ee, &).

b) For SANDstorm-384 and SANDstorm-512, each message block has 1024 bits, which
are represented as a sequence of eight 128 bit words. Similarly, a 1024 bit datarblock c
be represented as D (dh, b, ds, s, &5, &5, d7) where the gare 128 bits in length.

2. The SANDstorm Padding and Message Length

The message padding for SANDstorm is simple. A message is padded by agpehdi
bit and then appending 0-bits until the result length is a multiple of the block length.

Let B be the block length anglbe the length in bits (before padding) of the message to
be hashed. Ifi is a multiple of B, then a block consisting of a 1-bit followed by B-1 0-
bits will be appended to the message.

The message lengthmust be passed into the mode for use in the finishing step.
All members of the SANDstorm hash family support message lengths gf<02'%%

3. The SANDstorm Mode

Many hash functions, such as SHA, use a mode based on the Merkle-Damgard chaining
construction. The chaining is deliberately sequential, and it does not benefit frdiel para
or pipelined implementations. Tree-based block combining is highly parallelibaiblis
drawback is that the message size determines the depth of the tree and the amount of
storage. This variability makes the implementation of tree based hashilegngimeaj.

Also, latency issues may arise with a full tree-based approach.

The SANDstorm mode is a truncated tree with bounded depth and storage. It permits
efficient parallel implementations. The amount of intermediate stosaagemost 10
blocks. For very long messages the algorithm could take advantage of up to 1000
processing elements with near linear speed-up.

Each level of the tree uses the SANDstorm chaining (described below) tohauitee.

The mode also provides for a finishing step as well as an “early-out” option to speed-up
small message processing.

Page 6 of 39

Level 0 1 Block Initialization Step L’

10 Blocks | 10 Blocks |

N
2
100 Blocks

e
lq-
t= ‘_

Level 4 | 1 Block Finishing Step |

A 4
| Hash Output |

Figure 1. SANDstorm Mode. The red arrow always denotes the output of LevelBe rectangles with

solid outlines represent functions.

SANDstorm Mode Description

In the following discussion, the reader should assume that the input message has been
padded and parsed into an integral number of 512(1024)-bit blocks.

The SANDstorm mode has five different levels; the number of levels acusatyvaries
with the message length. A level is a function that takes one or more blocks (or
superblocks, defined below) as input and produces a list of blocks as output.

» Level 0 and Level 4 are completed no matter the length of the input message, and
each takes a single block as input. The output from Level 0 is used in Levels 1, 2,
and 3.

* Use of Levels 1, 2, and 3 depends on the length of the message. The following
conditions define the “early out” mechanism:

o If the input message has only one block, skip Levels 1, 2, and 3
o If the output of Level 1 has only block, skip Levels 2 and 3
o If the output of Level 2 has only one block, skip Level 3
NB, if an application can guarantee that its messages will alwayssthbn 11
blocks in length, its implementation of SANDstorm need not include code for Level 2
or Level 3. Similarly, Level 3 can be eliminated if all messages aréhiass1001
blocks in length.
* Level 4 is afinishing step.

Superblocks. Levels 1, 2 and 3 logically operate on block lists of length 10, 100, or
unlimited, respectively. We call these “superblocks”. If the input to a chaining

Page 7 of 39

function is a quantity N consisting nfordered blocks N ..., N,, and if the superblock
size parameter for that levelksthen we define the superblockak a list

T ={Nep+} 1<isnk 1<j<k

For all blocks except possibly the last, the superblock consists of ekactlge N
blocks. For the last superblocknifs not a multiple ok, then j runs from 1 tén mod k).

Within a level, the chaining function operates on the input blocks (or superblocks). The
chaining function computes 4 state variables for each block and carries these val
forward for the next block. After the last block is processed, the state vaaablesed

to compute the output value for the level.

Chaining Function. Within the chaining function, there are 4 internal state variables
that are the intermediate values of the generalized Merkle-Damig@rd Eor each block
positioni within a super block and for<dj < 4 we have chain(j, i) as the chaining value.
Below we define initialization constants and the so farj ¥ 4 we have j= chain(j, 0).
Finally if the superblock is k long we have the output of the superblock processing is the
four chaining values chain(j, k) for eaclkx] < 4. This notation assumes that the
superblock in question is known. In reality each superblock is a function of level and
position. To more fully show the superblock input we set, for a given superblpale T
set, for 1< j < 4, chn(j, Ti) to be the output of the superblock. Finally, the output of the
superblock is processed to be fed into the next level of the tree.

Chn(T IV) - (chn (3,70 chn(3,T) | chn (2,70 chn (4, T)

IV are the initialization constantgroentioned above. The IV is a function of level and
the input message blockoMT he level initialization values are described in the
“Initialization Constants” section and Figure 5. The level transition function Ghwects
4 256(512) bit values into a single data block 512(1024) bits in length.

Levels. Up to five levels of processing are used, depending on the length of the
message. Longer messages use more levels. Levels 1, 2, and 3 can begin their
processing as soon as one superblock is available.

Let M = My, My,..., M, be them+1 blocks of the input message after padding and
parsing. Each Ms 512(1024) bits.

m If m = 0, then the flow of control uses only two levels. Level O processemiVl

passes the output to the finishing step, Level 4. This bypass of Levels 1, 2, and 3 is the
most efficient case of “early out”.

m If m > 0, then Level 0 and Level 1 together partially compress M, creatingtk-
quantity N = { N=1 , } where the Nare 512(1024) bits in length. The superblock size for
level 1 is 10; the superblocks for Level 1 are derived from M. If nis not an integer
multiple of 10, then Nis produced by SANDstorm chaining the lastr{(odulo 10)

blocks of M.

Page 8 of 39

Each Nis the result of applying SANDstorm chaining (“Chn”) to superblock T
The output of Chn is a block formed by the concatenation of two bitstrings:

Ni=(chn(1, V0O chn (3, T)|chn (2, H O chn (4, T))

m If n =1, then Nis fed directly into the finishing step of Level 4.

m If n>1, then the blocklist N is partially compressed in Level 2 to produce R-z{}P
where again the;Rre 512(1024) bits in length. The superblock size parameter for level
2is 100. Thus, 100 blocks of N are used to produce one superblock of P. If nis not an
integer multiple of 100, then,is produced by SANDstorm chaining the last

(n modulo 100) blocks of N. Here the superblocks are composed of the elements of N.

R = (chn (1,)0 chn (3, Tlchn (2,70 chn (4,T)

m If p =1, then Ris fed into the finishing step of Level 4. Otherwise, the message P is
fed into Level 3. This level does not use superblock grouping. It uses the chaining
function on each ordinary input block in turn. The output of the level is the single block
formed by the operation of Chn as above. That output is the input to the Level 4 finishing
step.

Message Digest. For SANDstorm hash-224, the final message digest is the XOR of all
four 256 bit string outputs of Level 4, with the leftmost 224 bits retained.

For SANDstorm hash-256, the final message digest is the XOR of all four 256nigjt st
outputs of Level 4.

For SANDstorm hash-384, the final message digest is the XOR of all four 512nigjt st
outputs of Level 4, with the leftmost 384 bits retained.

For SANDstorm hash-512 the final message digest is the XOR of all four 512ngt st
outputs of the Level 4.

SANDstorm Mode Performance

Levels 1 and 2 can benefit from parallel processing architectures. TheHave
Merkle-Damgard chaining within the superblocks of size 10 and 100, respectively, but
the superblocks themselves can be processed independently. For large messages, thi
allows a speed up to a factor of 1000 through mode parallelization. Level 3 is plocesse
sequentially.

There is a good deal of flexibility in the construction, and larger messagdake
advantage of even more parallel computation. For example, if a messagerishan

12 blocks, there is an opportunity to process two Level 1 superblocks of size 10,
independently, which would approximately halve the computation time. For messages

Page 9 of 39

greater than 1002 blocks in length, implementers can take advantage of thézzdiatie
in Level 2, with consequent speed-ups approaching a factor of 1000.

On the other extreme, if one does not have the resources to exploit the pardifglofabi

the SANDstorm mode, then one pays a penalty of having to process the second and third
levels of the tree. That then implies a slowdown of a factor of (1+1/10+1/(1000)) over
straight sequential processing of the message blocks. That is less than an lJd®&islow

for long messages.

Because of the “early out” mechanism for short messages, the procesgtingtbe

levels of the tree, including the impact of the finishing step, is mitigate ¢ dotes
messages. A message of lengthrip< 512(1024) bits will pad out to exactly one block.
After Level 0 processing, the output will pass directly to Level 4. Only two
compressions are needed to process a message of that size. A raw input Maisisage t
between % k < 11 blocks long would requite+ 1 compressions including the finishing
step.

The second level of the tree is not invoked unless the raw input message is at least 11
blocks in length, requiring 14 compressions. Similarly, Level 3 is not invoked until the
raw input message is at least 1002 blocks long.

There is some latency associated with the last block to be processed. When the final
message block is received, that block must be processed as it propagates through the
levels of the tree. The latency depends on the length of the input message and ranges
from two to four compression operations. For messages less than twelve blocks in length
the final message block must be run through two compression functions. For messages of
length greater than 1001 blocks, four levels must be traversed.

The SANDstorm mode can benefit from precomputation. A prerequisite for
precomputation is a constant initial raw message blogklke superblocks, especially in
Level 1, may be computed independently of the other superblocks. This means that in
cases where large messages need to be hashed many times with ordhangzs

between hashings, then much of the hashing work associated with the unchanged portion
of the message may be computed and stored. Only the change-affected superblocks
Level 1 and Level 2 need to be recomputed. Of course this may require additional
storage. If the places of change are known and fixed in particular superblocks bh,Leve
then most of the rest of the message may be processed down to Level 3. This would
require the storage of a new message of size roughly m/1000 blocks in length and would
see a speed up of nearly a 1000 over simple serial processing. Further, ti Level
computation could process up to the changed position, reducing the amount of needed
storage and computation.

Choice of Superblock Size

The design uses architectural choices that are the result of tradetaiebe
performance and resources. We want adopters of the hash to see performdiise bene
commensurate with the resources they can afford. Our choices retasoaable

Page 10 of 39

compromise between speed on commodity hardware, speed on specialized parallel
hardware, and usability on low-end embedded processors. The design choices are
reflected in:

* Number of levels in the tree. Each level uses intermediate storage; todevelay
will be a burden on machines with limited storage. The latency is direlettgdeo
the number of levels.

» The superblock sizes for Levels 1 and 2. The product of the superblock sizes
determines the maximum advantage obtained with parallel processing. The
individual superblock sizes determine the minimum processing delay for agmessa

4. The SANDstorm Chaining

In the usual iterative Merkle-Damgard construction, the chaining variaaltirgction of
the previous chaining value and the i-th message block,;=eH({m.1,M;). Almost all
implementations use XOR for combining the two inputs to H, such as settitylm.,

(0 M;). This construction is antithetical to parallelization and/or pipelining and isnehy
chose a more general iterative form.

Another of our design goals was to have a larger amount of internal state théreis i
SHA family in order to add resistance to various types of attacks thaitakplgize of
the internal state, such as, long messages, multi-collisions, and herding, etz;eHowe
there is a direct correlation between performance and the amount of dtsegeaated
on during the course of the compression function.

Our construction uses an iteration on 5 variables:

h={ H(a-1, b1, 6.1, d1, Ni), ha(Ni), he(Ni), he(Ni), ho(N3) }
where @ = ha(Ni.1), B = hs(Ni.1), G-1 = he(Ni.a), dig = ho(Ni.a)

The functions H, R, he, hc, hp, are the same for each level. The number of iterations of
H is the number of rounds. There are always five rounds.

This iterative form allows us to parallelize within the chaining of the supdwbled to
carry forward more internal state while retaining efficiency.

SANDstorm Compression Description

Suppose that M = jIM4,...,Mp, is the message to be hashed. Then M is operated on in
the SANDstorm truncated tree mode in levels to produce successively more catpres
data. The data will be operated on in superblocks of a given size as explained in the
section describing the SANDstorm mode. Here we describe the data flows at the
superblock level and show how to pass data from one level of the tree to the next.

Level O
The input to Level O is the first 512(1024) bits of the padded and parsed message.

Page 11 of 39

The compression function H has 5 roungs#9,1,2,3,4. Each of those rounds takes
input from a bank of pre-defined constants @efined in the compression function
definitions below),and from the message schedule. The input consgafts G, G,
and G for each hash in the SANDstorm family are defined below.

The output of Level 0 is the four 256(512)-bit stringsS, S;, and 3. These four values
are subsequently used as inputs for each superblock compression on levels 1, 2, and 3.

If the input message is one block long, &, S5, and S, are combined into an input
block for Level 4:

Level 4 Input= (90 S| SO %)

Co
A2 MS(0,M,)
Ro
C,
\ 2 MS(L, M,)
Rl
c, - s,
v MS(2, My)
R,
Cs - s,
v MS(3, M)
R,
C, - s,
v MS(4, M,)
R
s,

v

Figure2: Level O

In figure 2,

* Riz01234are the round functions.

* MS(r, Mp) is the message schedule with a 256(512) bit output, which is a function of
the round number and data bloclk.M

R and MS will be explained in detail in the compression function section.

Page 12 of 39

The input into Bis G [0 MS(0,My)
For 0<ik4 the input to Ris R.; O C OO MS(i,Mo)

For 1<i<3the output S R O Cis1
The output $= R4

Note that in the description of Level 0 we have usgea@ad/an input for the message

schedule. Level 0 always operates only on the first message blo®ohdther level

does this. For the other levels, we use D in place of M because the blocks may be derived
from computations on input message blocks.

Levelsl, 2, and 3

Levels 1, 2, and 3 chain multiple blocks of data together. These blocks are the sub-
blocks of a superblock. Given a sequence of j 512(1024) bit data bleéks D.,D;we
process these j blocks sequentially. Each data block is processed as in LeegitQhat

the four 256(512)-bit output strings act as the input values the next block. For

instance, the output of round three in the compression function for block i will be part of
the input for round three in block i+1.

The following graphic illustrates the state transition from one block to another.

C, c0

v: M(0,1) ": MS(0, D,)
RD RD

C, N
Y MS(1,D,) 2 MS(L,D,)

C, s,

v

MS(2, D,)

[

Cy s,

v

[

MS(3, D,)

Cy s,

v

[

MS(4, D,)

S,

v

Page 13 of 39

Figure 3: Two Block Superblock

The illustration uses a superblock of size 2. Each arrow represents 256(512) bits. When
an arrow joins another, the combiner operation is XOR.

To extend this method to larger superblocks, one continues the constructign tor R
block O by computing the XOR of
» the output stateRn block D
» the chaining value from;R from the previous block ;R

(forward the result to the combiner for the previous rouifdiRhe next block R)
» the message schedule words MS(i+{),for round i+1.

In other words, for4i <4 and 1< k<j the input into round i at block position K is:
R(i-1,k) O chain(i,k-1)0 M(i,Dy)

We also have for ¥i<3 and Ixk<j chain(i,k) = R(i-1,k)] chain(i+1,k-1)
For 1<k<j chain(4,k) = R(4,k).

This arrangement has two interesting facets. (1) It's pipeline friendlyl h@putput of
round 4 affects the input of round 4 for the next block, and the input of round 3 for the
following blocks, and the input of rounds 2 and 1 of later blocks.

Note that superblocks of many sizes are possible. In Level 1, the size is bounded by 10.
In Level 2 the size is bounded by 100, and in Level 3 by roughly m/1000.

Levels 1 and 2 have initialization values @, ¢, s, and g. Each of these values is a
function of the Level 0 input constant, @e Level 0 output string Sand the superblock
number. Level 3 is similar, but the initialization does not depend on the superblock
number. The formulas for theare given below.

At the end of the superblock compression the four 256(512)-bit output values of rounds 1
through 4 (8 , 3, and g) are combined to produce the 512(1024) bit input value for
the next level of the tree: 18s; |0 &)

Level 4
The finishing step, Level 4, is similar to Level 0. It operates on a single blockaodfdat
length 512(1024) bits.

Page 14 of 39

Co

<

al
)
A MS/0 N

Py
S

C1

A 4

A

&

MS(1,D)

X
fa

C. outl

A 4

v

A

<

MS(2,D)

)
9

Ca out2

MS(3,D)

Ca out3

A 4

v

A

&

py)
&

A 4

v

A

<

MS(4,D)

sl
£

out4

v

Figure4: Level 4

The input values are defined below, and they are functions of the prepadded message bit
length,n. The input message for Level 4 is the single block output [B,ss)(Bom one of

the previous 4 levels, depending on the message length as explained in the SANDstorm
mode section. The final message digest of the message M is the XOR of the coputs fr
rounds 1 through 4:

SANDstormHash(M) = outll out2[] out3[out4

Initialization Constants

For each level of the SANDstorm mode, the valuyes:c..., & are a function of § C;,
....Ciand 9, $, &, and S. For Level 1 and Level 2 the constants are also a function of
the block position. Since there is only one superblock on Level 3, that level does not
include a superblock number.

In the following, we assume the input is a padded and parsed message
M= Mo,Ml,...,Mm.

For SANDstorm-256 and -224, Level 1 processes 10 blocks at a time. For superblock i,

represent the index as i as a 128 bit numberpandi,i) is 256 bits in length. For Level
1, let k be the smallest integer greater than m/10, then the counter has valueskl

Page 15 of 39

SANDstorm-512 and -384 also have a message length boundéd.bgh2 128 bit
counter i is viewed as a 256 bit integer so that (i,i) is 512 bits in length.

Level 2 processes the outputs of Level 1 in superblocks of size 100. Each data block in
Level 2 is the result of SANDstorm chaining of 10 input messages blocks. So each
superblock in Level 2 is a function of message blocks)iboo +1 M-1)+1000 +2 ..., and

Mix1000. SetBi= (i, i). For Level 2, let k be the smallest integer greater than m/1000, then
the counter is in the range<li <k.

As above, for SANDstorm-512 and -384 we have fhat(i,i) is 512 bits in length.

For SANDstorm-256 and -224 let c and d be defined as the first 64 bits of the fractional
part of the fifth root of 5 and 7 respectively. Represented in hexadecimal notation:

C =6135f 68d4c0cbb6f

d =79cc45195cf 5b7a4

LetB=(0,0,0,c) andd=(0, 0, O, d) be two 256 bit strings.

For SANDstorm-512 and -384 let ¢c and d be defined as the first 128 bits of the fractional
part of the fifth root of 5 and 7 respectively. Represented in hexadecimal notation:

C =6135f 68d4c0cbb6f b43b47a245778989

d =79cc45195cf 5h7ad4aec4e7496801dbb9

LetB=(0,0,0,c)and=(0, 0,0, d) be two 512 bit strings.

The message length, before paddimgn bits, is included in Level 4. Let= (-n,n),
which is viewed as a 256(512) bit string.

Level O Level 1 Level 2 Level 3 Level 4
Co Co CodS Co0SOP | COSOd| COd
U a; DBi e
C1 C GUS cC,osap C,O0s0dd C,Od
O a; DBi e
C C CGUS CzDSgDB CoOs00 C 0o
U a; DBi e
C3 G Gl S CUOSOB CO0S0d Cs0Od
U a; DBi e
Cq C4 C4DS4 C4DS4DB C4DS4D6 C4D6
O q; DBi e

Figure5: Initialization Values

Co, Cy, ..., G each are 256(512) bit words comprised of the SHA initialization constants.
We denote those constants as Hi, Hy, Hs, Ha, Hs, Hs, H-.

Co= (Ho, H1, Hz, Hs, Ha, Hs, Hs, Hy)
C1= (Hy, Ha, Ha, Ha, Hs, Hs, Hz, Ho)

Page 16 of 39

Co= (Hy, Hs, Ha, Hs, He, Hz, Ho, H1)
Cs= (Hs, Ha, Hs, Hs, Hz, Ho, H1, Hy)
Ca= (Ha, Hs, He, Hz, Ho, Hi, H, Hg)

The following are the initial values for SHA-224, which are given in hexadgcirhese
are used to create thefor SANDstorm-224. These are the low 32 bits of the constants
for SHA-384 (see below).

Ho = ¢1059ed8
367cd507
H, = 3070dd17
Hs; = f 70e5939
Hy, = ffc00b31
Hs = 68581511
He = 64f 98f a7
H; = bef a4f a4

T
=
I

The following are the initial values for SHA256, which are given in hexadecandl
which are obtained by taking the first 32 bits of the fractional part of the squawd root
the first eight prime numbers. These are used to create theSANDstorm-256.

Ho = 6a09e667
H: = bb67ae85
H, = 3c6ef 372
Hs = ab4f f 53a
H, = 510e527f
Hs = 9b05688c
Hs = 1f 83d9ab
H; = 5be0Ocd19

The following are the initial values for SHA-384, which are given in hexadgcirhese
words were obtained by taking the first sixty-four bits of the fraction&$ pérthe square
roots of the ninth through sixteenth prime numbers. These are used to creat®the C
SANDstorm-384.

Ho = cbbb9d5dc1059ed8

H; = 629a292a367cd507
H, = 9159015a3070dd17
Hs = 152f ecd8f 70e5939

Hs = 67332667f f cO0b31
8eb44a8768581511
db0c2e0d64f 98f a7
H; = 47b5481dbef a4f a4

I T
& o
I

Page 17 of 39

The following are the initial values for SHA-512, which are given in hexadgcirhese
words were obtained by taking the first sixty-four bits of the fraction&$ pérthe square
roots of the first eight prime numbers. These are used to createfthieSBNDstorm-
512

Ho = 6a09e667f 3bcc908
H, = bb67ae8584caa73b

H, = 3c6ef 372f e94f 82b
Hs; = a54f f 53a5f 1d36f 1
H, = 510e527f ade682d1

Hs = 9b05688c2b3e6c1f
He = 1f 83d9abf b41bd6b
H; = 5be0cd19137e2179

Parameters and Performance

In the SANDstorm chaining, if each message or data block is processed seguastiall
may happen in software, then the throughput associated with SANDstorm chaitiag in t
superblocks is comparable to a standard Merkle-Damgard hash. However, if one has
sufficient resources available, and can take advantage of the connections lvetwels,
pipelining can speed-up the computation. For example, each round might be a separate
stage of the pipeline. That pipeline will emit a result as often as the siowed

completes.

For the SANDstorm compression function, about 60% of the work is done in the message
schedule, which can be parallelized and pipelined, so if the resources afgavaila

factor of 7 increase in speed over sequential processing is possible. This dodsa®t inc
any gains one might see by including additional resources to speed up the round function
itself.

5. The SANDstorm Compression Function

The SANDstorm compression function H has two main components: the round function
and the message schedule.

* The SANDstorm round function R is a one-to-one function of 256(512) bits
organized as four 64(128) bit words. R has two different sections, one more algebraic
and the other more logical in nature.

» The SANDstorm message schedule operates on eight 64(128) bit words in a one-to-
one fashion.

SANDstorm-256 and -224 Compression Function Description

General Functions

Page 18 of 39

Let Z=X*2%%+Y be a 64 bit word, where Y and Z are 32 bits each.
Define functions:
« ROTL'(2) is a left rotation of Z by n positions
« F(2) = X*+Y? modulo 2*
¢ G(2) = X*+Y*+ROTL*{((X+a)(Y+b)) modulo *
The additions X+a and Y+b are taken moduiolzfore the product (X+a)(Y+b)
is computed. The product is viewed as a 64 bit quantity and so the rotation is a
swap of the high and low order halves. The constants a and b are defined below.
* Ch(A,B,C) = (A&B)(-A&C)
* SB(Z) = Z except that low order byte, z, of Z is replaced with the AES sbox(z)

The constants a and b are defined as the first 32 bits of the fractional part th troefi
of 2 and 3 respectively, with the high and low bits forced to one. Represented in
hexadecimal notation, they are:

a = a611186b

b bee8390d

BitMix Function

The BitMix function operates at the bit level on four 64 bit state words to produce four 64
bit state words. There are four 64 bit constants that select separate bit posiicssbit

word. Given in hexadecimal, these are:

Js = 8888888888888388

Jy= 4444444444444444

Jp=2222222222222222

J=1111111121111111

If A, B, C, D are all 64 bits in length, then (A’, B’, C’, D’) = BitMix(A, B, C, D), wiee
A =0s&A) OX&B)O(R&C)O (L& D)
B'=(J3&B) 0 (L& C)O (L&D) O (KXh&A)
C=(k&C)O (L&D) O (L&A O(K&B)
D'=(J3&D) 0 (L&A) O(L&B) O (XKh&C)

The BitMix function can be viewed as a permutation of the bits in each column of the 64-
by-4 (128-by-4) bit matrix formed by A, B, C, D.

Round Function

The round function R consists of two parts. The first is a mixing of the four state words
with, primarily an integer multiplication. The second is a bit mixing that helpsogdsie
algebraic properties associated with the multiplication.

Page 19 of 39

Wha Wi Wo Wa

\4 \ 4 \4 \ 4
Round Function

Wha Wi W> W~

Figure 6: Round Function

Round Function
The SANDstorm-224 and -256 round function is a one-to-one function operating on four
64 bit words and producing four 64 bit words.

For SANDstorm-224 and SANDstorm-256, for each round do the following:
Forifrom1to3

Set W = ROTL®(SB ([W; + F(Wi.1) + Ch(W.1,Wi.2,Wi.3) + A(r,i)] modulo 2%)
Set (V\b, Wi, W, W3) = BitMiX(Wo, W1, W, Wg)

The A(r,i) are round constants defined below, where r is the round number and i is the
word position number. In the For loop, the subscripts are taken modulo 4, and the
computations of \\are assumed to be iterative, so that as each value is updated the new
value is used to update subsequent values. As mentioned earlier, the BitMix function can
operate on the words in parallel.

The effect of the tunable security parameter is to repeat Round 4 a specified aimbe
extra times. The default is to execute Round 4 exactly once with no extraoepetit

The repetitions re-execute the round function formula above with the round variakle fix
at r=4, followed by the BitMix. The parameter should be an even number between 0 and
20. The default value is 0.

Message Schedule

The message schedule receives a 512 bit block of data viewed as eight 64 bit words.
Given input data block D = ¢dd, ..., d;) the eight words are expanded to a total of 33
64 bit words.

Forifrom 8 to 32
Set d= ROTL*' (SB([d-s + G(d-1)+Ch(d.1,d:-2,0:-3) + g + B;] modulo 2%)

In the SANDstorm chaining description we used the notation MS(r,D) to denote the
contribution from the message schedule for round r as operated on data block D.
MS(0,D) =

BitMix(ROTL ™ (do) O ds, ROTL*(d;) O ds, ROTL**(d,) O ds, ROTL™ (d5) O)
MS(1,D) = (ds4, Gis, Chie, Ch7)

Page 20 of 39

MS(2,D) = (dg, Cho, by, o)
MS(3,D) = (@4, tos, b, dz7)
MS(4,D) = (do, teo, b1, ko)

Constants

SHA-224 and SHA-256 use the same sequence of sixty-four constant 32-bit words. These
words represent the first thirty-two bits of the fractional parts of the cuite obthe first
sixty-four prime numbers. SANDstorm uses the first 50 of the SHA constants; K..,

K4e. In hexadecimal, these 50 constant words are (from left to right)

428a2f 98 71374491 b5cOf bcf e9b5dba5 3956¢25b 59f 111f1 923f 82a4 ablc5edb
d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deblfe 9bdc06a7 cl1l9bf 174
e49b69c1l ef be4786 0f c19dc6 240calcc 2de92c6f 4a7484aa 5chb0a9dc 76f 988da
983e5152 aB831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967
27b70a85 2e1b2138 4d2c6dfc 53380d13 650a7354 766a0abb 81c2c92e 92722c85
a2bf e8al a8la664b c24b8b70 c76c51a3 d192e819 d6990624 f 40e3585 106aa070
19a4c116 1e376¢08

The constantsBn the message schedule are 64 bits in length and are formed by
concatenating the SHA-256 constants, that is:
For i from 8 to 32

Setj=1-8

SetB= sz*232+ Kz*j+1

There are 20 constants A(r,i). They are equal to tHriBare in reverse order, that is:
ForO<r<4and xi<3
Set A(r,i) = Bso-a#r+i)

SANDstorm-512 and -384 Compression Function Description

The SANDstorm-512 and -384 round function is a one-to-one function operating on four
128 bit words and producing four 128 bit words.

General Functions

Let Z = X*2°*+Y be a 128 bit word, where Y and Z are 64 bits each.

Define functions:

« ROTL"(2) is a left rotation of Z by n positions

F(Z) = X*+Y? modulo 2?8

G(2) = [X*+Y?*+ROTL*((X+a)(Y+b))] modulo 3%

o The additions Y+a and Z+b are taken modffbtzfore the product

(X+a)(Y+b) is computed. The product is viewed as a 128 bit quantity and so
the rotation is a swap of the high and low order halves. The constants a and b
are defined below.

Ch(A,B,C) = (A&B)J(-A&C)

SB(Z) = Z except that low order byte, z, of Z is replaced with the AES sbox(z)

Page 21 of 39

The constants a and b are defined as the first 64 bits of the fractional part th troofi
of 2 and 3 respectively, with the high and low bits forced to one. Represented in
hexadecimal they are:

a
b

a611186bae67496b
bee8390d43955aed

BitMix Function

The bit mix function operates at the bit level on four 128 bit state words to produce four
128 bit state words. There are four 128 bit constants that select separate bitpofi

128 bit word. Given in hexadecimal, these are:

J; = 88888888888888888838888883888888

Jy= 444444444444 444484444444444444444

L= 22222222222222222222222222222222
J=111111111211111211211121111111211111

If A, B, C, D are all 128 bits in length, then (A’, B, C’, D’)=BitMix(A, B, C, D), wieer
A'=Js&A) O0(K&B) O (XR&C) O (L& D)
B'=(Js&B) 0 (L&C)T (L&D) O (Kh&A)
C=(%&C)UWUK&D) I &R&A) U K&B)
D'=(J&D) 0 (KL&A) O(XR&B) T (Kh&C)

Round Function
For each round do the following:
ForifromOto 3
Set W = ROTL>'(SB ([W; + F(Wi.1) + Ch(W.1,Wi.2,Wi.35) + A(r,i)] modulo 2%%)
Set (V\b, Wi, W, W3) = BitMiX(Wo, W1, W, Wg)

The A(r,i) are round constants defined below, where r is the round number and i is the
word position number. In the For loop the subscripts are taken modulo 4 and the
computations of \\are assumed to be iterative, so that as each value is updated the new
value is used to update subsequent values. As mentioned earlier, the BitMix function
operates on the words in parallel.

The effect of the tunable security parameter is to repeat Round 4 a specified aimbe
extra times. The default is to execute Round 4 exactly once with no extraoepetit

The repetitions re-execute the round function formula above with the round variakle fix
at r=4, followed by the BitMix.

Message Schedule

The message schedule receives a 1024 bit block of data viewed as eight 128 bit words.
Given input data block D = (dO, d1,,.d7) the eight words are expanded to a total of 33
128 bit words.

For i from 8 to 32

Page 22 of 39

Set d= ROTL* (SB([d-s + G(d-1)+Ch(d-1,d.2,0.3) + d.4 +B;] modulo 2°9)

In the SANDstorm chaining description we used the notation MS(r,D) to denote the
contribution from the message schedule for round r as operated on data block D.
MS(0,D) =

BitMix(ROTL®’ (d) O ds, ROTL*'(d;) O ds, ROTL*" (dy) O ds, ROTL® (d5) T k)
MS(1,D) = (d4, Cis, Chie, Cr7)
MS(2,D) = (do, tho, Cb1, Cho)
MS(3,D) = (b4, ths, b7, Ch7)
MS(4,D) = (o, ko, Gz, Ch2)

Constants

SHA-384 and SHA-512 use the same sequence of eighty constant 64-bit words. These
words represent the first sixty-four bits of the fractional parts of the cubeabtite first
eighty prime numbers. SANDstorm-512 and -384 will use 50 of those constariks, K

..., Kgo. In hexadecimal, these constant words are (from left to right)

428a2f 98d728ae22
3956c25bf 348b538
d807aa98a3030242
72be5d74f 27b896f
e49b69c19ef 14ad2
2de92c6f 592b0275
983e5152ee66df ab
c6e00bf 33da88f c2
27b70a8546d22f f c
650a73548baf 63de
a2bf e8al4cf 10364
d192e819d6ef 5218
19a4c116b8d2d0c8

The constants Bn the message schedule are 128 bits in length and are formed by

7137449123ef 65cd
59f 111f 1b605d019
12835b0145706f be
80debl1f e3b1696b1
ef be4786384f 25e3
4a7484aa6ea6e483
a831c66d2db43210
d5a79147930aa725
2e1b21385¢c26¢c926
766a0abb3c77b2a8
a81a664bbc423001
d69906245565a910
1e376c085141ab53

b5cOf bcf ec4d3b2f
923f 82a4af 194f 9b
243185bed4eedb28c
9bdc06a725c71235
0f ¢c19dc68b8cd5b5
5cb0a9dcbd41f bd4
b00327c898f b213f
06ca6351e003826f
4d2c6df cbac42aed
81c2c92e47edaeeb
c24b8b70d0f 89791
f 40e35855771202a

concatenating 50 of the the SHA-512 constants, that is:

For i from 8 to 32
Setj=1-8

Set B= Ky*2%+ Kysag

e9b5dba58189dbbc
ablc5ed5da6d8118
550c7dc3d5f f b4e2
c19bf 174cf 692694
240calcc77ac9c65
76f 988da831153b5
bf 597f c7beef Oee4
142929670a0e6e70
53380d139d95b3df
92722c851482353b
c76¢c51a30654be30
106aa07032bbd1b8

There are 20 constants A(r,i). They are equal to thiBare in reverse order, that is:
ForO<r<4and Xi<4
Set A(r,l) = Bsz-(4*r+i)

SANDstorm Compression Function Performance

SANDstorm relies on multiplication as a primary mixing agent. On most modern
computers this operation is efficient. Since multiplication inherently doesyayged job
of mixing, we don’t need a great number of rounds to accomplish our design goals. Thus

Page 23 of 39

we have a small number of rounds that heavily mix the data. The smaller number of
rounds and relative speed of the individual operations allows for an efficient design.

As mentioned above, the message schedule performs much of the mixing, and it does not
depend on the state variables. That means a large fraction of the work in thessampre
function may be accomplished in parallel and/or pipelined processing elements.

By having one round output feed forward as input in the same round of the next block,
the latency associated with the typical Merkle-Damgard constructiedused to
something more manageable. One must account for the latency of a single round.

There are implementations where one could expand the SHA initializatiouctsnist
create the SANDstorm initialization constants each time a new superblodated.

This would take a tiny fraction of the time required to compress one block of data.
However, the more reasonable approach in most software applications is to é&epand t
initialization values and fix them as part of the source code. In this case stheréme
required before Level O processing on the first block can commence.

NIST has asked that submissions demonstrate that the algorithm uses ahlizdde
The construction of SANDstorm ensures that every block will exercise eakry in
every table, with the exception of the sbox.

The sbox table is used 45 times during one block compression (including computation of
the message schedule). A hash of 50 blocks will do 2250 sbox look-ups, averaging 8.8
touches per table entry. The expected number of untouched entries is aboii256*e
0.03. Itis probable that every table entry is touched at least once.

6. Cutdown and Extension Alternatives

NIST has asked submitters to provide appropriate cutdown functions for anatysts a
provide a method to extend the algorithm to have more strength if deemed necessary

The simplest cutdown method would be to chop off some number of rounds starting with
round 4. Round 0 is different than the rest and does not make for a good chopping point.
The smallest reasonable place to cut to is right after Round 1. By chopping to Round 1
there would still be a chaining value from previous blocks.

Of course, if the algorithm is cut down to Round 1, the output size is only 256 bits. This
small amount of chaining state necessarily would lose the resistance to st
herding, etc.

Chopping other rounds, provided the appropriate chain forward values are kept, would
keep in the spirit of the algorithm. We also assume that if rounds are cut out of one
portion of the algorithm (Level in the mode) that all other compressions, no matter what
level in the mode, will be cut in a similar fashion.

Page 24 of 39

We don't feel that there is a security risk in changing the predefined superblesk siz
However, we do not recommend using variable block sizes

We don’t believe it is necessary to increase the strength of the algorithrmdeulN$ST
requested it, we provide a couple of possibilities.

Option 1:

We may post process the chaining values as they are produced. The amount dhgtate be
carried from one block position to the next is significant, so additional processing of one
or more of the chaining values may give the desired enhancement. In partieular, t
information as output from Round 4 is at least the size of the final message digest
Therefore processing that information further may be a simple and daigrd way to
implement and provide whatever security enhancement is needed.

For instance, Round 4 may be repeated a specified number of times. That is, we take the
output of Round 4 and run it through the round function again. This does not include
additional stepping of the message schedule, it just requires repetition of the For loop and
the BitMix. Since all outputs are combined and eventually fed into Level 4, thierigis

step provides additional strength. We have implemented this option as a #define in the
reference implementation. The parameter should be an even number between 0 and 20;
the default value is O.

Option 2:
Increase the number of rounds. Extend the message schedule, computing five steps per

round and using four. The round functions can be added on, with the chaining values
linking the last four rounds in the pattern above. There are a number of unused SHA
constants. The;Bnd the A(r,i) can be defined appropriately.

This option makes most sense if changes are completed before widespread
implementation. The issue is that the connections between rounds would have to be
changed and the constants reworked to line up with the right rounds. This option may not
be attractive if implemented after the fact.

7. Design Choices

In this section we discuss and elaborate on several design features of thee@ANDs
family.

* The method of padding for the SANDstorm family differs from that of the SHA
family by not appending the length. The SANDstorm family uses a 128 bit length
counter. Appending the length counter would often add an extra block to the
message. Our mode includes superblock numbers in each superblock, and the
finishing step includes the bit length. The finishing step prevents length extensi
attacks, and so SANDstorm’s padding is suitable and only rarely requiregsan ex
block.

Page 25 of 39

The SANDstorm constants were chosen to be those either used by SHA-256 or
derived in the same fashion. This saves memory space in situations where both SHA
and SANDstorm might be simultaneously implemented. We also favor the SHA
constants because and they are public and the generation method is well-known.
The constants a and b in the message schedule have high and low bits set to 1. This
ensures a broader set of values as output of the multiplication.

Squaring and multiplication operations are the workhorses for effecting timexing

in the F and G functions. We use a function that was inspired by 1's complement
squaring but turns out to be better for mixing. The function

Z“ mod 2”1 has the property that each bit of output is a function of each bit of input,
and thus this is a fairly good mixing agent. The downside to it is that low Hamming
weight words stay low Hamming weight. In particular, a one bit changeoin a |

weight input has limited effect on the output. The cross term in the function G(Z)=
X2+Y2+ROTL34(X+a)(Y+b)) is designed to force a small change in low weight

inputs to be noticeable. The RO*ls just an efficient approximation of what

happens to the cross terms of the square b, 2

The function F(Z) = %+Y2in the round function is an efficient version of G(2). It
doesn’t mix as well, but we wanted to make sure there was sufficient diferenc
between the message schedule operations and the round function operations.
There is an application of the AES sbox in the low order byte of certain words during
the round function and the message schedule. The AES sbox is highly non-linear and
provides excellent mixing for the bits that it acts on. The choice to apply thesbox
the low order byte was for efficiency’s sake. Our sbox has at position xltlee va

X 0 sboxges(X)

so that we can, with a single xor, replace x with sbox(x). Indexing by anyltiger
position would require more operations.

Further, the application of the sbox is not our primary mixing operation; it is there t
defeat differentials in the low order byte position. To propagate small changes
attack would have to repeatedly avoid the low order byte.

There are 45 applications of the sbox. Each is accompanied by a rotation;ehere ar
two different rotation constants.

The BitMix function was chosen as a method to break up any algebraic dependencies
that might appear in the round function and cause further separation between the
words in the message schedule.

The BitMix function depends on each state word within the round. After the BitMix,
each data nibble contains information from each word of the round state. Mixing
operations in the next round will destroy any correlations that may havedearishe
inputs to BitMix.

The mode was designed specifically so that parallelization of superblockiopgra
would be possible.

The structure of the chaining values between rounds has two benefits: careful
management admits some parallelization and pipelining within the round function;
long message attacks are mitigated.

Page 26 of 39

8. Security Discussions

We believe that the SANDstorm family satisfies all of the usual sgeequirements for

a cryptographic hash. That is, for a w = 224, 256, 384, 512 bit message digest sizes the
work required for function inversion (preimage) is on the ordel” @opressions.

Similarly, the work to find collisions is on the order 8f°2In addition, the SANDstorm

mode and chaining structures increase the work required for long messagetattac

equal that of inversions. Removal of long message attacks adds significaahoesiet
second preimage attacks. Further, SANDstorm carries 4w bits of state frdnidoloc

block. This means other attacks that randomly exploit the internal state anaighaini
values will be foiled. Thus, multicollision and herding type attacks will be iiifieas

General Observations

Collisions in the Chaining Values with changeshe message

It is a straightforward exercise to show that if, for any i = 1 to 3, we have tha

MS(i,D) = MS(i,D’) and MS(i+1,D) = MS(i+1,D’), then D = D’. The function in the
message schedule was designed to fill the gap in the values pulled out of the schedule.

This means that if the message input (excluding the contribution to round zero) taken in
adjacent pairs is the same, i.e. a collision on the message contribution, then the input
messages have to be the same. This means th&[d’'Ehere must be a difference in at
least two non-adjacent contributions from the message schedule.

From this we can show that, given a two strings of data blocks that are identical up to one
point, the chaining values cannot collide at the point of difference. In a givemkagser
suppose D and D’ are at block position j and suppose that the two data strings are equal
up to that position. The chaining values coming into position j must be the same.

Now suppose that the chaining values moving into position j+1 are equal. Starting with
the last couple of rounds we have, by assumption, that chain(4,j) = chain’(4,j) and that
chain(3,j) = chain’(3,j). For the first equality to hold, the inputs to Round 4 must be the
same. The inputs are a sum of the chaining variables and the message schedule. For
Round 4 we have that chain(3,j)MS(4, D) = chain’(3,j)J MS(4,D’), and so MS(4,D)

= MS(4,D’). Similarly by equating chain(2,j) and chain’(2,j) we determir®&3/D) =
MS(3,D’). From above, this means that D = D’. This means that a change in one data
block will be guaranteed to propagate at least into the next block position.

If the changed block happens to be at the end of a superblock, although the chaining
values will be different, we would like to know that the resulting data feeding into the
next level will be different. We do not have a proof of this.

Message Schedule Security
Given an input data block D %,d.., d; the message schedule is a powerful mixing
operation. From githrough d», each word is progressively less correlated with the

Page 27 of 39

message input words. The last word with measurable correlatign i©dr analysis of
the correlation follows.

Each bit of word ¢depends on each bit of,d.., d; except . The word d enters ¢ as

a simple sum of the other words, the low byte mapped with the sbox, and rotated. Deltas
in d3 are passed directly into G(Z) in the computationief &mpirically, there are a

couple of weak bits, namely thosglits that rotate into bit positions 60-63. We ran a
series of tests comparing one bit deltas in each of the 512 input bits ef thed. Bit

position 36 of dyields noticeable non-uniform statistics in many bit positions HfTa

a much lesser degree, so do positions 35, 34, and 33 of d3.

The rotation value of 27 was chosen so thataitas in the low order byte are first

operated on by the sbox and then rotated into bit positions 28-31. Other rotation amounts
where the delta is not operated on by the sbox, but rotates into positions 28-31, will also
give non-uniform results for;g The rotation value of 27 was chosen to make sure that

the sbox output sits in the top of the low order half,ef d

Even though there a couple of weak bit positionsiasdviewed from g, the rest of the

bit positions of ¢ ..., d; have a fairly uniform affect omgland there are no weak bits
when viewed from . As a rough gauge of the mixing ability of the messages schedule,
we have that each bit of.¢s, d+14, d+15, IS a strong function of each bit of d.., d.7.

The message schedule steps 25 times and so there are effectively thiethpasge

input data. Each pass results in an excellent mixing of the previous eight wagls. Si

bit differentials of random data do not propagate more than a few steps. Once tle delta
operated on by G(X) an avalanche effect occurs.

The SANDstorm message schedule skips the first six values and then outputs four. Each
bit of MS(1,D) = (d4, ths, Gis Ch7) is a strong function of each bit of D. Similarly, each

bit of MS(2,D) = (dg, tho, th1, Ghy) is a strong function of each bit ofg(d.., di3)

MS(3,D) = (&4, bs, b7, Cb7) is a strong function of each bit ofi{d..., tig)

MS(4,D) = (dg, ko, Ts1, Gs2) IS a strong function of each bit ofifd..., ths)

Round Function

The round function is not quite as complex as the message schedule and so does not mix
quite as well. However, the multiplications are still very effective r&lage fewer

mixing steps in the round functions than in the message schedule. However, the BitMix
function removes the algebraic structures that may arise in the firsif paet round

function. Let (W, W1, W,, W5) be the inputs to the round function, let YW\V’1, W5,

W’3) be what is produced by the For loop in the round function, and let (W1, W5,

W?”3) = BitMix(W’ o, W'1, W5, W'3). AlthoughWj is not a strong function of all of the

Wi, , the strength increases with For loop iterations, and at the end, each bii©aW’
strong function of each bit of the input words;, Wier the BitMix operation, each byte

of each of the W'has two bits from each of the WW’and so we may say that each byte of
W is a strong function of each input bit of the. Whe output of the For loop in the next
round turns each bit of its output into a strong function of each input bit of the previous

Page 28 of 39

round. This means that the output of Round 4 has seen more than two full mixes of
Round 0 inputs and two mixes of Round 1 inputs. Each of the chaining values is a full
mix of the data two rounds previous.

Specific Observations

Second Preimage attacks

One method of generating second preimages with very long messages in a typical
Merkle-Damgard construction is to create a second message that vamekdroriginal
toward the beginning of the message but keeps the rest of the message the saime. Past
changed blocks, the message is the same, so if there is ever a collision in timg chaini
values, the collision will persist and the two messages will collide tcecaestcond
preimage.

For a really long message, Level 3 acts like a typical Merkle-Damgasiraction so it
will be susceptible to the ills of that construction. That is, long message attacks,
multicollisions and herding are all possible. However these methods of attacle r@ugiir
to get collisions in the chaining values. SANDstorm’s chaining values foavwgrd at
least four times as much state as is in the final hashing value. Thedststate not
completely independent, but we will show evidence that our constructions are strong
enough to completely foil certain attacks.

When applying the second preimage attack described above to SANDstorm, we suppose
that for some very large t two data strings D5 D, Dy and D’ = D, ..., D't that the

strings differ at the beginning of the message and agree after position Kime\gsat

holds for K < j-2. Since the message schedule inputs are the same at position j-leand j, w
have that if we assume that chain(3,j-1) = chain’(3,j-1), then this imphésvih

necessarily have that chain(4, j-1) = chain’(4, j-1). If we assume futtaechain(l, j) =
chain’(1,), it is an easy exercise to show that this forces chain(2, j) @iy

chain(3, j) = chain’(3, j), and chain(4, j) = chain’(4, j) to also hold. So we have shown

that if we assume that the two conditions

chain(3,j-1) = chain’(3,j-1) AND chain(1, j) = chain’(1, j)

simultaneously hold, then the chaining values collide in the j-th position and the
messages D and D’ collide.

Now suppose that chain(3,j-1) = chain’(3,j-1) but chain(%,ghain’(1, j). Then
chain(4,j-1) = chain’(4,j-1) and chain(2,#)chain’(2, j). Together these imply
chain(3, j)# chain’(3, j).

Similarly, suppose that chain(1, j) = chain’(1, j) but chain(3#thain’(3,j-1). Then
chain(2, j)# chain’(2, j). Both chain(1, j) and chain’(1, j) become inputs for position j+1.
Since they are equal and the other inputs are equal too, then the outputs of Round 1 in
position j+1 must be equal. However, chain(z ghain’(2, j), and both combine with

Page 29 of 39

the outputs of Round 1 to create chain(l, j+1) and chain’(1, j+1) which forces them to be
unequal, thus breaking the linking of the Round 1 chaining variables.

These two cases show that if one pair of chaining values are equal but the othes pai
unequal, then the pair equality is guaranteed to be destroyed. That in turn mens that
chain(3,j-1) = chain’(3,j-1) and chain(1, j) = chain’(1, j), which is enough to force a
collision in the chaining values, those two conditions had to be met simultaneously. So
with digest size w, the resistance is on the order of 2w-k bits for a messazge Hfosis.
When k=w the success rate is on par with finding a single preimage, whiclesagonk

on the order of 2 operations.

Collisions

The previous section indicates that there is little advantage in using longesessa
create collisions. This means that an attack might as well be based on shagesess
on somehow exploiting the level structure.

The size of data being passed from one level to the next is 2w bits, in other words, twice
that of the final message digest size. Any randomly generated attacletatgen
collisions in the superblock output will require work on the order"afiferations.

Multicollisions may be constructed by choosing messages that diffebloglabut

collide, then extending the message with two new blocks to collide startinghevith t
collided chaining variable. In SANDstorm one may attempt this, but one must either
force the chaining variables to collide or else force a collision in thedeval Both take
work on the order of‘2 This effectively removes the possibility of success. Herding type
attacks are similar and have the same work bounds.

Our expectation is that collisions stemming from manipulation of the mode andhghaini
constructs will require on the order df @perations. This clearly requires more work
than just finishing the hash and finding collisions in the message digest directly.

Length Extension Attacks

The final message digest is related to the chaining values in a complicgtethea
finishing step, the padding and the length field in the finishing step of Level 4iedfgc
remove the possibility of doing length extensions.

9. Application USE, HMAC, etc.

In all ways, the SANDstorm family is designed to be a drop-in replacemehef@HA
family, and for each digest size the SANDstorm family will be have gtinezqual to or
greater than the corresponding member of the SHA family, no matter what the
application, including any existing application of HMAC, Pseudo Random Functions,
and Randomized Hashing.

Page 30 of 39

10. Computational Efficiency

Our computational efficiency estimates are based on the referencemplaifiicated in
the NIST documentation. Our tests were run on

* NIST Reference Platform: Wintel personal computer, with an Intel Core 2 Duo
Processor, 2.4GHz clock speed, 2GB RAM, running Windows Vista Ultimate 32-bit
(x86) and 64-bit (x64) Edition.

» Compiler (Note that the selection of this compiler is for use by NIST in Rolirsad 2,
and does not constitute a direct or implied endorsement by NIST.): the ANSIglleazom
in the Microsoft Visual Studio 2005 Professional Edition.

Due to the method of construction, the timings for SANDstorm-224 and SANDstorm-256
are virtually identical, similarly for SANDstorm-512 and -384.

An optimized version of SHA-1 and SHA-256 were used as reference points of
comparison. The NIST api seemed to get in the way and cause our timing routines to give
odd results. The timings below bypass the more external functions and focus orethe tim
to complete a single compression function. These do not count the finishing step, which
may be amortized away with long messages.

According to the call for proposals not much if any priority in Round 1 of the competition
will be given to assembly coded implementations. However, we experiencaltiffic

with the reference compiler during a multiplication of two 32 bit numbers where the 64

bit output was retained. It had a tendency to convert the 32 bit numbers to 64 bit numbers
and then do the multiplication. This irritating operation slowed down our implementation
to a noticeable degree. To overcome it, we inserted a tiny amount of assembly code in a
secondary implementation. Our assembly code focused only making sure that 32 X 32 bit
multiply did not magically turn into a 64 X 64 bit multiply.

32-bit Machine 64-bit Maching
Optimized| Assembly| Optimized
SANDstorm -224, -256 4600 4000 2340
SHA-1 1200 930
SHA-256 2600 2500
SANDstorm-384, -512| 38000 12200

Figure7: Timingsin clock cycles of a single compression operation.

Again, since assembly versions of the algorithm were not to be a priority in the Round 1
of the competition, we did not include an assembly version for SANDstorm-512, nor did
we port the small amount of assembly code to the 64 bit machine. In any event, we feel
further optimizations are available with or without assembly.

Page 31 of 39

Operation Counts

SANDstorm-256

During the operation of SANDstorm, there are several different logieahtpns that we
will group into a single cost category. These are not always entirelyrties bat close
enough for this discussion. Logical operations include: Not, XOR, AND, Shift L&ft, S
Right.

There are two arithmetic operations: addition and multiplication. The add#iereither
modulo 2* or 2*2. On some architectures there may be a significant difference so, since
the majority of the additions are 64 bits, these will be specified as adds, or +. The 32 bi
additions will be called, 32 bit adds. The multiplications * are 32 x 32 to 64 bit
computations.

Similarly the BitMix function as written takes 28 logical operations, bcerit be
completed in 16 by doing the following four steps in turn

T = (AC)&6666666666666666; A =AT; C = CIT,

T = (BUD)&3333333333333333; B =[BT; D = DUT,;

T = (AOB)&5555555555555555; A =IAT; B = BOT,;

T = (CD)&5555555555555555; C =[CT; D = DOT,;

where the numeric constants are represented in hexadecimal notation.

« ROTL"(Z) requires a left and right shift and an XOR for three logical operations
¢ F(2) = X*+Y? modulo 2* requires one + and two *.
¢ G(2) = X*+Y*+ROTL*4((X+a)(Y+b)) modulo *
0 X+a and Y+b are 32 bit additions. Additionally there is one rotate (3 Logical),
three multiplications, and two 64 bit additions.
 Ch(A,B,C) = (A&B)J(-A&C) takes four Logical operations as written, but it can be
written as Ch(A,B,C) = €I (A&(B O C)) which is 3 logical operations

* SB(2) = Z is an AES sbox look-up and replace. Our implementation requires two
Logical operations and one look-up.

The round function operates on four words in turn and then performs the BitMix
operation. Recall each step in the round function (with the non-essentials for counting
stripped out) is:

ROTL (SB (W + F(Wi.1) + Ch(W.1,Wi2,Wi.3) + A(r,i)))

The message schedule repeats the following computation 25 times:
ROTL (SB(ds + G(d-1)+Ch(d.1,d2,d-3) + d-4 +B;))

The message schedule and the chaining variables are XORed into the &thte, var
additionally there are a few extra operations required for the Round 0 input.

The following table lists the operations for a single compression step.

Page 32 of 39

Logical | 64 bit+| * Look-up 32 bit +

Round Function

ROTL 12

SB 8 4
Additions 12

F(2) 4 8

Choose 12

BitMIX 16

Total in one Round 438 16 8 4

Total in five Rounds 240 80 40 20

M essage schedule
ROTL

SB

Additions

G(2) 3
Choose 3
Total in one Step 11 6 3 1 2
Total in 25 Steps 27b 150 75 25 50

w

N
[ERN

N

Statevariables
Round O 36
Rounds 1-4 32
Total 68

Total for one compression 583 230 115 45 50

Figure 8: Operation Countsfor a Single Compression Step

On a 32 bit machine, if the logical operators and the 64 bit additions take twice as long as
a 32 bit addition and if each multiplication takes 3 times as long as the 32 bit additions,
and a table look up counts the same, then we have 2066 32-bit instructions.

On a 64 bit machine, if the 32 bit additions and look up take as long as a 64 bit addition
and the multiplication takes 3 times as long, then we have 1284 instructions.

The operations in Figure are for a single compression and do not account for the mode.
The SANDstorm mode includes up to five levels including a finishing step, whicgsalwa
occurs. Each time a superblock is begun, an additional 20 or so XORs for initialization
must occur. Depending on the size of the superblock these may be in the computational
noise.

Page 33 of 39

The effect the mode has on the total operation counts depends on the length of the
messages. For very long messages the finishing step may be amortized anchthe ove
effect of the mode is an 11% increase in counts.

For one block messages the finishing step will double the number of operations. For two
block messages the overhead is 50% reducing rapidly (but not consistently) witlgeness
length down to the 11%.

Cost Estimate of the SANDstor m Hash for an 8-bit Processor

We selected the Z80 architecture for our estimate. The Z80 is a well-kmnclwteeture
(see http://en.wikipedia.org/wiki/zilog_Z80), is about 30 years old, and is llegilaa
variety of implementations and simulations, including as an FPGA. The speed, the
number of clock cycles, and the relative timing for the instructions apéa#ibrm
dependent. Our performance cost estimate is simply a count of the number of
instructions executed in a reasonable implementation of SANDstorm on the Z80. The
simplicity of the instruction set makes the instruction count a fairly plfatiodependent
performance measure.

Our estimate of the number of instructions required to compute the SANDstorm hash on

a Z80 microprocessor is based on the following obervations: For a 224 or 256 bit output,
each use of the compression algorithm takes about 50,000 instructions when processing a
block of 512 bits. For a minimal message of up to 511 bits, two calls to compress are
made, so a minimum hash will take 100,000 instructions for a 224 or 256 bit output.

For a 384 or 512 bit output, each use of the compression algorithm takes about 160,000
instructions, processing a block of 1024 bits. A minimal message of up to 1023 bits will
take 320,000 instructions for a 384 or 512 bit output.

For a long message, there are 1.1 compress calls per block. The cost of a 224 or 256 bit
output hash is about 110 instructions per input bit. The cost of a 384 or 512 bit output
hash is about 350 instructions per input bit.

The details of our estimate are:

Moving a 64 bit quantity: 11 instructions. (3 setup, 8 data moves)

Adding two 64 bit quantities: 26 instructions. (2 setup, 8 sequences of load, add/adc,
store)

XOR of two 64 bit quantities: same as Add.

Rotating a 64 bit quantity, one bit position: 10 instructions.

Multiplying two 32 bit quantities, producing a 64 bit product: 270 instructions
(average).(Note, this is based on the comb algorithm: The multiplicand is added
into the product register with any of four byte offsets, controlled by bitsuin f
bytes of the multiplier. The product register is then shifted left one bit, and the
conditional additions are again performed, controlled by another four bits of the
multiplier. Eight cycles of this process develops the complete product.)

Page 34 of 39

In SANDstor m-224/256:

The F function (within the round function): 600 instructions. (Two multiplications, one
64 bit addition.)

The G function (within the message schedule): 950 instructions. (Three mulbpkca
two 32 bit additions, two 64 bit additions.)

The Ch function: 40 instructions. (CH(A,B,C) £IGA&(BIC).
Load,Xor,And,Xor,Store, 8 times.)

One 64 bit word of the Message Schedule: 1200 instructions.

Bitmix on four 64 bit words: 500 instructions.

The message schedule: 30,500 instructions. (Twenty five result words, one Bitmix.)

One 64 bit word within a round of the compression function: 750 instructions.
(Three 64 bit additions, one call each to F and Ch, one sbox lookup, one 1-place
rotation of a 64 bit quantity.)

One round of the compression function: 3800 instructions. (Four mixing operations, one
Bitmix, two or three xors of 256 bit words.)

Compressing one 512 bit block: 50,000 instructions. (Message schedule, five rounds of
compression.)

For Sandstor m-384/512:

The computation pattern of SANDstorm-384/512 is the same as SANDstorm-224/256,
but the operands are twice as long: 128 bit arithmetic replaces 64 bit arithmetmodtor
operations, this simply doubles the number of Z80 instructions required. However, the
multiplication operation is different: The cost of 64x64 bit multiplication is aBdut

times the cost of 32x32 bit multiplication when using the Karatsuba algorithm.

In SANDstorm-224/256, 75% of the work is in the multiplications. To estimate the cost
for SANDstorm-384/512, we split the work of SANDstorm-224/256 into multiplication
and non-multiplication parts, (37,500 + 12,500), and scaled by 3.5 or 2 respectively. The
total is about 160000 instructions, to run the compression algorithm for a 1024 bit input
block.

For 8 bit processors, most of the work goes into multiplications. A processor with a
hardware multiplication, such as the old M6809, will be much faster. For the Z80, good
results might be obtained with algorithms such as Quarter-Squares oeuHeof

Triangles, which use modest size tables to speed up multiplication.

11. Memory Usage

There are several ways to implement the SANDstorm family; some eéegoie memory
than another. This discussion focuses on a reasonable software implementation.
SANDstorm-256 uses 50 of the 64 32-bit constants used by the SHA family, during the
compression operation. SANDstorm also uses the same eight initializaticantsras

the SHA, these constants are expanded into five 256 bit initialization constantgeper le
Eight additional fixed constants are used. Two of the additional constants are 32bits ea
and 6 are 64 bits. A reasonable software implementation of SANDstorm would
precompute and store these constants. This is a total of 50*32 +5*5*256+448 = 8448

Page 35 of 39

bits. A more conservative approach needs only the additional 448 constant bits that are
separate from what is needed for an implementation of SHA-256. Of those 448 bits, 4*64
bits are the selector bits in the BitMix function. These have a very simple teitrpttat

may be recreated when needed to reduce the fixed storage.

Both the round function and the message schedule use the AES sbox. There are 256 one
byte entries. From a storage standpoint, an implementation of the SAND#orithen

has a high probability of being combined with AES encryption, so the sbox should be
available for use, thus, possibly, reducing the total memory usage. Total 2048 bits.

The message schedule computes 25 64 bit values after the 512 bit message is input. These
25 values can be unrolled and stored or computed as needed. If completely unrolled and
combined with the input message, there are 33*64 = 2112 bits. On the other hand, the
message schedule may be thought of as a block of eight 64 bit words and processed in an
as-needed fashion. In this case there are only 512 bits to store.

In the compression function, there are five rounds, each with a chaining vénathke t

256 bits in length. (One of the chaining variables is actually a constant foma give
superblock). Each of the five levels in the tree requires five chaining valuesusabe
manipulated during the course of the algorithm. That is 5*5*256 = 6400 bits. However,
Level 0 must be completed before Levels 1, 2, and 3 can begin. The values from Level 0
are used as part of the initialization of the chaining values for those levei&arki

Level 4 is not invoked until all other levels are complete. At any given timesttthree

of levels require storage of the chaining values. That is 5*3*256 = 3840 bits.

Data is also passed to from one level of the tree to the next. This requires & Hidst

bit values in addition to the message blocks being processed in Levels 0 and 1. The data
for Level 4 does not get created until Level 3 is completed. So, a total of 1024 bits must
be passed from level to level.

The round function actively operates on four 64 bit state words at time, thus requiring
256 bits.

Constant Volatile | Active
Constants 8448
AES sbox 2048
Message Schedule 512
Chaining Variables 3840-6400
Level Data 1024
State Words 256
Totals 10496 5376-7936| 256| 16128-18688

Figure9: Memory Usagein bits

Page 36 of 39

Depending on the implementation, the total amount of RAM for function variables is
about 2 KB.

Note that short messages need less memory. For one block messages.wshen Le
completes, the output can go directly to Level 4. At any given time only one set of five
chaining values needs to be retained: 4352+512+5*256+256 = 4352+2048 = 6400 bits.

Similarly, shorter messages will not use Level 2 or 3 and so will use fewerces than
longer messages. One would expect memory requirements to be around 4352 bits for
fixed constants and between 2048 and 8192 additional bits required for processing,
depending on message size and implementation.

SANDstorm-224 storage requirements are the same as SHA-256. The conettrés ar
same except for an additional eight 32 bit initialization values. SANDstorm-51-3&hd
require approximately twice the storage as SHA-256 and -224.

Our reference implementation including and. h files including the handling api is on

the order of 60 KB. A Linux executable is on the same order of magnitude in size. No
effort was spent trying to minimize these numbers.

Page 37 of 39

6€ 10 g€ abed

©BPG9¢3/.298P69P06 6048230117PB094SS 2dPZaYUT166E8I99 ¢833/.peeEE6ESG9U(1952

059J77898 JSEEBIYIIOPIEIZ TP8ZOTIFIEBNSG0IG BREGPYO688)9dP®eL 172l
Sauwlf uoljjiw auo ‘e = abessaw

81490€T1S0984020° €T1/.94604CTdTdIC

¢83174EaE6PPBOPOS CEI90EV6STTECEYA 298999 22eP0.L9 PZIYCIer0.LSPOE EV193005092dydr¢ B009ETHEA9TYATL.L (TS
£0804E39¢3(q/3YEQ 9236 ArPO68 8YPIP99TEPIQ24LD BTTSGHIC898IGU96€E 1G20959P39/. 0718, 90E6969€617E39946 ¥8€E
6J9598EP0GIPIBGE PLCIBBYO0.LPZOEBIE 6677E969B6ICELI6) V617.8C99EI06EL9Y 1952

¥8.LELED6 ¢917059S5.2986ST.LP 9020P6YT0TZaCSYE 9SETOVTIedaqeces ved
sjageyd|e QT = abessaw

066°9.9T9pPrI98eE 0SI9TPLIALIEI699

G9¢ZpZai690d6eS.d €2922.68808821LGS 92Q)9€ESPA80PIBE LTS606917809T6S8P IB0369E€STL688EL0 S6T904696006€PLI TS
¢92(eC9T993Q)cP9 9€(q/L0aS8IPEHES GPBSLIGISEITZGIO BIIL6TEPPSELIPP] C1¢IEL, VPHO®LOP ¢3/991/29909698T ‘¥8€
0,Q9terP6903SPIPC PPBOYS3PEBEITYCE 831 L9PCPCEBPYCZC OV YPCYEYTHSITS (19G¢

9G9G8PJ° €LY 1Ial6A0TTZPT SOTIEEB6608IPY3.L ¢8I966ETIS00ULOE 7Z<C
zAxmanisibdouwpiybyapoge = abessaw

800TTTCZ=269€d6ET0 422Pe8PLSIe=].L60

08HTY64CSSOATEP 8229€950699€/. /. /8 QUPIO02UPILO3TO €9/.828P33LLSPTS0 ¢L9GEREULCTIBPEIG HS68IEE39PI99T8] TS
1€98640989029869 £2EI0PLI0T8I56PC 0.28T2U2989961PS 26PgoeqpPcyeE/BT0 PSYIEIY.Ge62619 PEJOEI0CAPPIOY ¥8E
19219G9S0TS9P0PPC BEBTIGIBPY069. L. 608.EVULBOPSPSOE 0V8C1I9C9EEIGI0T 9G¢

B979T899 9932JPpTSEAAP86YJ d3dPTATe817Z.L3)0 0ETSZLT609329.p) ‘1Ze
Joge = abessaw

‘palinbal se eipaw
[eando ayl uo papnjoul SI SI0193A 1S3] palinhelquesi| [N ¥ "uoielou [ewidapexay ul pajuasaldal are xipuadde siyl ul senjea ||v

S10109A 159] a|dwes Vv XIpuaddy

6€ 10 6€ abed

€eaquiEy LiG9Y 684 90EA1991960€98.9

P8IPS69929PYSeqT ¥BIEB6.9P0SITIIS LBIEGHICIGYE6.60C AETI99986I8TIS0T 689190TI88806E9 TI(P31EQQQB8BECPE TS
¢v199PCLY611AYI9 8ATSPASTEYPEGPP6 UPSTIIT856295.0 BI6E9TI91799PI698 G6.609.999)9€€68 0SPAPYLSCPSCALED ¥78€
Tir8YIAIP66EP LD LT6A960TIE6SISC8 ¥8G/.2IPSH662886 85€R(6/.926898CTS 9G¢

Jdegy/ell ¢6¥20civoa¢/aeE 9ZTIpPTZceZarp8ay 053.9PL96SY 74,09 (e
Joge = abessaw

2 = I91vwelredAiunoass|qeun]

90€499PSaqapy6TE) veI8Y.7065440TSe

J¢TU9PYaEEYQI8P8 €1L56050YELSEIES GEEIYPBI9S6U690T ¢0989)5489/99T LY LGeEDTCS8AYEE6IIY SPOSICTeTCEYVYIIS (TS
P942850909209€6¢ £#e879902PEEBLSE CHOZPOPYSeESBTI0 999809206 2Y Y0 BAISQQ026€650499 PILIEPaGHIeL00D 8E
L9ES64649E08€S.P 6EEI20.840°9/.8) P208869€JR L6139 IWE6CETAIO6PEO0E 952

0320PLTI ¥)0qyTT2ZEBTTI9EU C0ITSSPPPIIZSICI 986818LIELEIPOIE vZC
g T 9jbuls e s| abessaw

£33002994174999pP 9990.,961760€SCPT9

P8Le6IPTEIPIIS0T SIcCEOTYTZTIALEP J1092aY6i66TUPP 95058901SE8S008] ¥€/.58324/,88T1(0938 9PaiTeTCe818990. TS
€eQoQg99gqasicay ¥0craorPA8IIEEI9 00.686851589/.808 LP02.0eTOOY 069 9699/.336€86H9€Ie 89801ETS096978€C 1/8€
66E2A9EPPTZH6S949 €8608304TL90H6Y 99009ETSYPIBYI0Y E69ISOITI6EISCEL 9GC

poed26/8 £€e9q0eETa/,2964T. 9¢TT1.090£99806€2 ETIAPTCLISIITSES ‘e
[INu sI abessaw

6008898€632e5098 PISIE6Y78S99EAP
09T4026°2084600°pP PL9€IOBCTOEPIIP P8BPE.LB65B6.SU.L8 £8U8CIEVIGIEIITE TPY93I9G50e6EEGE 8GPUS8TRTEPRELE (CTG
}PepegIngG9/966T 64TECEYI6LEDIQID LBBO0PYTeCE9928Y ¢PLG8I3TBEPIBIPGI £.39992392061SPI 9¢8EUCYPEIVTSOTE ‘V8E

	1. Introduction
	Design Overview
	Notation and Conventions

	2. The SANDstorm Padding and Message Length
	3. The SANDstorm Mode
	SANDstorm Mode Description
	SANDstorm Mode Performance
	Choice of Superblock Size

	4. The SANDstorm Chaining
	SANDstorm Compression Description
	Initialization Constants
	Parameters and Performance

	5. The SANDstorm Compression Function
	SANDstorm-256 and -224 Compression Function Description
	SANDstorm-512 and -384 Compression Function Description
	SANDstorm Compression Function Performance

	6. Cutdown and Extension Alternatives
	7. Design Choices
	8. Security Discussions
	General Observations
	Specific Observations

	9. Application USE, HMAC, etc.
	10. Computational Efficiency
	11. Memory Usage
	Appendix A Sample Test Vectors

