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ABSTRACT

The rationale used for selection of tie~-down cables
for the Sandia 17-meter turbine are presented, dis-
cussed and implemented, The effects of initial cable
tension on the response of the tie-down system is
evaluated and discussed in terms of resulting sag,
blade interference and response linearity.
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TIE-DOWN CABLE SELECTION AND INITIAL TENSIONING
FOR THE SANDIA 17-METER VERTICAL-AXIS WIND TURBINE

i. Introduction

There are two principle considerations in the degign of a cable tie-down system for the
vertical axis wind turbine, The first is that of establishing geometric, physical and mechanical
properties of the system for adequate load carrying capability and tower gtiffening. : These
properties include the number of cables, the cable elevation angle, cable density, active cable
area and cable stiffness. The second consideration in the design is that of determining initial
cable tension and gag to insure sufficient blade clearance and load reiention after tower deflection.,
These two aspects of design are actually coupled together due to the dependence of cable stiffness
on initial tension. 'The dependence is nonlinear and therefore difficult to handle, especially when
the nonlinearities become large, With proper selection of cable properties and initial tensions
the nonlinear effects can be minimized, thus permitting independent treatment of the two phases.

Thig approach will be used here.

This report discusses the initial tension phage of the tie~-down design for the 17 meter.
turbine, Since field adjustments may be required to compensate for thermal, creep and dynamice
effects, response curves should prove to be useful. Results of the first design phase for this

turbine will also be presented.




II, Phase I Design Results

1. Even symmetrically distributed numbers of cables have a significant erection advantage
over odd, or unsymmetrically distributed numbers of csbles, This is because even numbers of
cables can be mounted and tenaioned in pairs rather than all at once. Four cables, at equally
spaced azimuth positions, were selected for the 17 meter, VAWT tower tie-down. Two cables
offer stiffness in only one vertical plane, and six cables were judged to be too many for cost and

appearance reasons.

9. The cable elevation angle was selected as that which gave a maximum horizontal stif-
fening effect to the blade support tower and a minimum bending moment at the base of the tower.

This angle is approximately 359 measured from a horizontal plane, *

3. Cable "outriggers" at the top of the tower were eliminated because of relatively small

stiffening effects, undesirable translation-rotation coupling at the top of the tower and added costs.
They were not needed to reduce the blade-cable strike probability hecause of the relatively shallow

cable elevation angle of 35°,

4. A minimum cable-tower horizontal stiffness at the top of the tower of approximately
! .
5000 1b/in. was established for the four-cable tie-down system.  This resulted in approximately
a one inch, downwind, horizontal deflection st the top of the tower in an 80 mph wind. {This is

congidered to be the maximum wind speed in which the turbine will be permitted to operate. )

In order to meet this stiffness requirement, the following wire rope was gelected.

Name and Construction: galvanized bridge strand, 7 strand
Linear Weight: 2.07 Ib/ft

Active Cross Sectional Area: 0,596 in

Effective Flastic Modulus: 25,0 x 10 psi

Breaking Strength: 122, 600 1b

3
This result is from unpublished work, where it was found to be independent of geometric
gscaling.




III, Phase 1I Desgign - Initial Tension

Because of the nonlinear coupling of cable geometry (sag} and mechanical properties with
cable tension, it is possible for results of this phase to effect preliminary design, above. This
design feedback can be eliminated, however, if cable tension is high enough to minimize non-

linear effects, asg will be demonstrated.

There are several features of the cable tension-sag problem which are worth discussing
separately, The first ig the relationship between tengion and midpoint sag in a cable which conp-
nects two fixed points in space. These two points are the top of the undeflected blade support

tower and the ground connection, see Figure 1.

/

GROUND
| CONNECTION
Figure 1, Cable Geometiry
The midpoint sag in the cable is given by the parabolic approximation2
2
LA
b, = =g cos o {1}

where a is the elevation angle of the undeflected cable, T is the chordwise component of the cable
tension (directed along a line connecting the cable endpoints) and w is the linear weight of the cable,
Material stiffness is absent from this equation because elastic deformation has a small effect upon
equilibrium of the cable, To further illustrate this point, consider a cable ag in Figure 2, but
with the ground connection replaced by a roller over which the cable pagses before attaching to

a weight, W. The equation relating sag and tension is the same in this case as it is for the cable

connecting two fixed points, If elastic deformation is suddenly permitted in the cable of Figure 2,




the weight, W, simply moves downward without any change in cable sag, If the roller is then

fixed in space and the weight is removed, the situation displayed in Figure 1 is recovered,

TOP OF
TOWER

| GROUND
| CONNECTION

Figure 2. Counterweighted Cable

Another feature of the cable tension-sag problem which ia of interest is the relationship

between cable midpoint gag and sag at some other point. This relationship is

. - 46Cx(S - X}

P C2 cosch.

{2)

where x is measured as shown in Figure 1. For the cable selected for tie-down of the 17 meter
turbine, midpoint sag and sag at the peint closest to the passing blade are shown in Figure 3. The
point on a blade which comes closest to a sagging tie-down cable lies approximately at the inter-

section of the straight, circular arc and strut blade sections,
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Figure 3. Cable Tension Versus Midpoint and Strike Point Sag
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& xﬁéxt question which arises s what happens to the tension and sag in a cable when there

15tive motion bétween the two end pointa.

'ﬂ';e: end points will be permitted by keeping the ground connection fixed and allowing hori-

at the top of the tower in the plane of the deflected cable. When this motion

onta rr__xo' i_oh, ACh,
part of it is due to elastic stretch {or contraction) in the csble, and part is due to a change
& cable peometry (sag). See Reference 2 for a more complete digcussion. After some alge-
ma_mpulation, the relationship between cable stiffness and sag2 is given by

3 -1
S c 5126(:
12(1 + b)wC cosa
2
oo 8
3T

ind E are the cable’s cross sectional area and effective modulus., Equation (1) could be

"r:ela'te K to cable tension. The nonlinearity of (3) is apparent.

‘477 Since the cable stiffness is not constant with 5, it is not possible to obtain the loss (or
of __'c_'ab'.le tension due to a tower deflection, Concern should be primarily with tension loss
catge this will be accompanied by increased sag and 2 greater probability of a blade strike,

v tower deflects, tension is lost, sag is increased and the effective stiffness changes.

Tor the purposes of this report, the relative motion

It
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Figure 4, Cable Stiffness Versus Midpoint Sag

To calculate the tension logs directly, the load-deflection relationship must be integrated.

Expressing the cable stiffness, K, in terms of cable tension, T, gives

wl
a7 C w2C3 coszct
K98 "8 * 5. 1 ° (4)
12T {1 + b}

Integration of this equation can be simplified greatly (ylelding approximate results} if one recog-
nizes that small changes in C produce large changes in T.' Since a solution will be sought where
changes in T are minimized, C may be considered constant for the integration and subsequent

numerical evaluation. Rearranging Eq. (4) gives

W2C3 cosza

3 dT
12T {1 + b)

C
A€ IFE ¢



integration of this gives

2
C w " cosalfl 1
I ST Mol - FL
8C = fxg (Te - T - 5T + B \q? P ,.
T, T

e initial and final cable tensions,

on, AT = {T_ - T}
£ i

ord length, and ’I‘i and 'I‘f are th

'e A_C_is the change in ch
g of the change in cable tensi

ctively, BEquation (8} can also be writien in term

CAT WZCS 30523‘ AT (AT + ZTi) -

AC s +
AE 22(1 + 1) T?(A’I‘ + Ti)2

°

gure 5 for the 17 meter turbine tie-down cable

(1) are presented in Fi
ength change, AC, and

as a function of cable chord 1
ahle stiffness, Ks’ {Phase 1,

U _efiéai results of Eq.

here cable tension change, AT, is shown
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ndicated in the figure, nontinear

er, tie-down anatysis, Asi

H used in the composite tow
also evident that the higher the initial

larger with defiection. It is
{on before nonlinear effacts
ave in a nearly linear

ffects become increasingly
renater the permissible deflect
s of 12,000 b or greater beh

cable tension, the g become strong.
cables with initial tension

rom the figure,
up to about 1 in,

:sh'dn for horizontal defleciions, ACh,

16K 1 1 H 1
/KS “9X 107 Iofin
'1“K - / - -
12K + -
it S o -
B
= K| -
<3
KF -
&% e
2K .
9 . H i
1] 1.0 2.0 3.9 4.0 5.0
AC lin)
{ H i ) % I S
] 1.0 2.0 10 4.8 5.0 6.0
dCh tin}

Figure 5. Cable Tension Change Versus Chord Length Change and Tower Deflection
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Two additional figures may be useful. Figure 6 shows the dependence of final cable tension,
Tf, on AC and ACh. " Figure 7 shows the dependence of the cable sag =zt the atrike point, 5p' on the
deflections. Results in both figures are presented for various values of initial cable tension, Note,
in Figure 7, that for a given initial tension, Ti’ the final sag, Bp, increases rapidly with dis-
placement. This suggests that selection of initial cable tension be based on a minimum acceptable
clearance between the sagging cable and a passing blade. For example, if this minimum clearance
is selected as & feet of geparation in the vertical direction, approximately 1 foot may be due to
cable sag after tower deflection (the rest would be an altowance for blade deflection and rigid

body separation),
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Figure 8. Final Cable Tension Versus Chord Length
Change and Tower Deflection
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Figure 7. Sirike Point Sag Versus Chord Length
Change and Tower Deflection

_ From Figure 7, if a horizontal tower deflection, ACh, of 2.5 in, is allowed {conservatively)
hén for a gtrike point sag to be I foot or less, the initial cable tension should be 12, 000 1b or
friéré, If a deflection, z{\Ch, of 3 in, is allowed, then 18, 800 1b or more of initial cable tension

is required to keep the strike point sag 1 foot or less, For the 17 meter turbine, 2 12,000 b

:init:iél cable tension is selected. This value provides a relatively small strike point sag (0.3 ft)

WT_i_e’n the horizomtal tower defleciion is approximately 1 in,. and the response remains nearly

linear.

15
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IV, Summary

While the initial cable tension-cable sag-tower deflection interaction can be highly nonlinear,
proper selection of cable properties and initial tension for a specified performance can practically
eliminate the nonlinearities. The dependence of final, strike point sag upon tower deflection has
been demonstrated. Since tower deflection, under steady state conditions, is a function of wind
speed, it is possible to ease cable tension under light wind conditions (from a tension valiue
selected to cover gll wind possibilities) thereby reducing bearing loads and life. It may also
happen that undesirable dynamic effects in the cables arise under certain operating conditions.

In this case, cable tension may have to be adjusted to "tune" the cables such that resonant fre-

quencies, Numerical results contained in this report will provide guidance for this operation.
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