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The Role of PA Iin the Case for Safety

Performance Assessment (PA) Is

» a probabillistic risk analysis of a radioactive waste disposal
facility used to demonstrate that performance objectives for
long-term protection of human health/environment will not be
exceeded following permanent closure of the facility

Sandia National Laboratories (SNL)

* has played a key role in development/implementation of total
system analyses of waste management systems for over 30
years
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Role of PA In the Case for Safety

In early stages, characterization program is broad-based and focused on gaining
an adequate understanding of the system (waste, facility, and site) and
identifying greatest sources of uncertainty

As knowledge and understanding of the system improve, features, events and
processes (FEPs) can be developed/ screened and scenarios can be
developed/analyzed

Conceptual and mathematical models are developed based on relevant
(included) FEPs

Probabilistic modeling is conducted, taking into account both parameter
uncertainties and scenario uncertainties, to generate estimates of performance

Sensitivity analysis is conducted and scenario assumptions and parameters
with greatest impact on performance measures are identified and prioritized

R&D activities that produce reasonable reductions in uncertainty are funded
while other activities are terminated or scaled back

Iterative— new information used to refine requirements, performance measures,
alternatives, and models
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Role of PA in the Case for Safety

Phases of Repository Planning and Development (NRC 2003)
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breadth of the arguments for each element of the safety case
substantial during the phased development of the repository
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Evolution of Performance Assessment

« Conceived and Developed Over 30 Years Through a Number of Programs

* International Subseabed Disposal Program (SDP)

e Development/demonstration of high-level waste (HLW) PA methodology for
a bedded salt repository for U.S. Nuclear Regulatory Commission (NRC)

* Development/demonstration of HLW PA methodology for a basalt repository
for NRC

e Development/demonstration of low-level waste (LLW) PA methodology for
shallow trench burial for NRC Development/implementation of the

* Waste Isolation Pilot Plant (WIPP) PA for the U.S. Department of Energy
(DOE)

e Development/implementation of the Yucca Mountain (YM) Total System PA
(TSPA) for DOE

e Evaluation of two generic geologic repositories for disposal of HLW and
spent nuclear fuel (SNF) stored at Idaho National Laboratory (INL) for DOE

* Development/implementation of PAs for disposal of special-case wastes in
Greater Confinement Disposal (GCD) boreholes for DOE

National Level Site Evaluation Considerations, Processes
and Criteria: US Case Studies




Subseabed HLW Disposal System
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Subseabed HLW Disposal System

Identified the need for a total nested (i.e.,
coupled) set of codes, allowing iterative
deterministic and probabilistic calculations

Demonstrated how to use sensitivity analyses
to identify parameters for future study

Identified the need for defining and including
low probability events

Demonstrated the use of Latin Hypercube
Sampling (LHS) to optimize the number of
calculations
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EARLY DEVELOPMENT AND IMPLEMENTATION FOR NRC

e Generic HLW Repository in

Bedded Salt
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Evolution of Performance Assessment

Probabilistic methodology required

Uncertainties too great for a deterministic analysis

Multiple iterations of PA methodology required

As each iteration is completed, compare estimated performance measures to the
requirements and stop when requirements have been met (and analyses are
sufficiently mature)

WIPP PAs: 1989 (demonstration), 1990 (first full PA), 1991, 1992, 1994 (Systems
Prioritization Method, SPM); 1996 (CCA), 2004 (first recertification), 2009 (second
recertification)

YM TSPAs: 1991 (demonstration), 1993 (first full PA), 1995; 1998 (Viability
Assessment); 2000-2001 (Site Recommendation); 2008 (LA— Authorization to
Construct YM repository)

PA provides a framework for organizing relevant data and information

National Level Site Evaluation Considerations, Processes

Captures data and information from multiple sources; organizes it in a logical manner
and uses it to support decision making, explicitly taking into consideration the
uncertainties

Provides transparency and traceability to the analysis

All model calculations and decisions require retrievability, traceability and
reproducibility; PA can analyze different components of a complex system in isolation
and in conjunction with other components; intermediate results captured and results
retrievable
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Today’s Discussion

“ABCSs” of Performance
Assessment
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The “ABCSs” of Performance Assessment
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The “ABCSs” of Performance Assessment

Geologic studies
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and analysis

l' Surface-based geologic drilling,

Geomechanical testing ~ €oring, & geophysical logging
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The “ABCSs” of Performance Assessment

» A scenario is a generic description of the future evolution of the disposal system.
Scenario uncertainty comes from different assumptions about the FEPs that may
occur in the future and which FEPs and FEPs interactions are included in a

particular scenario.

* All retained (screened-in) FEPs must be accounted for in PA in at least
one scenario.

 FEPs can beincluded by explicit modeling or by parameter
assignment.

 Expected FEPs are included in all scenarios
Creep closure
Brine flow, gas generation

* Disruptive FEPs are included in disturbed scenarios.
Drilling, mining, brine pocket
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The “ABCSs” of Performance Assessment

« Conceptual Models

« aset of qualitative assumptions
used to describe a system or
subsystem.

e Process Models

* anumber of parameters and
relationships and solution of the
mathematical model requires the
assignment of particular values to
the parameters.

o« Computer Models

* Integrated suite if codes, with
parameter values
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Precisely define what needs to be modeled
Identify what is known about the process being modeled
Site characterization data; Constraints; Necessary
simplifying assumptions
Develop a description of the process that is consistent with
the known facts

Translate the description into a set of mathematical
equations

Identify input parameters that need to be assigned
numerical values

If the equations cannot be solved simply with analytical
techniques, it may be necessary to implement numerical
methods to solve the equations; Example: Finite difference
or finite element methods

Code development, i.e., implement the numerical
methods into a computer code

Code Testing-
Verification: ensure accuracy of the code
Validation: compare code predictions to “real life"data
Sensitivity analysis and parameter refinement




The “ABCSs” of Performance Assessment

* Moving from Deterministic to Probabilistic
* Given all of the sources of uncertainty, it would be difficult (if not impossible) to put
forth a credible deterministic prediction of the future performance of the repository
» The first step in developing the probabilistic PA framework is identifying what types of
uncertainties will be included
» Three principal types of uncertainty related to the stages of the PA

development process

e Scenario
. Stochastic (aleatory) uncertainty arises from a lack of knowledge about future
events. The sequence of future events cannot be known. Example: Timing of
future drilling events
« Conceptual Model
. uncertainty about the conceptual model chosen. Example: dual porosity model
versus multi-rate transport model; equilibrium model versus kinetic model.
 Parameter

. Subjective (epistemic) uncertainty arises from a lack of knowledge about
parameters assumed to have fixed values within the computational
implementation of a PA. Examples: Permeability, Porosity.
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Database Parameterization

Parameters are used in the
modeling and to capture
uncertainty

Development of parameters
IS a process

Needs qualification from
sources

Quality Assurance
procedures help insure
parameter integrity

Parameter database
Tracks parameter values

Insures consistency
between analyses
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\dentity a physical Assigning Values to Parameters

parameter in
computational models
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Today’s Discussion

S Case Studies
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WIPP Features, Events, & Processes

Features, events, and processes (FEPs) considered to be potentially important to the
disposal system are identified

FEPs are used as a tool for determining what phenomena and components of the
disposal system can and should be dealt with in PA calculations

FEPs are screened according to:

Probability: If a FEP has a probability of occurring less than 10 in 10,000
years it does not have to be included in PA (e.g., meteorite impact)

Consequence: if a FEP is beneficial to performance or has insignificant
consequence (e.g., distribution of cumulative releases unchanged by
omission)

Regulation: Certain FEPs are either screened in or out by regulation (e.g.,
mining, resource extraction following drilling)
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WIPP Release Pathways
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E1 Drilling Scenario
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E2 Drilling Scenario
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E1/E2 Drilling Scenario
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WIPP PA Models

13

o 24 WIPP PA Conceptual Models
Developed from FEPSs, characterization, etc...

« Conceptual models are generally implemented in process models.

» Process models simulate distinct processes or groups of processes
such as:
Flow of brine and gas in the subsurface
Radionuclide transport in the subsurface
Gas generation
Flow of brine and solids up a borehole
Permeability enhancement due to fracturing
Room closure
Solid extraction by drilling
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WIPP PA Modeling Codes
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Dealing with Subjective Uncertainty

16

Latin Hypercube sampling (LHS) is used to define 100 sets of uncertain
parameters

One realization of the sampled parameters is called a “vector”
The group of 100 vectors is called a “replicate”

Results from all 100 vectors combined to determine mean releases
(and percentiles).

The replicate essentially covers the full range of all the uncertain
parameter distributions

LHS minimizes the correlation between parameters unless directed
otherwise

Three replicates are run to demonstrate statistical equivalence
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Dealing with Stochastic Uncertainty

L/

WIPP PA treats stochastic uncertainty through Monte
Carlo sampling on possible futures

10,000 futures evaluated for each vector to assign a probability to releases

A future is the cumulative release from one possible sequence of events
from O to 10,000 years

Each future consists of a series of randomly occurring drilling intrusions

The consequences of drilling intrusions are calculated by interpolating
between consequences at discrete times

Order statistics used to generate complementary cumulative distribution
function (CCDF)

100 yrs

12 3 45 6 7
0yrs | | S S 10,000 yrs
’ 0 ’ ’ ' '

. discrete consequence time l drilling intrusion time
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Mean CCDF by Component
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TSPA-LA Scenarios

Four scenario classes divided into seven modeling cases

Nominal Scenario Class lgneous Scenario Class
* Nominal Modeling Case (included * Intrusion Modeling Case
with Seismic Ground Motion for e Eruption Modeling Case

1,000,000-yr analyses)

Early Failure Scenario Class

* Waste Package Modeling Case
* Drip Shield Modeling Case

Seismic Scenario Class
e Ground Motion Modeling Case
» Fault Displacement Modeling Case
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TSPA Architecture
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Uncertainty in YM TSPA

Epistemic uncertainty incorporated through Latin hypercube sampling of
cumulative distribution functions and Monte Carlo simulation with multiple

realizations

(approx. 400 uncertain epistemic parameters in TSPA-LA)
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SPA Results

Expected Annual Dose (mrem)
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