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ABSTRACT 

Imagery from GOES satellites is analyzed to determine how 

solar variability is related to the NOAA classification of 

cloud type.  Without using a model to convert satellite 

imagery to average insolation on the ground, this paper 

investigates using cloud categories to directly model the 

expected statistical variability of ground irradiance.  Hourly 

cloud classified satellite images are compared to multiple 

years of ground measured irradiance at two locations to 

determine if measured irradiance, ramp rates, and variability 

index are correlated with cloud category.  Novel results are 

presented for ramp rates grouped by the cloud category 

during the time period.  This correlation between satellite 

cloud classification and solar variability could be used to 

model the solar variability for a given location and time and 

could be used to determine the variability of a location 

based on the prevalence of each cloud category. 

1. INTRODUCTION 

With increasing amounts of solar energy on the electric grid, 

understanding the solar variability for different regions and 

times of year is important, especially under high 

penetrations of PV on the distribution system where 

variability can create voltage flicker and increased 

degradation of voltage regulation equipment, leading to 

shorter lifetimes.  PV interconnection impact studies are 

performed to analyze possible impacts to the grid, but these 

studies require a valid model of the PV plant output at a 

short timescale to model the impact of the output variability 

to the grid [1, 2]. 

 

 

 
 

Regular images from geostationary satellites can be used to 

detect and track weather patterns.  This imagery is freely 

available everywhere in the United States and is commonly 

used to estimate the ground irradiance when local irradiance 

measurements are not available.  The satellite images are 

taken every 15 minutes or hourly, so obtaining high time-

resolution data or irradiance ramp rates can be difficult.  

This paper investigates using satellite imagery to model the 

expected statistical variability of ground irradiance without 

using a model to convert satellite imagery to average 

insolation on the ground.  The objective is to investigate 

what characteristics of the performance of a solar power 

system can be distinguished by the type of cloud or weather 

pattern, as classified by NOAA.  Instinctively, the type of 

cloud affects the expected cloud size and the amount of light 

blocked, so the variability at a given time should depend on 

the cloud type and weather pattern present at the site. 

 

This correlation between satellite cloud classification and 

solar variability could have many applications for predicting 

variability or ramp rates at locations with PV plants.  For 

example, if the cloud type is known, or forecasted, control 

algorithms for energy storage, spinning reserve, or optimal 

dispatch could be controlled based on the expected 

variability and ramp rates from solar power plants for that 

period.  It could also be used to model the solar variability 

for a given location and time by synthetically creating time 

series irradiance data.  The frequency of each cloud 

category could be used to distinguish the differences in 

variability for different locations and regions.  
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2. BACKGROUND 

Classifying the types and properties of each cloud class is an 

interesting research problem that historically was done by 

trained human observers.  With satellite images and data, 

clouds and weather patterns can be classified for large 

geographic areas.  From the ground, sensors such as 

irradiance sensors can categorize cloud cover or cameras 

with image processing can detect and recognize types of 

clouds.  Tapakis and Charalambides provide a detailed 

overview of all methods for detecting and classifying clouds 

using the full variety of sensors and cameras on the ground 

or in space [3]. 

 
While the goal of the research shown in this paper is to 

characterize ground irradiance from cloud type, several 

researchers have investigated the reverse process of 

classifying the type of cloud using ground sensor 

measurements.  Duchon and O’Malley defined a cloud 

classification method using time series data from a 

pyranometer to categorize clouds into one of seven types 

with a 21 minute running mean and standard deviation of 

irradiance [4].  In  [5], this method was found to be usable 

for classifying the clouds in Antarctica, and more detailed 

and accurate criteria were proposed.  Another method 

proposed using time series global and diffuse irradiance data 

and five different statistical metrics to cluster the time series 

data into several classes and determine the number of oktas 

with cloud cover [6].  In South Dakota, a four band (440 to 

936 nm) photometer measured shape was fit into one of nine 

cloud types using a decision tree [7].  Finally, a method was 

developed to classify clouds with combinations of 

attenuations in the beam transmittance and visual 

identification from sky images [8]. 
 

Image processing can provide autonomous classification of 

clouds from images taken from the ground at regular 

intervals.  In [9], sky photographs were used to create cloud 

contours with fractals, synthesize cloud patterns, and create 

time series irradiance data.  A whole sky imaging system 

was used in [10] and [11] to classify cloud types in the 

image based on color and texture. 

 

The spatial cloud variability can be used to classify clouds 

into five different classes, where each cloud class relates to 

a irradiance variability class [12].  The irradiance variability 

class allows an irradiance time series to be synthetically 

created that statistically represents the expected measured 

irradiance on the ground. 

 

 

 

 
 
 

 

3. GSIP (GOES SURFACE AND INSOLATION 

PRODUCTS) CLOUD DATA 

Our research investigates the information that can be 

derived directly from the GOES Surface and Insolation 

Products (GSIP) cloud type.  GSIP is a high spatial 

resolution (1/8 x 1/8 degrees) solar radiation product created 

by NOAA from processed GOES satellite data [13].  For the 

continental United States, this results in approximately 

10 10 km pixels estimated from the GOES-East and 

GOES-West imager radiance measurements every hour. The 

products contain upwelling and downwelling shortwave and 

visible radiative fluxes, cloud fraction, cloud phase, visible 

cloud optical depth, outgoing longwave radiation, composite 

clear and cloudy reflectance, and total column amounts of 

water vapor and ozone.  

 

NOAA processes GSIP data using all five imaging channels 

on GOES, NCEP GFS forecast model data, and IMS daily 

snow data.  The algorithm detects clouds and determines the 

cloud fraction, dominant cloud type, and radiative fluxes.  

The GSIP parameter under investigation is the classified 

cloud type. This paper compares the NOAA declared cloud 

type to the irradiance pattern on the ground to determine if 

there is a connection between cloud type and variability. 

4. CLEARNESS AND CLEAR SKY INDICIES 

As solar irradiance on the ground varies with time and 

location, all analysis of the impact of cloud cover on the 

ground is performed in this paper using the “clear sky” 

index.  This allows the analysis to identify the percent of 

solar radiation blocked by type of cloud, removing the time 

and locational dependence.  The clearness index can be 

directly calculated from the extraterrestrial radiation, but to 

remove the locational dependence, clear sky index is 

calculated using a clear sky model.  While none of these 

clear sky models are perfect, they provide a much more 

accurate representation of the expected shape for clear sky 

irradiance on the ground [14, 15].  The clear sky model used 

here is the Ineichen model [16].  The inputs to this model 

are solar zenith (z), air mass (AM), Linke Turbidity (TL), 

and elevation (h).  Kasten and Young’s formula is used to 

calculate the air mass [17].  Remund calculated and 

produced Linke turbidity maps for the world for each month 

using a combination of ground measurement and satellite 

data [18] that can be downloaded from either the HelioClim 

website [19] or Solar Radiation Data (SoDa) website [20]. 
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5. VISUALLY COMPARING CLOUD CATEGORY TO 

MEASURED GROUND IRRADIANCE 

The figures below show examples of how the solar 

variability is related to cloud type.  In each figure, the 

satellite image with the color coding for cloud type is shown 

above the daily timeseries ground measurement.  The 

ground irradiance sensor is in the center of the image 

marked with a small green square.   

The cloud type numbers always refer to the NOAA cloud 

type classification, and the colors in the figures are 

consistent throughout the paper for cloud type.  The cloud 

type legend and descriptions are shown in Fig. 1. 

 

 

Fig. 1: Legend for GSIP cloud types. 

 

Fig. 2: Low variability with water clouds (Type 2). 

In Fig. 2 the water clouds are shown to have low variability.  

In Fig. 3 the optically thick ice clouds have a significant 

impact on the average irradiance on the ground, but the 

variability is low with a fairly constant low clear sky index.   

 

 

While variability is correlated with the cloud type overhead, 

other factors may also play an important role.  For example 

in Fig. 4, the day has high temporal variability from the 

spatial variability of different types of clouds as they pass 

overhead.  Very small clouds also may not show up on the 

satellite images. 

 

 

Fig. 3: Low irradiance and low variability with optically 

thick clouds (Type 4). 

 

Fig. 4: High variability coming from spatial variability in 

different cloud types.  
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6. ANALYSIS DATA 

Analysis is performed with GOES West northern 

hemisphere extended scan sector GSIP data.  For GOES 

West, the GSIP images are on the hour each hour of the day.  

The 20,000 hourly images from April 2009 to July 2011 

were downloaded [13], totaling ~350 GB of data.  The 

satellite images are compared to global horizontal irradiance 

at two locations during the same time period.  Both 

locations are part of the NREL MIDC database [21].  The 

irradiance measurements are logged at 1-minute resolution.  

UNLV is the University of Nevada, Las Vegas, and 

Anatolia is in Rancho Cordova, California. 

 

For the analysis, the hourly satellite images are cropped to a 

4x4 pixel window around the ground irradiance sensor site.  

This provides roughly a 40 km square around the irradiance 

measurement point.  With only hourly images, the 40 km 

square is used to represent the irradiance time series 

information for the 30 minutes before and after the image is 

taken.  The cropped satellite image is processed for the 

mean cloud type, largest number cloud type, smallest 

number cloud type, and the range of cloud types in the 16 

pixels.  These cloud statistics are analyzed and compared to 

the 60 minute clear sky index time series around the image 

snapshot. 

 

The frequency of specific cloud types will be different 

between geographical areas.  The distribution of average 

cloud types for all daylight hours for Anatolia and UNLV is 

shown in Fig. 5. 

 

 

 

 

Fig. 5: Percent of each average cloud type at Anatolia and 

UNLV. 

 

7. CLOUD CATEGORY MODELING AVERAGE 

GROUND IRRADIANCE 

As was seen in Fig. 3, the type of cloud impacts the 

percentage of sunlight transmitted through the cloud.  To 

analyze this, the average clear sky index is calculated for 

each daylight hour for the 60 minute period around each 

satellite image.  Daylight hours are determined using the 

modeled clear sky irradiance and results in approximately 

8500 hours during the time period.  The clear sky index for 

each hour is plotted in Fig. 6 compared to the mean cloud 

type for Anatolia.  Note that the order has been changed 

with type 5 (optically thin ice cloud) plotted between type 2 

(water cloud) and type 3 (supercooled cloud) instead of with 

the optically thick clouds (type 4).  A clear trend and 

average clear sky index can be associated with cloud type, 

although there is considerable scatter. 

 

 

Fig. 6: Measured clearness index at Anatolia compared to 

GSIP cloud categories during all daylight hours. 

The distribution of clear sky index for each cloud type is 

shown in Fig. 7.  This is another way of visualizing how the 

average and spread of the measured clear sky index is 

dependent on the cloud category.  In [22], the frequency 

distribution of clear sky index is listed at the first criteria for 

characterizing irradiance time series, and the second criteria 

considering ramp rates is discussed later.  The mean clear 

sky index for the cloud type is shown with a vertical red 

line, and both the numeric values for the mean and mode 

clear sky index are noted on the plots.  To verify the results 

are consistent for different locations, the same figure is 

presented for UNLV in Fig. 8, showing very similar 

distribution shapes and averages for clear sky index by 

cloud type. 
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Fig. 7: Measured clear sky index at Anatolia compared to 

GSIP cloud categories. 

 

 

 

 

Fig. 8: Measured clear sky index at UNLV compared to 

GSIP cloud categories 

 

8. CLOUD CATEGORY MODELING SOLAR 

VARIABILITY 

The average clear sky  index was shown to be dependent on 

the cloud type, and the variability is also influenced by the 

cloud category.  Irradiance variability can be defined and 

calculated many different ways, but the easiest method is to 

calculate the standard deviation of the time series data.  

Similar to [4], the mean and standard deviation of clear sky 

index for the period 30 minutes on either side of the image 

are plotted in Fig. 9.  This illustrates that types of clouds are 

generally in certain regions of the graph with specific clear 

sky indices and variability.  

 



6 

 

 

Fig. 9: Mean and standard deviation for the 1-hour clear sky 

index time series around the cloud type image for daylight 

hours at UNLV. 

A metric for measuring variability called Variability Index 

(VI) was proposed in [23].  For the hour around the image, 

VI is calculated as: 

 

   
∑ √(           )

      
   

∑ √(           )
      

   

     (1) 

 

where GHI is a vector of length n of global horizontal 

irradiance values measured at some time interval in 

minutes,   , CSI is a vector of calculated clear sky 

horizontal irradiance for the same times as the GHI data.  

The average VI for each cloud type is shown in Fig. 10.  

Note that the shape of the variability by cloud type is very 

similar between the two locations.  The plots in Fig. 10 

show the daylight hours binned by the different statistics 

that can be calculated for the 16 cloud type pixels during 

each daylight hour.  By using these statistics, some 

interesting insights can be drawn, such as that if there is 

Type 2 cloud without Type 0 or Type 1, VI is high.  It can 

also be noted that Type 4 in generally has lower variability, 

like was noted in Fig. 3. 

 

The same analysis as shown in Fig. 10 is performed for the 

standard deviation of the clear sky index for the hourly 

periods.  The average of the hourly standard deviations 

binned by cloud type is shown in Fig. 11.  Note the 

similarity between the patterns in Fig 10 and 11 for 

variability measured by VI or by standard deviation.  Notice 

that the standard deviation increases with the range of cloud 

categories.  It makes sense that cropped images with a larger 

difference between the maximum and minimum cloud type 

would have more variability in the irradiance profile during 

that period. 

 

 

Fig. 10: Average VI by cloud type for each daylight hour at 

UNLV and Anatolia. 

 

 

Fig. 11: Average of the 60-minute standard deviation of 

clear sky index for each daylight hour at UNLV and 

Anatolia compared to GSIP cloud category. 
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9. CLOUD CATEGORY MODELING RAMP RATES 

Another method to characterize irradiance variability is to 

measure the magnitude of the ramp rates.  The magnitude 

and frequency of the irradiance time series variability was 

previously discussed using VI and standard deviations, and 

the rate of the increase and decrease of irradiance is 

characterized using the ramp rate.  Ramp rates are often 

compared between sites, different time scales, or between 

irradiance and power output, but our study compares ramp 

rates for different cloud categories.  The 1-minute ramp rate 

is calculated as the absolute value of the difference between 

the clear sky index at each minute.  The cumulative 

distribution function (CDF) for the 1-minute ramp rates 

during each cloud type are shown in Fig. 12 for Anatolia 

and UNVL from April 2009 to July 2011.  The first graph is 

grouped by the mean cloud type in the 4x4 pixel satellite 

image, and the second row is grouped by the largest cloud 

number in the window.  Even with the limited analysis 

dataset, it appears to be fairly consistent as to which clouds 

have higher ramp rates, independent of location.  For 

example, a ramp rate of >0.4/minute for a mean cloud type 

of Type 2 (1.5% of the time at UNLV, and 3% of the time at 

Anatolia) is around 10 times more likely than if the mean 

cloud type is Type 0 or Type 5 (0.15% of the time at UNLV, 

and 0.3% of the time at Anatolia).  Looking at the maximum 

cloud type, a ramp rate of >0.4/minute for a maximum cloud 

type of Type 3 (2% of the time) is 4 times more likely than 

if the maximum cloud type is Type 4 or Type 6 (0.5% of the 

time).  If the ramp rates can be precisely correlated to cloud 

type, the expected distribution of ramp rates for a location 

can be determined by the distribution of cloud types in 

historical satellite imagery. 

 

UNLV, Las Vegas, NV Anatolia, Rancho Cordova, CA 

  

  

Fig. 12: CDF of the 1-minute ramp rates for two locations by cloud type.
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10. CONCLUSION 

The NOAA classification of cloud type is useful for 

characterizing the irradiance during the time period.  Hourly 

cloud classified satellite images are compared to multiple 

years of ground measured irradiance at several locations to 

determine if measured irradiance, ramp rates, and variability 

index are correlated with cloud category.   It was shown that 

the mean value and distribution of ground irradiance, the 

variability, and the distribution of ramp rates are dependent 

on the cloud category.  Many studies have compared ramp 

rates between sites, time scales, and between irradiance and 

power output, but this paper presents a novel comparison of 

ramp rates and cloud categories, defined from satellite 

imagery.  Using this method to model irradiance and 

variability from cloud type, satellite imagery and the 

prevalence of each cloud type at a location can be used to 

produce synthetic time series irradiance or represent the 

long-term irradiance distribution and variability profile for 

the location.   
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