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SAND80-2820

DYNAMIC ANALYSIS OF DARRIEUS VERTICAIL
AXIS WIND TURBINE ROTORS*

D. W. Lobitz

Sandia National Laboratories
Applied Mechanics Division
Albuquerque, New Mexico 87185

Abstract

The dynamic response characteristics of the VAWT rotor are
important factors governing the safety and fatique life of VAWT
systems. The principal problems are the determination of
critical rotor speeds (resonances) and the assessment of forced
vibration response amplitudes. The solution to these problems
is complicated by centrifugal and Coriolis effects which can
have substantial influence on rotor resonant frequencies and
mode shapes. This paper will describe and discuss the primary
tools now in use at Sandia National Laboratories for rotor
analysis. These tools include a lumped spring-mass model
(VAWTDYN) and also finite-element based approaches. The
discussion will center on the accuracy and completeness of
current capabilities and plans for future research. As this
paper is meant primarily to provide an overview, much of the
detail is omitted and will be presented in a follow-on report,

* This work supported by the U. S. Department of Energy under
Contract No. DE-AC04-76DP00789.



Introduction

The primary goal at Sandia in the dynamic analysis of
vertical axis wind turbines (VAWT) is to accurately predict
vibratory and mean stress levels throughout the rotor system.
In most VAWT designs to date, quasi-static analysis methods
have been the primary tools utilized for dynamic analysis.
This simple approach was motivated by the observation that the
VAWT rotor is stiff relative to the excitation frequencies.
However, experience has indicated that substantial resonances
can and do occur for certain operating conditions in the VAWT
rotor. There is clearly a need to construct relatively
complete dynamic models to identify critical resonance
conditions and, for near resonant operations, to predict
dynamic amplification factors.

Techniques for predicting vibratory stress levels near
resonance are hampered by uncertainties in the aerodynamic wind
loading and structural damping. In the latter case, since the
VAWTs encountered to date have all been very lightly damped
(.1 to .5% of critical), near resonance, slight variations in
the magnitude of the damping produce iarge variations in the
vibratory stress levels.

Although technigques for predicting vibration amplitudes are
still being pursued, the major effort is being expended on
developing methods to identify critical resonances. With a
knowledge of the natural frequencies of the turbine and the
frequency content of the aerodynamic wind loading, both as a
function of the turbine operating speed, one can identify
possible turbine speeds which may produce resonance. Some of
these critical speeds can be eliminated by considering the
modal content of the wind loading as compared with the mode of
vibration in question.

This all seems straightforward enough, but it is
considerably complicated by the fact that the turbine modes and
frequencies as well as wind forcing functions must be obtained

relative to the rotating frame. Due to this added complexity



and a scarcity of intuition for the behavior of rotating
structures, experimental data have been relied upon whenever
possible to verify the mathematical models.

History

Originally at Sandia, finite element techniques which
accounted only for the rotational effects of centrifugal
stiffening were used to determine the spectral characteristics
of VAWTs. A version of the SAP IV code, modified to include
centrifugal stiffening, was utilized in this regard. It had
also been determined, from symmetry arguments that for
two-bladed rotors, modes which involve axisymmetric motion
about the turbine axis are driven only by even per rev
excitations, whereas modes which involve lateral tower motion
are driven by odd per rev excitations. A fan plot for the
DOE/Alcoa low-cost 17 meter turbine which was generated with
SAP IV is shown in Fig. 1.

The first revelation that this dynamic analysis technique
was inadequate came when Alcoa's ALVAWT 6342 turbine was put
into operation. The observed one per‘rev tower resonance was
not predicted by the‘SAP Iv anaiysis as all modes which involve
tower motion crossed the one per rev .excitation line well away
from the operating speed. 1In an attempt to understand this
apparent anomaly, closed form solutions of the whirling shaft
problem were examined, whereupon the necessity of including all
of the rotating coordinate system effects was immediately
realized.

To include these effects, a simple, seven-degree-of-
freedom, spring-mass model of a two-bladed VAWT, which is
displayed in Fig. 2, was developed. 1In this model, the tower
is represented by two rigid links joined together with a "y°©
joint. Torsional springs are mounted across the joint to
account for the tower bending stiffness. The blades, which are
also assumed to be rigid, are attached at the top and bottom of
the tower through ball joints with torsional springs



representing the blade lead-lag stiffness. Linear springs,
which model the cable stiffness, are attached at the top of the
tower, tending to restore it to its upright position,

Torsional springs represent the drive train stiffness and blade
aerodynamic loads are determined using a single streamtube
aerodynamic model. The equations for the model are developed
in a frame which rotates with the turbine, taking into account
all low order rotating coordinate system effects. Solutions
are obtained using time marching techniques developed for
initial value problems. This analysis package, which goes by
the name VAWTDYN, is covered in detail in a Sandia National
Laboratories report.¥*

The dynamic behavior predicted by VAWTDYN differed markedly
from that of the SAP IV model. This is shown in Fig. 3, where
a VAWTDYN analysis of the DOE/Alcoa 17 meter is summarized.

The natural frequencies of the turbine, which previously only
increased with increasing rpm due to centrifugal stiffening,
now varied in either direction reminiscent of the whirling
shaft behavior. 1In addition to this, mode shapes which had
been independent of each other became coupled. For example,
modes which containea motion either in the plane of the blades
or out of it, as predicted by SAP IV, now possessed both types
of motion.

For verification purposes, VAWTDYN results were compared to
the limited amount of experimental data available. VAWTDYN
accurately predicted the tower resonance of the ALVAWT 6342
and, in fact, was relatively successful in all these
verification tests. As a result, even though it is a
relatively crude model capable of representing only 3 or 4
rotor modes, a fair amount of confidence was developed in the
VAWTDYN package.

* D. W. Lobitz and W. N. Sullivan, "VAWTDYN - A Numerical
Package for the Dynamic Analysis of Vertical Axis Wind
Turbines," SANDB0-0085, July 1980.



However, after the erection of the DOE/Alcoa low-cost 17
meter turbine, a significant three per rev blade resonance was
observed which VAWTDYN did not predict. And, in fact, no
reasonable amount of wvariation in the parameters of the VAWTDYN
model would produce the resonance or the associated mode of
vibration. Speculating that the difficulty was associated with
the crudeness of the model, a much more refined model,

described in the next section, was devéloPed.

Current Methods

The model which is now used at Sandia for dynamic analysis
of VAWTs is derived using finite element techniques. A
coordinate system is employed, fixed in space at the base of
the tower, which rotates at a constant angular velocity.
Turbine motions within this system are assumed to be small.
Manifestations of this rotating system appear primarily in the
inertia terms of the equations of motion.

Due to the structural nature of VAWTs, the finite element
equations need only be developed for beam elements and
concentrated masses. In the case of the beam elements, for
developing the inertia matrices, the displacements and
velocities are assumed to vary linearly along the length of the
element. Using the following equation for the total velocity
at a point.

¥Ye =R TR x & +n), (1)
where,

Ve is the total velocity vector,

r, u, and u are the original position,, the

vooov Y
displacement, and the velocity vectors,
respectively, as observed in the rotating
coordinate system, and '

) is the angular velocity vector of that system,



an expression for the kinetic energy of an elemental mass at
that point can be developed. After substituting for g, g, and
%, their linear functional forms and integrating the kinetic
energy along the length of the element, the total kinetic
energy is obtained. The appropriate finite element matrices
can now be developed using Hamilton's Principle. For the
special case of { constant and directed along the "z" axis of
the rotating system, i.e.,

5 |
g = 0 (2)
(2.
2z
the various inertia matrices and their corresponding vector

multipliers, for an arbitrary element, are given below:
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Softening
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sym 2
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Centrifugal Force
[ n
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1
/3 0 0 1/6 0 r
2 g
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1
1/3 0 0 <rx > (6)
sym 2
1/3 0 y,
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- ] 22
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The subscripts x, vy, and z refer to the vector components
along the rotating coordinate system axis and the "1's" and
"2's" denote the value at either the first or second node point
of the element. The quantity, p, is the mass/unit length and %
is the length of the element.

Assembling the contributions from all the elements in the
discretized model and denoting the total mass, Coriolis, and
softening matrices by M, C, and S, respectively, the resulting
finite element equations are given by

g T I e R
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The load vectors, FC and FA, respectively, represent the
centrifugal force loading, which results from the element
contributions detailed in Egq. (6), and blade loads caused by
aerodynamic forces. The vectors, U, U and U denote the
aséembled nodal point displacement, velocity and acceleration
vectors, respectively. In EQq. (7) the mass, Coriolis and
softening matrices need only be developed on the basis of
translational degrees of freedom. However, for beam elements,
the stiffness matrix must include the effects of nodal point
rotations, denoted by & in Eq. (7), as well as displacements.

The matrix, K, is the usual assembled stiffness matrix for
the beam elements, and consequently contains terms associated
with rotations in addition to displacements as indicated. In
general, due to the stretching of the neutral axis, K is a
function of the displacement. This introduces a nonlinearity
in Eg. (7) which results in solution procedures of much greater
complexity. To avoid this additional complexity, the stiffness
matrix is developed commensurate with the quasi-static
displacement field associated with the time-independent
centrifugal loading only, neglecting variations which result
from the time-dependent aerodynamic loads. With this
approximation, K is constant, which eliminates the
nonlinearity, and the equations represent small vibrations
about a centrifugally prestressed state.

A critical factor in the development of this method is that
at no time was it required to make vector transformations
between stationary (groundbased) and rotating coordinate
systems. For most VAWTs, the physical connections of the rotor
to the ground occur through the tiedown cables and the tower
base connection. Since the base of the tower is stationary,
zero displacements exist in both systems. Furthermore, if
there are three or more egually spaced tiedown cables with mass
small relative to the rotor, identical in length,
cross-sectional area, pretension, and angle of inclination, the

restoring forces depend only on the displacement of the top of



the tower from the vertical. These forces are directed toward
the undisturbed vertical position of the rotor. Consequently,
the tiedowns can be represented by massless linear SPrings
which rotate with the turbine and are connected.between its top
and the vertical. To date, all turbines analyzed by this
method have possessed this type of tiedown system.

In certain rotor designs, the restoring forces may also
depend on the azimuthal angle of the turbine relative to ground
(as in the case of unequally spaced cables, for example). 1In
these situations, appropriate transformation must be
implemented and time dependent coefficients appear in the
stiffness matrix. Although the egquations retain their
linearity, the existence of these coefficients would require
the current solution procedure to be extensively modified.

To obtain the modes and frequencies of the turbine as
observed in the rotating system, a complex eigenvalue
extraction procedure must be employed. For this purpose, Eq.
(7) is reduced to the following form:

M{g}-+ c{g} . s{g} " K{g} = 0, (8)

with K corresponding to the pre-stressed state resulting from
centrifugal loading, as discussed above. 1In the general case
the damping matrix, C, produces complex eigenvalues and
eigenvectors. However, in this case, where the C matrix
represents Coriolis effects only and is consequently
skew-symmetric, just the eigenvectors are complex.

Instead of developing a completely independent pacage for
the eigensolution of Eg. (8), an existing code was modified.
With this approach, duplication of such things as input,
output, plotting, solutin procedures, etc., is avoided. The
MacNeal-Schwendler version of NASTRAN was selected here because
the modification required was minimal and could be accomplished

via DMAP programming, a feature which allows the NASTRAN user

11



12

to modify the code without actually dealing with the FORTRAN
coding. . This version contains complex eigensystem solution
procedures and also permits the stiffness, mass, and damping
matrices to be modified through an input option. Thus, the
special matrices required in Eq. (8), specifically the Coriolis
(C) and softening (S) matrices, can be generated externally and
read into NASTRAN as input. As the NASTRAN code handles
non-symmetric as well as symmetric matrices, no special
problems occur due to the skew-symmetry of the Coriolis

matrix. The mass (M) and stiffness (K) matrices are generated
internally, complete with the effects of pre-stress in the
stiffness matrix.

Although this method has been successfully tested with all
available experimental data, the three per rev blade resonance
which was observed in the DOE/Alcoa low-cost 17 meter turbine
is of special significance, since it was not predicted by
VAWTDYN. The fan plot shown in Fig. 4, which corresponds to
the low-cost turbine, was developed using the current method.
Note that the three per rev excitation line (3P) crosses the
natural frequency line associated with the first in-plane mode
(1T) very close to the 51.3 rpm operating speed, which
indicates resonance. Moreover, at the operating speed, in
addition to containing the observed three per rev blade
edgewise motion, the predicted first in-plane mode also
contains the measured tower motion. Even though the blade
motion is predominantly out of the plane of the blades,
reminiscent of flapping butterfly wings, simultaneously the
tower moves predominantly in the plane in this mode. This
result, which tends to defy intuition, is caused by the
rotating coordinate system effects.

Other crossings which occur near the operating speed are
also apparent in Fig. 4. However, it can be shown using
symmetry arguments for two-bladed turbines that the odd per rev
excitations are capable of exciting only the butterfly (B) and

tower (T) modes as opposed to the propeller (P) and flatwise



(F) modes. Thus the five per rev (5P) crossing of the second
flatwise (2F) mode is inconsequential. The seven per rev (7P)
crossing of the second tower mode (2T) is critical however.
But, since the amplitudes of the lower per rev excitations are
substantially greater than the higher ones, the response is
dominated by the three per rev crossing (3P) discussed in the
previous paragraph. -

The other tests, which have been used to verify the method,
have involved experimental data taken from the Alcoa ALVAWT
6342 turbine and Sandia's 17 meter research machine. The
method has also been tested against existing closed form
solutions such as that for the whirling shaft problem.

Although verification will continue as new tests become
available, to date, no failures have been experienced.

The primary strength of this method is that a general class
of VAWTs can be analyzed with it relatively easily and in much
detail using the various NASTRAN modeling features. Additional
blades, struts, concentrated masses, etc. can be analyzed

simply through the preparation of the appropriate NASTRAN input.

Future Activities

Two major activities are planned for extension of the
finite element package described in the previous section. 1In
order to predict vibratory stress levels during turbine
operation, a capability for the analysis of forced vibration
will be developed. Time marching as well as modal
superposition methods will be pursued. Using this capability,
an effort will be made to establish a general categorization
procedure with regard to severity for the various crossings of
the freguency and excitation lines on the fan plot.

The other activity involves the inclusion of aeroelastic
effects in the finite element equations. To implement these
effects, modifications will be made to the mass, damping, and
stiffness matrices to incorporate the corresponding aerodynamic
matrices. The aeroelastic effects will be used both in forced

vibration and flutter instability analyses.
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In addition to these extensions, a major experiment is
planned to provide a relatively comprehensive test of accuracy
of this method in predicting turbine mdes and fregquencies in
the rotating system. The test will consist of measuring these
spectral data for the Sandia 17 meter research turbine while
rotating. By conducting tests at several rotational speeds, a
fan plot such as the one shown in Fig. 4 can be experimentally
developed for comparison with predictions.

Conclusions

The sophistication of dynamic analysis methods for VAWTs
has undergone steady improvement at Sandia. The current method
provides a means to straightforwardly predict the spectral
characteristics of rotating turbines which have a significant
degree of structural complexity. Verification tests have shown
the accuracy of the method to be guite satisfactory. After
completin of the planned activities identified in the previous
section, a strong capability for dynamic assessment of VAWTS
should be available. This should be achieved within the
current calendar year and will significantly improve the

capability to structurally design advanced VAWT systems.
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