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ABSTRACT

This report contains the results of lightning protection studies

for Vertical Axis Wind Turbines. The methodology is estab-
lished for determining the chances for a lightning strike at a
VAWT site., Proposed designs for lightning protection systems
are described, These designs include an ingsulator design, a
brush by-pass design, a cone of protection, lightning elimination
device, and a concentric tower protection system. The work also
describes an effective grounding system.
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LIGHTNING PROTECTION FOR THE VERTICAL AXIS WIND TURBINE

I. Introduction

A lightning protection system for wind turbines is required to prevent damage from strikes.
Injury to blades, bearings, and electrical equipment could occur if adequate protection is not pro-
vided. The content of this report shows how lightning protection can be provided for vertical axis

wind turbines (VAWTs).

The fact that lightning can do severe damage has been reported by numerous governmental

and private agencies. Summaries of these data can be found in The Lightning Book by Viemeisterl

or Understanding Lightning by Uman.2 Damage to metallic structures such as the turbine can occur

due to heating and due to forces produced by the interaction of magnetic fields and high currents.

II. Chance of a Strike

In order to determine if lightning was a threat to the 17-M experimental VAWT at Sandia
Laboratories, calculations were made to determine the chance of a lightning strike.3 It was found
that the various techniques for determining this probability gave different results, Details of these

calculations can be found in the 17-M VAWT quarterly repor-t.4

The technique contained in this report for determining the chances of a strike uses informa-
tion taken from lightning strike data. Figure 1 shows a straight line relation between the number
of strikes and the height of tower type structures. It is only valid for objects up to 200 meters in
height. Note that these data were taken in areas where the number of thunderstorm days per year

was around 35.

Expected Number
of Strikes per Year

1\
) .
1=
0 P e e (e A T T Height in
. Meters
0 100 200

Figure 1. Frequency of Lightning Strikes as a Function of
Height in a\35-Thunderstorm Per Year Area
(Ref. 6)




The number of lightning strikes per year in a given area is related to the number of thunder-
storm days. Although it is not directly proportiona1,5 it is close enough that a linear interpolation
of the information in Figure 1 gives reasonable results. The example in the next paragraphs illus-

trate how this information can be used.

In erder to determine the chances of a strike to a VAWT, the number of thunderstorm days
for that particular location must be known. The United States Weather Bureau has records on the
number of thunderstorm days. This information is recorded on the map of Figure 2, For example,

a good wind area such as western Kansas has between 40 and 50-thunderstorm days per year.

Figure 2. Map Showing the Average Number of Thunderstorm
Days Per Year in the United States (Ref. 6)

Consider a 500-kW VAWT located in a location where 45-thunderstorm days per year occur,

The height of this size VAWT can be approximated by the relation

H = 20 + 2VkW rating .

For a 500-kW VAWT the height would be 20 + 2 /500 = 64 meters,

From Figure 1 the number of strikes per year is seen to be .25, If the turbine is in a 45~

thunderstorm day region, the number of strikes per year expected is (45/35) x .25 = , 32,

If there were 10 turbines in a generating field, that means there would be 3.2 strikes per year

to the installation, Clearly, the probability of damage due to lightning increases as the gize and

number of turbines increases.

It should be noted that, using the height relation H = 20 + 2 vV kW-rating and the graph of
Figure 1, two 250-kW machines are more likely to get hit than one 500-kW machine.
A




Using this technique of structure height and thunderstorm days indicates VAWTs will receive
lightning strikes. Like all the standard techniques it does not take into account location of nearby
structures nor does it consider the terrain of an actual VAWT installation. It does illustrate, like

any accepted technique, that wind turbines must have a lightning protection system.

III. Lightning Protection Design

When designing a lightning protection system the characteristics of lightning must be known.
Since lightning is a charge transfer process the current characteristics give a sufficient description
of a strike., Figure 3 shows the shape of a typical lightning strike. The peak value of current, Ip.
is usually 20, 000 amperes, but in most lightning protection design procedures, an Ip of 100, 000
amperes is considered with a rise time, Tp’ of 1 ysec, since it is usually the upper limit of light-
ning currents. Larger values of current have been recorded, but are very infrequent. A lightning

model found in Reference 5 indicates that the 100, 000 ampere peak occurs less than 2 percent of

the time,
Current
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Figure 3. Shape of a Typical Lightning Strike

A sketch of a typical VAWT is shown in Figure 4, Lightning current will flow in the turbine
as illustrated in this figure, The currents going down each of the four guy wires should do no
damage. If current goes down the turbine shaft, the most probable damage would be to turbine
bearings and electrical equipment, It is doubtful if blade damage would occur considering the
most likely candidate for blades is an aluminum extrusion. An all aluminum blade would have
low resistance and hence the heat production would be low. A direct strike to a blade could cause
damage, but this would be unlikely if an air terminal (lightning rod) is of sufficient height above

the turbine,
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Anemometer =— Current Flow From Lightning
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Figure 4. A Typical VAWT with no Lightning Protection.
The paths of current flow are shown on the
illustration,
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Insulator Design

Lightning Protection Using Insulators

One method to keep lightning currents from going down the turbine shaft would be to place

insulators between the guy wires and the turbine shaft and the anemometer tower and shaft as shown

in Figure 5. The amount of insulation required can be determined by finding the L g—t- drop on the

guy wires.

As an example of how an insulator system would be designed, standard lightning protection

caleulations for the 17-M VAWT are contained in the next few paragraphs. This method is commonly

used in lightning protection design for tall guyed structures. The guy wires have a 0,025 meter diam-

7 eter and are 40 meters long. If the length is shortened by taking path ABC, 31 meters, the induc-

T . .
tance in microhenries becomes

1, =

.24 (1nA;—JE -1 & &

4

4(31)

o553 - 10+ .25) = 48 uH
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where £ is the length in meters by path ABC and d is the diameter in meters, The constant, u,
is one for air. The four parallel guy cables have a combined inductance of 12 ypH. The rate of
change of current taken from the model is 100, 000 A/usec, which means the insulator material

must have a standoff protection of
L =— = 12 uH 100, 000 A/usec = 1200 KV

One candidate for insulators in this design .is shown in Figure 5. These are porcelain
suspension and post insulators used in transmission lines and power substations. To obtain the
necessary standoff voltage would require approximately ten suspension insulators connected in
line., Post insulators stacked three high as shown in Figure 5 would probably be suitable for the
insulator between the bearings and the anemometer tower. The actual number required would

depend on the model number of the manufacturer,

After examination of literature from several porcelain insulator manufacturers, 20 suspen-
sion insulators were purchased. These had a tensile strength rating of 50, 000 pounds and were the
largest size readily available. Tests were conducted and it was found that these insulators exceeded
the manufacturer's claims, Cycling in tension between a 15, 000 pounds minimum and 25, 000 pounds
maximum for 10, 000 cycles showed no damage to the units. Although tests showed these suspension
insulators could exceed the worst case possible for the 17-M turbine, they were not used for the

following reasons:

1. For scale up to larger turbines, insulators with proven mechanical strength are

not readily available,

2. It was not possible to obtain a sufficient quantity of these suspension insulators

in time for them to be put into the 17-M VAWT during construction,

3. No post insulators could be found that would meet the structural requirements

imposed by having a 10-meter anemometer tower,

4, Another design appeared feasible andthis design would also drain static charge

pickup from the blade (this will be discussed in the next section).

It should be pointed out that the above reasons for not using the insulator design should not
remove it from future considerations. Some effort has been expended trying to locate materials
for insulators which could meet the electrical and mechanical requirements of this design, These
preliminary findings are contained in the Appendix. It is recommended that efforts be made to
purchase and tegt some of these insulators. This design, if properly implemented, would give

adequate lightning protection.

Brush By-Pass Design

A second method to protect the bearings from lightning damage is to provide a low resistive
parallel path to ground. The means chosen for providing a parallel path was carbon brushes shunting

critical components. A schematic representation of this design is shown in Figure 6,
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Figure 6. Schematic of Brush Design Showing Current Paths of a
Lightning Strike

The design as implemented for the 17-M VAWT can be seen in Figure 7. This type of design
has been successfully used for bearing protection on large dish :;.ntennas,8 although the rotational
speed of these antennas has been slower than the wind turbines. The validity of this design can be

L verified to some extent by field tests on the turbines or by testing on a lightning simulator. Because
of the time lag and expense of setting up the necessary tests, the brush design was incorporated in

4 the 17-M VAWT with expectations that it will work, Experience gained from using this system on
the 17-M VAWT will be of value in determining if it provides sufficient protection. Besides provid-
ing a path for lightning current, the brush system also provides a path for static charge developed
on the blades.
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Figure 7. Brush Lightning Protection System as Implemented on the 17-M VAWT.
This illustration shows how the brushes were installed at the top of the
turbine, It is not an exact copy of the hardware, Brush holders and
brushes were installed at the bottom of the turbine to by-pass the lower
bearings,

Cone of Protection

The cone of protection method is based on the theory that lightning will strike the tallest object
in a given area. If a cone is drawn about a tower as shown in Figure 8, then any object within that
cone is considered protected. An angle, 6, of 45° is considered to give adequate protection, The

largest angle allowable for protection is subject to some debate,

The reason for not using this technique is based purely on economics. It is estimated that the
protective tower must be 50 percent taller than the VAWT tower to provide adequate protection, The

cost of this larger tower and the additional construction cost makes it impractical.

A
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Figure 8. Cone of Protection Method

Lightning Elimination Device

A system which would cause lightning not to strike has been suggested by Carpenter.g
Although this technique appears to have some acceptance as a useful means of protection, no scien-
tific evidence was found that verified it did indeed work, The results of a study by Bentw indicate

it failed to function as claimed by its manufacturer,

Concentric Tower Protection

If a VAWT were constructed using the concentric tower design, it would be possible to use
} the non-rotating center tower as a terminal, Figure 9 illustrates how such a system would work,
Because of the low resistive path of the center shaft, very little lightning current would pass
through the bearings, However, it may be necessary to have brushes near the bottom on the rotat-

‘ing shaft for static discharge.

15
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Figure 9, Lightning Protection for a Concentric Tower VAWT

IV, Grounding System

Whether using the insulator system or the brush by-pass system for protection, a good ground
must be provided, I\/[ars.hall6 is an excellent reference for grounding system design, Methods of
providing a good ground depend on the soil conditions in the vicinity of the turbine, The dry, sandy
soil located at the 17-M VAWT site has a high resistivity when compared with a high moisture content

loamy soil, The grounding system for the 17-M VAWT should be adequate at most wind turbine sites,

At the 17-M site a ground system consisted of 10-ft long ground rods comnected together with
0.5-in, diameter copper grounding cable, The ground rods were spaced on approximately 10-ft centers

around the turbine pad as shown in Figure 10, Also shown in Figure 10 are the ground rods and cable



running radially toward the guy cable anchors, Drop cables from the guy cable ends were connected
to these radial runs, All below grade bonds were made with Cadweld* connections, Measurements
at the site showed a ground resistance of less than 1.0 ohm, The code on Kirtland Air Force Base
requires resistance of less than 5 c)hms;,11 This low resistance, plus the distribution of ground cur-

rents in the grounding grid, are typical of what is needed in a lightning protection system.lz’ 38

After installation of the grounding grid, it is necessary to make connections to the cables com-
ing down from the turbine tower, This must be done to provide a path for lightning current to ground
as can be seen when referring back to Figure 6, These above grade connections were made using

cable clamps,

Guy Cable Anchor

Grounding Cable

N and Rods /
L1 -0

2'-0 -

Ground

Cable 10 Foot
Ground Rods
on 10 Foot
Centers

Typical Section

Figure 10, Grounding System for 17-M Turbine

V. Conclusion

Lightning protection is needed for wind turbines as has been indicated by the chances of a strike
calculation, Examination of the 17-M VAWT after a thunderstorm on July 20, 1977, indicated a non-
damaging strike has occurred to this relatively short experimental machine, Although the brush by-
pass system seems to give adequate protection, the insulator design discussed in the report may also

give protection at nearly the same cost,

ES
Cadweld is a trade name for a mold type welding operation, It is normally used in New
Mexico, and perhaps other areas, to make below grade connections in grounding systems,
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APPENDIX A

Suspension Insulators

The insulator protection system cannot be implemented unless suspension insulators with
suitable mechanical and electrical properties can be obtained. The lightning protection system
using insulators is illustrated in Figure 5 of the text. It should be noted that both post type and
suspension type insulators are shown in this illustration, Ceramic post insulators meet mechani-
cal and electrical requirements for protection when an air terminal is attached to the top of the

turbine. For this reason, only suspension insulators are included in the discussion.

Porcelain suspension insulators are used extensively in electrical power transmission lines.
A typical insulator is shown in Figure A-1, To obtain the necessary standoff voltage, these insula-
tors can be connected in a string. For example, if each insulator has a positive impulse flashover
of 125 KV, 10 connected in a string will give a protection of 1250 KV. Although there is a limit to
how many can be hooked in a string, it is possible to obtain standoff voltage suitable for any size

VAWT now under consideration,

8

Figure A-1, A Typical Porcelain Suspension Ingulator

The main problem associated with the available porcelain insulators is their lack of tensile

strength, There is no domestic manufacturer that makes porcelain insulators with a tensile strength

greater than 50, 000 1b, Although this size would be suitable for lightning protection of the experi-

mental 17-M VAWT, when going to large size turbines, it would be necessary to obtain porcelain

' suspension insulators with more strength or use strain yoke sets which connect insulators in paral-

lel strings. A disadvantage of taking parallel strings would be the cost, extra weight in the tie-

down system, and the additional construction cost. The 50, 000-1b tensile strength of porcelain insu-

lators purchased for tesi:ing14 weighed 23.5 lb each and cost $25 each,

19



To illustrate values for cost and weight, and to examine construction problems consider a
500-KW VAWT. A turbine this size would be approximately 200 ft in height with a tension of
200, 000 1b on each guy cable. This means 12 parallel strings of 20 insulators each would be re-
quired on each guy cable if a safety factor of 3.0 is used. This means a total of 960 insulators
would be needed at a cost of $24, 000 and with a weight of 22, 500 Ib. The handling of 960 insula-
tors of 25 1b each would certainly add to construction cost, This example illustrates that a
porcelain insulator is not a strong candidate for a component of the insulator lightning protection

design.

The use of materials other than porcelain may make the insulator design still a candidate
for lightning protection. There are at least six non-porcelain insulators presently being tested

15

by the Bonneville Power Authority, BPA, which should be considered for the insulator design.

The results of these tests should be available and will be published sometime in the future.

Table A-I shows the companies, location, and briefly describes each of these insulators,

TABLE A-I

Manufacturers of Non-Porcelain Insulators

Company Location Description
Joslyn Reinforced Plastics Cicero, IL Fiberglass core with synthetic rubber
The Ohio Brass Co. Mansfield, OH Fiberglass core with synthetic rubber
Permali, Inc. Mt Pleasant, PA Fiberglass core with cycloaliphatic

epoxy weather rings

Rebosio Italy Teflon and synthetic rubber
Rosenthal West Germany Reinforced synthetic rubber
Sediver France Fiberglass and plastic

Detailed pricing and technical information on each of the insulators in the table have not been
obtained at this time. Information obtained from Permali, Inc., is given so a comparison can be
made with the porcelain insulators, Their plant in England makes a fiberglass core insulator with
cycloaliphatic epoxy weather rings. The insulator shown in Figure A-2 has a positive pulse flash-
over of 1840 KV and a tensile strength of 100,000 1b, This insulator weighs around 200 1b and sells
for $1400 each in small quantities, Permali has indicated these insulators could be made with
greater tensile strengths, It is possible one such insulator in each tie-down would be sufficient for

the insulator design,

Tests by the BPA may show that suitable insulators are available for the insulator lightning
protection design, If the price of these insulators is low, the insulator lightning protection design

may be an alternative to the brush by-pass design.
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