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#_ Introduction

» Salt repository is one of four generic disposal system
environment (GDSE) options currently under study by U.S.
DOE

— Stable geology
— Chemically reducing condition
— Self-healing by creep deformation
— Limited water availability and movement
e The salt GDSE study is to support the development of a

long-term strategy for geologic disposal of high-level
radioactive waste in a salt formation

« The immediate goal is to develop the necessary modeling
tools to evaluate and improve understanding on the
repository system response and relevant processes

* This paper presents an initial version of the salt GDSE model

and the model results
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 Assume saturated, reducing condition
Cutting, Caving, Spalling — Repository in a bedded salt formation
below a carbonate aquifer
e Isothermal condition at ambient
<—T»Overlayingcarbonateaquifer temperature

. e Undisturbed (or Reference) Scenario
Boreh_olepenetrqtmg / Near-field/far-field interface ( . ) .
][sfﬁj'rmEq?uifl'onﬁspfgnk:rtlo for human intrusion — RNs released into and transported in an

interbed (1 m thick) below repository

saltbed o Djsturbed Scenario

_— — “stylized” human intrusion scenario
N

— A single borehole penetration at 1,000
Interbed — i —_— years
— Sample the number of affected waste

D > packages (WPs) (between 1 and 5)
Q Brine pockets — RNs from affected WPs released directly
to overlying aquifer by pressurized
brines with steady-state flow rates

— Not consider potential dose impacts of
waste brought up by drilling activities
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#. Waste Inventories and Scenarios

* \Waste types

— Commercial used nuclear fuel (UNF) (140,000 MTU)

» Convert the total inventory to equivalent pressurized water
reactor (PWR) inventory for simplification

» 32,154 UNF WPs (10 assemblies per WP)
 Isotope inventory based on the PWR UNF
—60 GWd/MTHM burn-up
—4.73% enrichment
—30 yrs after discharge from reactor

— Vitrified existing DOE high-level radioactive waste (HLW)
* 5003 WPs (5 canisters per WP)
— Vitrified “hypothetical” reprocessing HLW of commercial UNF
* 99% recovery of U and Pu from commercial UNF
 Assume all others remain in the waste stream
 Assume the same RN mass and isotope inventory per canister as

DOE HLW
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(continued)

| “ .ﬂVaste Inventories and Scenarios

« Assume a square repository footprint
— Spacing between emplacement tunnels: 25 m
— Spacing between WPs: 6 m

* Waste inventory cases for Undisturbed Scenario

— Case 1. UNF plus DOE HLW
» A total of 37,157 WPs
* A square repository footprint with a side of 3,270 m

— Case 2: DOE HLW plus reprocessing HLW
A total of 9,058 WPs
* A square repository footprint with a side of 1,615 m
* Waste inventory cases for Disturbed Scenario

— Case 1. assume only UNF WPs affected
— Case 2: assume only DOE HLW WPs affected
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—
2 Radionuclide Mobilization and Transport

* Not consider WP containment barrier performance

— Waste form degradation and RN release at the beginning of
simulation

— Treat the WP interior as porous medium of corrosion products of WP,
internal components and waste form

» Fractional degradation rate model for waste form degradation
— Commercial UNF: log-triangular: min = 108/yr, mode = 107/yr, max =
10-5/yr
— Glass waste form: log-uniform: min = 3.4x10°%/yr, max = 3.4x103/yr
 Model the repository disposal area as a large mixing cell

— Not consider RN sorption on corrosion products and geologic
materials

* Radio-element solubility for two redox conditions
— Near-field brines (reducing condition)
— Far-field brines (less reducing or slightly oxidizing condition)
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(continued)

| e
| \‘ | %adionuclide Mobilization and Transport

RN sorption in the near-field and far-field transport

— Linear equilibrium sorption (Kd) model for interbed and overlying
carbonate aquifer

* Pore flow velocity in interbed
— Log-uniform (108 m/yr, 2x102 m/yr)
* Pore flow velocity in overlying carbonate aquifer
— Log-uniform (3.1x103 m/yr, 31 m/yr)
 Performance measure matrix

— Mean mass flux from major system components (e.g., near-field and
far-field boundaries)

— Mean dose at “hypothetical” accessible environment (AE)
5 km down-gradient from the edge of repository
* |IAEA BIOMASS Example Reference Biosphere 1B (ERB1B) dose model
 Dilution rate of 1x10* m3/yr in aquifer

« Individual water consumption rate of 1.2 m3/yr

Sandia
8 National
Laboratories



'
—~
*ﬂajor Conservative Bounding Assumptions

* Not consider RN release delays during initial dry-out period
around the waste disposal area due to waste decay heat
— The extent and duration of dry-out depending on repository

thermal loading, WP heat output characteristics, repository
thermal-hydrologic response

 No containment barrier performance of waste package

* No RN sorption on corrosion products and geologic
materials in the mixing cell representing waste disposal
area

e Continuous brine flow from waste disposal area to
underlying interbed for the entire simulation period
(Undisturbed Scenario)

e Continuous steady-state upward brine flows through the
borehole for the entire simulation period (Disturbed

Scenario)
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Undisturbed Scenario: Waste Inventory Case 1

Mean Mass Flux (g/yr)

Mean Mass Flux from Near-Field Interbed
(Generic Salt Repository, Waste Inventory Scenario 1)
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RN transport greatly retarded in the far-field interbed

by sorption

 Non-sorbing or weakly sorbing RNs (1-129, Se-79, ClI-
36) with a significant inventory are released from the
far-field interbed at noticeable rates

* [-129 is the dominant long-term dose contributor

— unconstrained solubility
— Extremely long half-life (~16 M yrs)
— Significant inventory in the waste

. @
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' - ' Undisturbed Scenario:

Waste Inventory Case 1 vs. Case 2

Dose at Hypothetical Accessible Environment Dose at Hypothetical Accessible Environment
(Generic Salt Repository, Waste Inventory Scenario 1) (Generic Salt Repository, Waste Inventory Scenario 2)
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e Higher mean peak dose for Waste Inventory Case 2
— Higher fission products inventory on a per-WP basis for Waste
Inventory Case 2
« Assumptions on the reprocessing HLW inventory

— Degradation rate of the glass waste form (DOE HLW and reprocessing
HLW) 2 to 3 orders of magnitude higher than the UNF degradation rate

— Higher concentrations of soluble RNs (I-129, Se-79) in the near-field
water for Waste Inventory Case 2
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‘ Disturbed Scenario:

Waste Inventory Case 1

Mean Mass Flux from Far-Field Overlying Aquifer
(Generic Salt Repository; Human Intrusion; Waste Inventory Case 1)

Mean Annual Dose at Hypothetical Accessible Environment
(Generic Salt Repository; Human Intrusion; Waste Inventory Case 1)
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» Different mass release rate and dose histories from Undisturbed Scenario
— RNs transported advectively at much higher rates in the overlying aquifer than
the interbed
* Ra-226 is the dominant dose contributor
— Assume unconstrained solubility and non-sorbing behavior for Ra
— Ra known to readily sorb on geologic materials and not mobile in groundwater
» Higher doses for the actinides due to direct release into the overlying
aquifer with higher water flow rates Sandia
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# Summary and Conclusions

e Soluble, non-sorbing fission products (I-129, Se-79) are the
major dose contributors

— Uncertain solubility and sorption behavior in chemically
reducing geologic environments

* RN release pathways and scenarios are important to the
response of a generic salt repository

— Improved conceptual models that are more representative of a
salt repository

* Need to evaluate impact of the conceptual model
simplification and bounding conservative assumptions
— Brine movement under thermal perturbation
— WP performance
— Geologic behaviors of key RNs (I, Se, Ra)
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# Future Work

e Develop analysis tools for thermal loading and thermo-
hydrologic response in generic salt repository,
Incorporating associated processes

— Salt creep deformation and consolidation
— Brine movement

* Improve near-field chemistry for generic salt repository
environment
— High ionic strength, elevated temperature, reducing condition
— Solubility and sorption of RNs in near-field environments
 Flow and RN transport in generic interbed

* Degradation of WP, candidate waste forms and other EBS
components in generic salt repository environment

— Characterization and quantification of gases generated from
corrosion in concentrated brine under reducing condition
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Radionuclide E

Near-Field and Far-Field
emental Solubility

Near-field

Radionuclide Elemental Solubility

Far-field

Radionuclide Elemental Solubility

Element

Distribution Type

Solubility (molal)

Triangular

4.89E-08 (min);
1.12E-07 (mode);
2.57E-07 (max)

Element

Distribution Type

Solubility (molal)

Triangular

9.16E-05 (min);
2.64E-04 (mode);
7.62E-04 (max)

Pu

Triangular

1.40E-06 (min);
4.62E-06 (mode);
1.53E-05 (max)

Pu

Triangular

7.80E-07 (min);
2.58E-06 (mode);
8.55E-06 (max)

Am

Triangular

1.85E-07 (min);
5.85E-07 (mode);
1.85E-06 (max)

Am

Triangular

3.34E-07 (min);
1.06E-06 (mode);
3.34E-06 (max0

Np

Triangular

4.79E-10 (min);
1.51E-09 (mode);
4.79E-09 (max)

Np

Log-triangular

1.11E-06 (min);
1.11E-05 (mode);
1.11E-04 (max)

Th

Triangular

2.00E-03 (min);
4.00E-03 (mode);
7.97E-03 (max)

Th

Triangular

8.84E-06 (min);
1.76E-05 (mode);
3.52E-05 (max)

Tc

Log-Triangular

4.56E-10 (min);
1.33E-08 (mode);
3.91E-07 (max)

Sn

Triangular

1.78E-08 (min);
4.80E-08 (mode);
1.29E-07 (max)

Sn

Triangular

9.87E-09 (min);
2.66E-08 (mode);
7.15E-08 (max)

C,Cl, Cs, |,
Se, Sr, Tc

n/a

Unlimited solubility

C, Cl, Cs,
I, Se, Sr

n/a

Unlimited solubility

Note: Source: Ref. 3.

- Chemically reducing conditions.
- Elements Ac, Cm, Nb, Pa, Pd, Ra, Sb, Zr are known to be solubility-
limited, but are implemented as unlimited solubility in the near- and
far-field model because their solubility calculations have not been

Note: Source: Ref. 3.
- Chemically less reducing conditions than the near-field concentrated

brines.

- Elements Ac, Cm, Nb, Pa, Pd, Ra, Sb, Zr are known to be solubility-
limited, but are implemented as unlimited solubility in the near- and far-
field model because their solubility calculations have not been

completed.

completed.

Sandia
16 National
Laboratories



.
‘ Radionuclide Trans

port Parameters

Interbed
Transport

Parameters

Carbonate Aquifer
Transport Parameters

Parameter Distribution Parameter Value
Type
Aquifer thickness Constant 4m
. . . 0.07 (min);
Matrix porosity Uniform 0.3 (max)
Bulk density Constant 2800 kg/m®
. . . 0.03 (min);
Matrix Tortuosity Uniform 0.5 (max)
Brine flow rate upward S
through borehole Uniform gé Emgz)
(m°lyr) '
Aquifer water flow rate - 3.15E-03 (min);
(miyn) Log-uniform | 371 5¢ 401 (max)
Longitudinal c 10% of flow conduit
: o onstant
Dispersivity length

Kd for Radioelements (ml/g) :

Parameter Distribution Parameter Value
Type

Thickness Constant 1m

Porosity Constant 0.01

Density Constant 2500 kg/m®
Brine flow rate below Log-uniform 1.0E-08 (min);
repository (m/yr) g 3.0E-02 (max)
Brine flow rate away Log-uniform 1.0E-08 (min);
from repository (m/yr) 9 2.0E-02 (max)
Longitudinal Constant 10% of flow
Dispersivity conduit length

Kd for Radioelements (ml/g) :

. . 0.03 (min);
Uranium Uniform 20 (max)

) - 20 (min);
Plutonium Log-uniform 1.0E+04 (max)
. . 1 (min);

Neptunium Log-uniform 200 (max)
. . 20 (min);
Americium Uniform 400 (max)
. g 7.0E+02 (min);
Thorium Log-uniform 1.0E+04 (max)
0 (min);
Technetium Triangular 50 (mode);
100 (max)
40 (min);
Cesium Triangular 500 (mode);
3000 (max)
5 (min);
Strontium Triangular 13 (mode);
4.0E+04 (max)
i . 0.01 (min);
lodine Uniform 100 (max)
Carbon, chiorine, Constant 0 (no sorption)

Selenium & Tin

Uranium Uniform 2(2”5;1)('?)
Plutonium Uniform 180('21':2)()
Neptunium Uniform %Tr;ne)lx)
Americium Uniform igo(Trlr?e)lx)
Thorium Uniform 1880('31:20()
Technetium Uniform g Em::)z)
Cesium Uniform ; éT;:qngx)
Strontium Uniform é ()(Tr:1ne)1x)
Carbon, chlorine, Constant 0 (no sorption)

Selenium & Tin
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Undisturbed Scenario: Waste Inventory Case 2

Mean Mass Flux from Marker Bed below Repository
(Generic Salt Repository, Waste Inventory Scenario 2)
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