
SAND79·1508 
Unlimited Release 
UC60 

Fourier Coefficients of Aerodynamic 
Torque Functions for the DOEI 
Sandia 17 -M Vertical Axis Wind Turbine 

Gerald M. McNerney 

When printing a copy of any digitized SAND 
Report, you are required to update the  

markings to current standards. 
 
 



Issued by Sandia Laboratories, operated for the United States 
Department of Energy by Sandia Corporation. 

NOTICE 

This report was prepared as an account of work sponsored by 
the United States Government. Neither the United States nor 
the-Department of Energy, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness or 
usefulness of any information, apparatus, product or process 
disclosed, or represents that its use would not infringe 
privately owned rights. 

Printed in the United States of America 

Ava il ab 1 e from 
National Technical Information Service 
U. S. Department of Commerce 
5285 Port Royal Road 
Springfield, VA 22161 

Price: Printed Copy $4.50; Microfiche $3.00 



SAND79-1508 
Unlimited Release 

Printed February 1980 

FOURIER COEFFICIENTS OF AERODYNAMIC 
TORQUE FUNCTIONS FOR THE DOE/SANDIA 17-M 

VERTICAL AXIS WIND TURBINE':' 

Gerald M. McNerney 
Civil Engineering Research Facility 

University of New Mexico 
Albuquerque, NM 87185 

ABSTRACT 

The spectral characteristics of the aerodynamic torque on wind 
turbines are important in assessing drivetrain performance. 
This paper describes a Fast Fourier Transform method to 
deduce Fourier coefficients for the periodic torque functions 
predicted by aerodynamic theories for Darrieus-type rotors. 
The method is applied to show spectral characteristics of the 
torque on the DOE/ Sandia 17 -m Darrieus rotor predicted by 
the single and multiple streamtube aerodynamic models. 

Distribution 
Category UC-50 

"The work described in this paper was performed for Sandia Laboratories under 
Contract No. 13-2322. 

3-4 



CONTENTS 

Introduction 

Analysis 

Continuous Case 

Discrete Case 

Results 

Conclusions 

References 

APPENDIX A -- FFT FORTRAN IV Subroutine 

Figure 

1 

2 

3 

4 

5 

6 

7 

8 

ILLUSTRA TIONS 

The 17-m VAWT 

Schematic of 17 -m V AWT and Drive Train 

Symmetry of Streamtube-Type Aerodynamic Models 

Original Function vs Series Function of Aerodynamic Torque at 
RW / V = 4 for the 17 -m VA WT Two-Bladed Configuration 

Original Function vs Series Function of Aerodynamic Torque at 
RW/V = 1.5 for the 17-m VAWT Two-Bladed Configuration 

Plot Showing the First Five Coefficients of the Torque Function 
vs TSR. Two-Bladed Configuration 

Plot Showing the First Five Coefficients of the Torque Function 
vs TSR. Three-Bladed Configuration 

A Comparison of the Harmonic Content of the Single Streamtube 
Model and the Multiple Streamtube Model 

Page 

7 

10 

10 

13 

17 

21 

22 

23 

7 

8 

9 

18 

18 

20 

20 

21 

5-6 



FOURIER COEFFICIENTS OF AERODYNAMIC 
TORQUE FUNCTIONS FOR THE DOE/SANDIA 17-M 

VERTICAL AXIS WIND TURBINE'~ 

Introduction 

The 17-m vertical-axis wind turbine (VAWT) is a Darrieus-type wind turbine with a height ­

to-diameter ratio of 1, and troposkien~' airfoil blades attached to a rotating vertical shaft (Figure 1). 

Aerodynamic forces acting on the blades produce torque on the center shaft, a torque that then 

passes through a speed increaser to rotate a high- speed shaft . This high-speed shaft in turn 

drives an ac induction motor / generator or a synchronous generator to produce power. The main 

or low-speed shaft for this size turbine will generally rotate at speeds varying from 30 to 55 rpm, 

while the generator maintains the high-speed or generator shaft at a constant rotational speed. 

The generator operates near the synchronous speed of 1800 rpm, controlled by the frequency of the 

utility line. Power is generated when the generator works to keep the rotational speed from 

exceeding its operating rpm, while power is consumed if the generator must work to keep the rpm 

from going below its operational rpm. 

Figure 1. The 17 -m VA WT 

~, 

The curved shape of a skipping rope 
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The aerodynamic torque on the blades produced by wind varies because the angle of attack 

of the wind on the turbine changes as the blades rotate as well as because of fluctuations in wind­

speed. Since we are concerned here only with the former effect, we will assume that the wind 

remains constant over a rotational cycle of the turbine. 

On the 17-m VAWT, a torque meter is located on the main shaft on a rotating part below 

the point where the blades meet the shaft (Figure 2). This torque meter is equipped with a device 

to send an analog signal to a control room, where a minicomputer reads the signal through an 

analog-to-digital converter. Time series of torque as well as windspeed are created and stored 

on disk files through this system. 

THRUST BEARI NG ----r-. 

,,-~-GUY CABLE 

THRUST BEARING-_~~~r,----

TORQUE SENSOR __ -+=~(.., 

SPEED INCREASER -_-L 

RIGHT ANGLE DRIVE 

fLEXIBLE COUPLING 

INDUCTION 
GENERATOR 

Figure 2. Schematic of 17 -m VA WT and Drive Train 

The fluctuation of aerodynamic torque caused by the changing angle of attack is called torque 

ripple. Torque ripple is important in considering not only the quality of power produced but also 

the fatigue life of various components along the drivetrain. 

Aerodynamic models are available that predict the torque produced on the blades' position 
1 

relative to wind direction. In most common use are streamtube-type models. These models 

predict, for two-bladed rotors. an aerodynamic torque function which is periodic about 180-deg, 

and symmetric about 90-deg of rotor rotation. The symmetry results from the assumption in the 

streamtube models that the induced velocity is the same through the upstream and downstream 

faces of swept area. As Figure 3 illustrates. since the blade is unskewed and symmetric, and 

everywhere tangent to rotor swept area, the tangent force experienced at position 9 by an element 

of the blade will be the same as the tangent force experienced by the blade element at position -9*. 



Vrel - induced velocity to an 
observer on the blade 

a - aerodynamic angle of 
attack 

Figure 3. Symmetry of Streamtube-Type 
Aerodynamic Models 

Because of this symmetry. the torque function may be expressed as a Fourier cosine series: 

a '" 
TQ(t) =T + E an cos (2~ t) (1) 

n=1 

where P = torque period. 

Mechanical models may be devised which. when applied to the harmonic components of 

aerodynamic torque. yield the harmonic components of torque read at the drive train torque 
I 

sensor. That is. application of the drivetrain models will give 

A = A (a ). Al = A(a
l

) • o 0 0 

so that the torque at the torque meter will be 

A '" 
TQM(t) = T + E An cos (2~ t) 

n=1 

*The vortex-type aerodynamic models now under development do not assume the induced 
velocity is uniform throughout the swept area. and therefore for vortex models TQ(9) f TQ( -e). 

(2) 
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Unfortunately, aerodynamic torque obtained from the aerodynamic models is in the form of 

a time series and the Fourier series were not available. Consequently. early results used the 

first order approximation':' 

TQ(t) • :0 + a
1 

cos (~ t) 

in estimating the torque ripple at the torque meter. Therefore, fine comparisons of.predicted vS 

measured values of torque ripple were not available until a method for determining the complete 

Fourier cosine series had been developed. 

The next section explains how Fourier trigonometric series coefficients were determined 

from the Fourier Transform and describes uses for the Fast Fourier Transform (FFT). The third 

section presents some results of the method applied to aerodynamic torque time series and com­

pares single and multiple streamtube models.Z The final s·ection discusses the results and the 

method in general. 

Analysis 

Continuous Case 

Any aerodynamic torque function is sufficiently well-behaved (e. g., differentiable and 

absolutely integrable in a finite interval) so that any analytical operations such as forming 

the Fourier Inverse, or interchanging the order of summation and integration of associated 

Fourier series, may be freely carried out. 

Our primary objective is to find the coefficients a O' a
1
, a

Z
' ••• , b

1
, b

Z
' b

3
, ••• of the 

Fourier trigonometric series representation of the aerodynamic torque function, TQ(t). It is 

well known that, under the conditions stated above, if TQ(t) is periodic, with period P, then the 

series 

converges to TQ(t), where the constants a and b are defined by 
n n 

* 

a 
n 

2 jP (ZTTn) • p TQ(t) cos pt dt 
-0 

As will be shown below. this approximation is quite valid for Darrieus-type rotors 
operating at tip speed ratios above the aerodynamic stall point. 

(3) 



and 

2 I P 
° (2TTn) b n = P -0 TQ(t) sm pt dt. (4) 

In view of the Euler relation 

e
iS 

= cos e + i sin S 

the trigonometric series representation of TQ(t) may be written in complex form 

2rrn it 
00 P 

TQ(t) = L "'n e (5) 
_00 

where 

P 
_ 2TTno

t 1 lip 1 
QI = - (a - ib ) = - TQ(t) e 

n 2 n n P 0 

If TQ(t) is an even function of t; that is, if 

TQ( -t) = TQ(t) , 

then Eq (5) reduces to the cosine series, 

ao 00 (2) 
TQ(t) ="2 + L an cos ;nt • 

n=l 

When the functional form of TQ(t) is known, Eqs (3) and (4) may be used to determine the 

constants a , b • If the functional form of TQ(t) is not known, but TQ(t) is given (for example, 
n n 

as a discrete time series), it may be impractical to use Eq (1) to determine the Fourier coef-

ficients, since a numerical integration scheme requires a large number of data points in a 

fundamental period of TQ(t) to achieve reasonable accuracy. 

(6) 

If the Fourier Transform of TQ(t) can be found, the constants are determinable because 

the Fourier Transform representation of a function reduces to the Fourier trigonometric series 

when the function is periodic, To see this, let fit) be P periodic, and consider the Fourier 

Transform representation of f(t): 

(7) 
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where 

F(,.l ~ Joo e - 2rii" t f(t) dt , 
-00 

Since f(t) is periodic, it admits the representation of Eq (5): 

2rrn' t 00 --1 

f(t) ~ L "n e P 
-00 

Substituting this into Eq (8), we obtain 

00 1 00 2rrit(~ - ,,) 
~LCl' e dt 

-00 n -00 

where &(~ c ,,) is the so-called delta function that satisfies 

&(% - ,,) ~ 0 

and 

n 
for" ;l p , 

n 
for p eI • 

For more information on the delta function, see References 3 and 4, 

Thus, 

(8) 

(9) 

(10) 



and substituting this into Eq (7), we obtain 

100 00 ( ) 2 ·A.t 
f(t) = -00 ~ "n6 ~ - A. e TTl dA. 

=f: 
-00 

" e n 

2rrn
it p 

where Eq (9) has been used. 

NQw, F(>.) is defined by Eq (8) as the Fourier Transform of f(t), but from Eq (10) we see 

that the particular form of F(lc) when f(t) is periodic explicitly involves the complex Fourier co­

efficients "n' 

The next case to be considered, in which the function under consideration, TQ(t), is discrete, 

involves a different analysis, but the result is the same. The Fourier coefficients "n' may be 

found by computing the discrete Fourier Transform of TQ(t). 

Discrete Case 

Let TQ(t) be a discrete function defined by 

where 

and XI (t) is the indicator function 
k 

f 

0 if ttI
k 

XI (t) • 
k 1 if teI

k 

If we let tq(lc) be the Fourier Transform of TQ(t), then by definition 

tq (>.) = 1: TQ(t) e - 2rriAt dt 

f
OO N 

= L fkX I (t) e - 2rriAt dt 
-00 k=1 k 

(11) 
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-2TTi).kT 

N it , Nfe N 
= L f k e -2mAt dt =)' k , 

k=1 k t r.'1 -2m). 
k-l 

I 2TT: T) 
\1 - e 

N -2TTi).kT 
( 

2TTNi)' T) 

1 - e )' N 
':'::"--'-:;"2TT""i"'A-~ ~ fk e (12) 

Now, suppose TQ(t) is periodic over M increments; that is, TQ(tk+
M

) = TQ(\), or f
k
+

M 
= f

k
, 

and in addition that ~ = J, an integer, Then tq(;J may be simplified as follows: 

( 
2TTi). T) 1 _ e N [M 

tq(),) =' -2 ')" L fke 
m k=1 

-2TTi)"kT 
N 

-2TTi)"(M + k)T 
N 

( 2TTi), T) [ _ 2TTi), (LM + k)T] 
1 _ e N M J-l N 

= , )'fL e 
-2m), ~1 k L=O 

= (1 -e~) 
-2!1'i)" 

-2~)"kT) 
e . 

+, •• 

M - 2TTi). (M(J - 1) + k)T] 

+ t;, fk e N 

(13) 

For a discrete function over the interval T = N.o.t. the sum over Lin Eq (13) may be 

determined exactly for the N frequencies Ar = N~t = ~. r = 1. 2 ••••• N. Two separate cases 

emerge. first when r is an integer multiple of J. r = H· J. H = 1 ••••• M. and. second. when r 

is not an integer multiple of J. In the first case. 

But 

and 

-2m). LMT 
)"r = HJ/T. so ---'N~r--

N = JM. so. 

-2!1'i). LMT 
r 

e 

M 

-2!1'iA LMT 
r 
N 

-2mLH 

1 

-2!1'iLH. J. M 
N 



thus 
-271i). LMT 

r 
N = J 

It follows that 

-271iHk 
M 

On the other hand. when r is not an integer multiple of J. the sum over Lin Eq (13) 

vanishes. 

Proof: 

So 

Now. let 

Then 

e 

Solve for fJ. 

-271iA LMT 
r - 271iLr 

J 

-2rrir 
J 

N 

-2rrirL 
J 

1 _ e -2rrir 

1 -2rrir • - e--y-

-2rrirL 
J = fJ - 1 + e -2rri • 

(14) 

where division is justified since r/J is not an integer. But e -2rrir = 1. and thus fJ = O. Since fJ is 

a factor of tq().) in Eq (13). it follows that tq().r) = O. We therefore obtain the result that. in the 

case of a discrete function that is periodic and defined over an integral number of periods. the 

Fourier Transform is nonzero only for the N frequencies. A • that are multiples of the funda-
r 

mental frequency. 
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On the other hand, we may compute the coefficients of the Fourier series directly from the 

definition: 

1 iP -2;nit 

"n = P TQ(t) e 

T N -2TTint 
1 [ 0" P =- ,L;fX e dt 
P 0 k=1 k Ik 

M t -2TTiu,t M f ~ -2TTint -2TTint ) 
=.!.. ~ f 1 k e P dt = ~ - -4- e P k _ e P k-1 

P k=l k t k=1 2TTm 
k-1 

(15) 

where P = Mdt. Comparing this to Eq (14). we find 

tq(A
r

) 

"n = -T--

when 

n = H and r = H' J 

In actual practice, the FFT is used to compute the Fourier Transform of a discrete function. 

The FFT method was developed specifically for use with digital equipment. The FFT computational 

procedure involves some interchanging of matrix elements to reduce the number of calculations 

required for transforming a discrete fUnction with N points from order N2 to order N. In its sim­

plest form, the FFT requires the transformed function to have 2L points; that is. N = 2L for 

some integer L. Additionally, the FFT uses lit = TIN = 1, which must be compensated for at the 

end of the calculation. If C't is to be calculated using the FFT. Eq (16) can be used with N = T --
n 

that is. 

tq (A
r

) tq(A
r

) 

"n =-N--=-;r:-



where 

_ HJ _ HJ 
Ar - Nt.t - T 

For more information on the FFT, see References 4, 5, or 6. A copy of the FFT FOR­

TRAN IV subroutine used is given in Appendix A. 

Results 

The FFT method for determining Fourier coefficients has been applied to several particular 

time series of aerodynamic torque. The aerodynamics group at Sandia Laboratories calculated 

the time series by using the Multiple Streamtube Aerodynamic Model. This model uses con­

servation of momentum along with the airfoil lift and drag data in an iterative scheme to calculate 

the force at points along a turbine blade. Reference 7 describes the Multiple Streamtube Model. 

and Reference 8 describes the calculation particulars. The forces calculated for each point along 

the blade are then integrated over the blade length and the results added over the number of 

turbine blades to find the resultant torque at the center shaft as a function of time. 

This procedure was repeated for 24 values of blade tipspeed-to-windspeed ratio (RW IV) 

in increments of one-half starting at RW / V = 1. Turbine rotational speeds of interest are 29.6, 

37, 45.5, and 52,5 rpm for two- and three-bladed configurations with struts. 

The period of the torque function is one-half rotation for two blades and one-third rotation 

for three blades. For accuracy and easy use with the FFT, we decided to use 32 increments 

per torque period, After calculating the torque for one period, we extended the results over 

2
6 

periods to obtain a periodic time series 211 points long. 

Similar calculations were made with the single Streamtube Model so that comparisons could 

be made between the two models. 

The aerodynamic torque function is an even function of time because of upwind/ downwind 

blade symmetry, Therefore. the coefficients turned out to be the real coefficients of the Fourier 

cosine series. Figures 4 and 5 show the graphs of the original functions and the series functions 

for the two-bladed configuration. with RW/V = 4. o. RW/V = 1. 5. and rotational speed at 52.5 rpm, 

Table 1 lists an example of the coefficients obtained. 

A good way to display the results is to plot the first five coefficients of the torque function 

vs RW/V. This is done for two blades and 52,5 rpm in Figure 6 and three blades in Figure 7, 

Thus, Figures 6 and 7 clearly show the behavior of the harmonic content of the torque. 

17 
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Table 1 

An Example of the Coefficients Obtained for the 
17-m VAWT Two-Blade"d Configuration 

t BLADES- 2, RP~- 52.5 
WIND SPEED- 25.8 "PH, TSR- ~.e 

THE FIRST 16 COEFFICIENTS, Ae# Al# A2, ••• , OF THE COSINE SERIES, 

Ae+Al*COS(WT)+A2*COSC2YTl+ ••• , 

WHERE W IS THE ANGULAR FREQUENCV, AREa 

FREQUENCV NTH FOURIER COEFF 
(PER REU) (HZ) (RAD/SEC) 

e e .ee .ee 1321~.53125e 
1 2 1.75 11.0e -12361.179687 
2 ~ 3.Se 21.99 -1488.409668 
3 6 5.25 32.99 -151. 783295 
~ 8 7.80 ~3.9S -76.~24U8 
5 le 8.75 5".98 -23.152176 
6 12 le.50 65.97 -28.092754 
7 14 12.25 76.97 25.7"3965 
S 16 1".0e 87.96 -31.3125ee 
9 18 15.75 9S.96 2.238873 

10 2e 17.5e 109.96 4.724888 
11 22 19.25 12e.95 -3.912"11 
12 2 .. 21.0e 131.95 -6.958S7~ 
13 26 22.75 1"2.94 -2.9"1116 
14 28 24.5e 153.94 -3.972534 
15 38 26.2S 164.93 ."8~375 

PLOTS ? 
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1500) 

TORQUE FOURIER COEFFICIENTS 
VS TI P SPEEO RATIO 5U RPM 

--'>- ZERoth 
--0-- FIRST. 2 PER 

-- SECOND. 4 PER 

- THIRD, 6 PER 

FOURTH, 8 PER 

-15OO)~--~~--~---7~~~--~~--~--~~--~~--~--~ 
5.0 6.0 7.0 8.0 9.0 10.0 

TSR 

Figure 6. Plot Showing the First Five Coefficients of the Torque 
Function vs TSR. Two-Bladed Configuration 
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TSR 

TORQUE FOURIER COEFFICIENTS 
VS TI P SPEED RATIO 
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__ SECOND, 6 PER 

--0-- THIRD, 9 PER 

5.0 6.0 7.0 8,0 

Figure 7. Plot Showing the First Five Coefficients of 
the Torque Function va TSR. Three­
Bladed Configuration 



Finally, the coefficients of the Fourier cosine series were computed for the Single Stream­

tube Model and plotted in Figure 8 as a function of TSR along with the corresponding coefficients 

of the Multiple Streamtube Model so that the harmonic content of the two models can be compared. 

15000 

10000 

5000 

TORQUE FOURIER COEffiCIENTS 
VS TIP SPEED RATIO 

SINGLE STREAM TUBE 
-- MULTI PLE STREAM TUBE 

MSSM ZEROth 
--0-- SSTM ZERoth 
_-0-_ MSSTFIRST 
~ SSTMFIRST 

MSST SECOND 
v SSTM SECOND 

-15000 '-_-:-:_->-L-_-,.L_::..--l-__ '-_-'-__ -'-_---" __ -'-_---l 
l.0 5.0 6.0 10.0 

TSR 

Figure 8. A Comparison of the Harmonic Content of the Single 
Streamtube Model and the Multiple Streamtube Model 

Conclusions 

The FFT method for computing Fourier coefficients is satisfactory for aerodynamic torque 

applications. The agreement between the aerodynamic torque function, TQ(t), and the series 

representation. 

1 J§. 
-a + L 
2 0 n=l 

a cos (2TTWn) , 
n 

is quite good_ In particular, for 32 points in the fundamental period. and 2
6 

periods, the FFT 

method produced coefficients that were acceptable in aU cases. 

One disadvantage of the FFT method described here is that the FFT was limited to data sets 

with 2
n 

points in the fundamental period. This limitation is not absolute since more general forms 
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of the FFT are available. but the FFT algorithms based on 2n are the simplest and most easily 

available. The disadvantage became clear in the three-bladed case when the forces were to be 

added over the three blades. 

Overall. the FFT method is recommended for use in similar situations. 
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APPENDIX A 

FFT FORTRAN IV Subroutine 

FTH".L ••• 1 
••• a 
••• 3 C 
..... C 
••• s C 
".S C 
••• 7 C 
•••• C 
••• 8 
•• 1 • 
•• u 
•• 1a 
•• u 
•• 1 .. 
•• 1S 
•• 1S 
•• 17 
•• 18 
•• 18 •• a. 
•• IU 
•• ee 
.. e3 
•• e .. 
•• es 
•• e6 
•• e7 
.. e8 
.. Ie .n. 
.nl 
.nl 
.n3 
.. 3 .. 
.ns 
.na .n7 
.131 
.838 ..... 
.... 1 ..... 
.... 3 ...... ..... ..... 
.... 7 ..... 
.... 8 .... 
... 1 
n •• 
I 

SUIROUTINE FFTCFR.FI.K) 

FFT FAST FOURIER TRANSFOR~S CONPLEX 
DATA IH FRCREAL) AHD FI(I~AGIHARY) 
ARRAYS. THE HUNIER OF POIHTS TO IE 
TRAHSFOR~ED ~UST IE N-e.,K. 

DIMEHSION FR(I).FIC1) 
PI-3.141&8IS5 
H - enK 
~R - • 
HM1-H-l 
DO I. M-l.HMI 
L - H 

1. CONTIHUE 
L-L/I 
IFCMR+L.GT.HM1) GO TO 1 • 
MR - MODCNR.L) + L 
IFCMR.LE.M)GO TO ee 
MPI - ~ + 1 
"RPI -MR + 1 
TR - FR("Pl) 
FRCMP1) - FRCI'IRP1) 
FRC"RP1) - TR 
TI - FIC"Pl) 
FIC"Pl) - FICI'IRP1) 
FIC "'RPt) - TI a. CONTINUE 
L - 1 3. COHTIHUE 
IFCL.GE.N) RETURH 
ISTEP - 2*L 
EL - L 
DO ... "-I.L 
A - PI"LOAT(l-"l/lt 
WR-COICR) 
WI - IINCA) 
DO ... I-"'.H.I'TIP 
J - I + L 
TR - WR.'RCJ) 
TI - WR'FI(J) 
FR C J) - FR Cl ) 
FlCJ) - FI(I) 
FR! I) - FRO) 
'UI) - FlCI) 

... CONTINUE 
L - ISTEP 
GO TO 3 • 
END 
END. 

LIST END .... 

- WUFleJI 
+ WUFRCJ I 
- TR 
- TI 
+ TR 
+ Tl 
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