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The mechanical behavior of metal matrix composites (MMCs) varies signifi-
cantly under rapid straining as compared to quasi-static loading and is often
dominated by underlying microstructural features (grain structure, porosity,
inclusions, and defects). Analysis of the behavior of MMCs under dynamic
loading requires theoretical and experimental approaches that integrate the
strain rate and microstructural effects. In this article, we introduce a multi-
resolution modeling capability for studying nonlinear planar wave propaga-
tion in heterogeneous materials with an application to MMCs. This framework
is based on direct numerical simulation (DNS) and compared to an upscaled
microcontinuum model. The DNS explicitly accounts for microstructural fea-
tures characterizing the materials and is based on a combination of a crystal
plasticity formulation for the behavior of the host matrix and the Johnson–
Holmquist model for the particulate reinforcements. The nonuniformity of the
wave propagating through MMCs is spatially resolved. The results from the
mesoscale DNS are used to inform a microcontinuum model that introduces
richer kinematics to account for microstructural features without explicitly
modeling them and with far fewer total degrees of freedom. A quantitative
comparison of the reduced degrees of freedom model against DNS is performed
and enables us to draw conclusions on the predictive capability of the micro-
continuum model to study the dynamic response of heterogeneous materials.

INTRODUCTION

Metal matrix composites (MMCs) are produced by
combining a base metal (such as Al or Ti) or a
metallic alloy (such as Ni alloys) with another phase
(often nonmetallic) in order to create a novel
material with improved mechanical performance
compared to conventional materials and to reduce
life-cycle costs through enhanced thermomechanical
stability and weight reduction.1–3 MMCs are gen-
erally categorized by the characteristics of their
reinforcement: particle-reinforced MMCs (e.g., SiC
or B4C), short fiber- or whisker-reinforced MMCs
(e.g., Al2O3), and fiber or layered MMCs (e.g., C or
W). Motivated by technical challenges in processing
such composites and tailorability of their properties,
and due to the wide range of applications of these
materials in advanced military systems (e.g., light-
weight armor materials) and in the automotive and
aerospace industries (e.g., impact shields, crash-
tolerant structures) for example, MMCs and their

thermomechanical performance have been the sub-
ject of much research in the late 1980s and early
1990s.4–10

This class of materials is often subjected to high-
strain-rate deformation, such as in the case of pen-
etration of a projectile in an armor or the impact of
an object on aerospace structures, and while show-
ing good performance under such conditions, the
mechanical behavior of MMCs varies significantly
under rapid straining as compared to quasi-static
loading. This behavior is often dominated by
underlying microstructural features (grain struc-
ture, porosity, shape and spatial distribution of
reinforcements, and volume fraction of reinforce-
ments).11–15 However, despite the great interest in
MMCs and considerable research into the effects of
reinforcement type and volume fraction on macro-
scopic properties such as stiffness, ductility, wear
resistance, or thermal conductivity, fewer studies
have been conducted to examine the effects of those
microstructural details on their dynamic loading
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behavior.15–18 The most common and versatile
experimental techniques for materials research and
characterization under high-strain-rate conditions
are uniaxial in character, e.g., high-velocity plate
impact and magnetic pulse loading. The assumption
of a uniaxial strain condition is valid at the macro-
scale, but at the length scale of the microstructure
the deformation state is fully three dimensional.19

Furthermore, the effects of microstructural hetero-
geneities on the dynamic response of MMCs are
particularly pronounced when the scale of the
deformation is of the order of the material hetero-
geneities, which is often the case in dynamic uni-
axial experiments. Consequently, there is a critical
need for accurate and robust methods for modeling
heterogeneous material response at this lower
length scale that can account for microstructural
effects. Inspired by the work done by Liu and
coworkers,20,21 the current article introduces a
multiresolution modeling framework to investigate
the dynamic behavior of uniaxially loaded hetero-
geneous materials, MMCs in particular, by explic-
itly accounting for the microstructural features
(both in the matrix and reinforcements) that influ-
ence the dynamic response.

A number of theoretical and numerical investi-
gations has been performed mostly with the intent
of predicting the stiffness and strength of a given
composite given the properties of the matrix and
reinforcement phase.15,22,23 Analytical studies of the
high-strain-rate deformation of particle-reinforced
MMCs are based on classic micromechanics
schemes and homogenization models (such as mix-
ture models, Mori Tanaka or Hashin–Strickman
schemes, etc.). For example, Bao and Lin24 carried
out a micromechanics study to look at the effect of
the volume fraction of inclusions on the strain rate
dependence of the plastic flow behavior of Al/Al2O3

composites. More recently, Grujicic et al.25 used a
dynamic mixture model in order to investigate the
propagation of structured waves within Al/SiC
MMCs. Conventional numerical modeling of MMCs
is typically conducted at the continuum scale by
considering a unit cell model containing a single or
multiple idealized reinforcement particle(s) such as
a fiber (in the shape of an ellipsoid), a whisker (in
the shape of a cylinder), or a particle (idealized as a
sphere) embedded in a homogeneous host matrix via
computational micromechanics.15,17,18,26–28 Li and
Ramesh15 for example, performed a parametric
study of the influence of particle volume, shape, and
aspect ratio on the behavior of particle-reinforced
MMCs at a high strain by using an axisymmetric
unit cell model with particles treated as elastic
ellipsoids or cylinders embedded in an homogeneous
viscoplastic matrix. While the simplifications of the
microstructural features in these unit cell models
may help in reducing the simulation complexity,
these models fail to capture the microstructural
complexities associated with MMCs’ constitutive
components such as the inhomogeneous spatial

distributions of particles and their irregular mor-
phology, but also the crystallographic texture and
inhomogeneous microstructure (grain size and
morphology) of the host matrix itself. Accurate
predictions and further understanding of the
dynamic behavior for this type of material require
an approach that explicitly accounts for realistic
microstructures of these composites. For example,
Chawla and coworkers29–31 took a step in that
direction by developing microstructure-based finite-
element techniques and importing experimentally
characterized reinforcements (by serial sectioning,
x-ray tomography, or holotomography for example)
within a numerical unit-cell framework to study the
failure mechanisms of MMCs.

Predicting microstructure–property relationships
for the dynamic behavior of MMC materials via
direct simulation of its underlying microstructure
remains a difficult goal to reach due to the massive
disparities in length and time scales. In this article,
we present a multiresolution modeling capability for
studying the nonlinear planar wave propagation in
heterogeneous materials such as MMCs. This
framework is based on (I) mesoscale direct numeri-
cal simulations (DNS) and (II) an upscaled micro-
continuum model. In this article, the term direct
numerical simulation refers to simulations in which
the microstructural topology is explicitly resolved in
the spatial discretization. This does not imply that
the simulations are considered to be exact solutions
to the physical problem, only that an approximation
of the microstructure is modeled directly. The
mesoscale DNS paradigm used in this work explic-
itly accounts for microstructural features (grain
morphology and crystallographic texture of the
matrix, morphology and spatial distribution of
the reinforcements) and is based on a combination
of a crystal plasticity formulation and Johnson–
Holmquist model (JH-1). Nonuniformity of the wave
propagating through MMCs is resolved spatially
and temporally through these simulations. The
results from the mesoscale DNS are then used to
inform a microcontinuum model, which introduces
richer kinematics to implicitly account for the
above-mentioned microstructural features without
explicitly modeling them and with far fewer total
degrees of freedom than the DNS. The motivation of
such an approach is to develop novel multiresolu-
tion continuum models of MMCs and relate their
microstructure to their structural dynamic perfor-
mance in a single framework. A quantitative com-
parison of the reduced degrees of freedom model
against DNS is performed and enables us to draw
conclusions on the predictive capability of the
microcontinuum model compared to fully resolved
models to study the dynamic response of heteroge-
neous materials.

The manuscript is organized as follows. The
‘‘Direct Numerical Simulation of MMCs’’ section
introduces the details of the DNS model used pres-
ently. The ‘‘Microcontinuum Model of MMCs’’
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section describes the details of the microcontinuum
model and briefly details the upscaling method
between the results obtained from the mesoscale
DNS and the microcontinuum model. As an illus-
tration, this work focuses on a prototypical MMC
system consisting of an aluminum polycrystalline
matrix reinforced with SiC particulates. The
‘‘Results and Discussion’’ section provides a discus-
sion on the main findings of the work for various
MMCs (layered and particle reinforced) and rec-
ommendations for future investigations.

DIRECT NUMERICAL SIMULATION
OF MMCS

In order to understand and study the dynamic
behavior of MMCs, the construction of the multi-
resolution continuum model starts at the micro-
structural level, by treating the material
deformation of the MMC matrix with a standard
crystal plasticity rate-dependent formulation,32

while the particle reinforcements are modeled
through a JH-1 model.33

The foundations of the constitutive model for the
MMC matrix assume that the elastoviscoplastic
response of single crystals is dominated by slip-
deformation mechanisms. Others mechanisms such
as twinning, grain boundary sliding, or diffusion are
not considered. The total deformation of a single
crystal consists of a plastic deformation, elastic
lattice rotations, and rigid body rotations. The sin-
gle-crystal kinematics is described by a multiplica-
tive decomposition of the total deformation gradient
F into a plastic component Fplast, representative of
the intervening motion of dislocations on active slip
systems leaving the crystal lattice unchanged, and
an elastic component Felast, depicting the rotation
and elastic stretching of the matrix lattice. For iso-
thermal conditions we have

F ¼ Fplast � Felast (1)

Since the dynamic behavior of the polycrystalline
matrix is of importance, a rate-form expression of
the deformation is used to express the kinematics of
the crystalline solid from the kinematic decomposi-
tion. The velocity gradient L in the current config-
uration can be written as

L ¼ _F � F�1 (2)

where _F is the rate of total deformation gradient.
Subsequently, the velocity gradient L can be addi-
tively decomposed into its elastic Lelast and plastic
Lplast counterparts. The plastic velocity gradient
Lplast is assumed to be solely the result of crystal-
lographic slip over S potentially active slip systems
such that it corresponds to the sum of the plastic
shearing rate _ca on S number of activated slip
systems a,34,35

Lplast ¼
XS

a¼1

_ca �ma � �sa; (3)

where the plastic velocity gradient is resulting from
the dyadic product of the crystallographic slip
direction unit vector �ma and the slip plane normal
unit vector �sa in the intermediate configuration. The

rate of plastic deformation gradient _F
plast

resulting
from crystal slip is governed by

_F
plast ¼ Lplast � Fplast (4)

A classic Hookean law gives the constitutive stress–
strain relation under isothermal conditions such as

rPK2 ¼ C : Eelast (5)

with Eelast ¼ 1

2
FelastT � Felast � I
� �

(6)

where rPK2 is the second Piola–Kirchoff stress ten-
sor, Eelast is the Green–Lagrange tensorial elastic
strain measure, C is the anisotropic fourth-order
elastic stiffness tensor, and I is the second-order
identity tensor. The Cauchy stress tensor r is
related to the second Piola–Kirchoff stress tensor
through,32

r ¼ det Felast
� �h i�1

Felast � rPK2 � FelastT

(7)

The resolved shear stress sa on slip system a is
defined as

sa ¼ r : �ma � �sað Þ (8)

The flow and evolutionary equations describing the
behavior of each individual slip system completes
the formulation. The kinetic equation used for the
crystallographic slip rate _ca follows a power law
viscoplastic flow rule36 such that

_ca ¼ _c0

sa

sa
CRSS

����

����
1=m

sgn sað Þ (9)

where _c0 is the reference shearing rate, m is the rate
sensitivity, and sa; sa

CRSS

� �
are the resolved shear

stress and total slip resistance (or critical resolved
shear stress), respectively, on slip system a. The
sign of the resolved shear stress sgn sað Þ accounts for
either positive or negative slip on the system.
Hardening of the slip systems assumes that dislo-
cations act as obstacles to dislocation motion and
contribute to the total slip resistance according to
the Taylor equation.37 The evolution of the overall
resistance to slip, sCRSS

a , is given by

sa
CRSS ¼ kGb

110½ �
ffiffiffiffiffi
qa
p

(10)
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where k is a statistical coefficient accounting for the
deviation from regular spatial arrangements of
dislocations, b is the magnitude of the Burgers
vector, qa is the forest dislocation density for a given
slip system a, and G 110½ � is the shear modulus on the
110½ � plane. Note that the bulk shear modulus G is
instead commonly used in the literature. However,
at the grain level, the directional shear modulus
seems a better choice due to the local anisotropy of
the material.38 The evolution of the dislocation
density is based on the phenomenological approach
proposed by Kocks39 and Mecking and Kocks40

where dislocation sources and sinks are considered

dqa

dca
¼ hKM

1

ffiffiffiffiffi
qa
p
� hKM

2 qa (11)

where ca is the accumulated slip on the slip system a
and hKM

1 ;hKM
2

� �
are material hardening parameters.

The first term reflects that dislocation storage is
inversely proportional to the dislocation mean free
path, while the second hardening term describes the
annihilation and cross slip of dislocations. Finally, it
should be mentioned that the focus of this work is on
developing multi-resolution schemes to study the
dynamic behavior of heterogeneous materials,
rather than the physical models themselves. In other
words, the aforementioned flow rule and hardening
model are targeted at providing some simple features
associated with the hardening of the matrix materi-
als. The elastic constants and hardening parameters
introduced in the constitutive model of the section
described above are listed in Table 1.

The JH-133 is used to describe the SiC particu-
lates behavior. This model incorporates a strength
response that possesses both a rate and pressure
dependence, and even though this is not the focus of
the present study, this model has features that
makes it possible to examine the effects of fracture
and imperfect interface on loading spreading
through a damage parameter D. The rate depen-
dence of the strength model reads

r ¼ r0 1þ cJH
1 ln _��

� �
(12)

where _�� ¼ _�plast=_�0 with �0 being a reference strain
and �plast being the equivalent plastic strain, r0 is
the material strength at _�� ¼ 1, and c1

JH is a material
constant. The pressure-dependent strength for
intact D ¼ 0ð Þ or partially damaged D < 1ð Þ material
is given by a bilinear relationship in the pressure/
strength space from points P ¼ �PT ; r ¼ 0ð Þ to
P ¼ P1; r ¼ S1ð Þ and from P ¼ P1; r ¼ S1ð Þ to
P ¼ P2; r ¼ S2ð Þ followed by a constant strength.

The pressure dependence for fully damaged D ¼ 1ð Þ
material is given by a linear relation in the pres-
sure/strength space from r = 0 to r = S3 with a slope
of cCRSS

a followed by a constant strength.
The definition of the damage model describes the

fracture behavior of the SiC reinforcements in
which the degree of damage is characterized by a
scalar metric D, which varies between 0 (no dam-
age) and 1 (complete damage). D is defined by

D ¼ �
plast

�frac
(13)

where �frac is the equivalent plastic strain to fracture.
The Mie–Grüneisen equation of state for the vol-

umetric response in the JH-1 is calculated using

P ¼ kJH
1 lþ kJH

2 l2 þ kJH
3 l3 (14)

where kJH
1 ; kJH

2 ; k3

� �
are material constants and l =

V0/V � 1, with V0 and V being the initial and current
specific volume, respectively. The material parame-
ters used in JH-1 model are taken from Table 3 in
Robbins et al.41

A set of different realizations of periodic three-
dimensional (3-D) representative microstructures
containing Al grains and a given volume fraction of
SiC particulate reinforcements was used for the
DNS. A typical representative microstructure,
illustrated in Fig. 1, was obtained by means of a
Voronoi tessalation. Dimensions of the representa-
tive volume element (RVE) in physical space is 2.0
mm 9 0.5 mm 9 0.5 mm, resulting in a average
grain size of 65 lm and an average reinforcement
size of 45 lm. RVEs containing 5% and 10% volume
fraction of SiC particulates have been generated
and simulated. For each representative microstruc-
ture, the crystallographic orientations assigned to
each grain in the host matrix is allocated randomly,
while perfect bonding between the SiC particulates
and Al grains is assumed. The typical mesh for the
representative MMC microstructure, selected after a
mesh convergence study, comprises an average of 32
million elements, which is equivalent to a 2.5-lm
mesh resolution.

This DNS model for MMCs was implemented into
Sandia’s arbitrary eulerian Lagrangian (ALE)
massively parallel ALEGRA code42,43 and applied to
model the dynamic hardening in particle-reinforced
MMCs. The ALEGRA framework was used in a pure
Lagrangian mode and employs a finite-element

Table 1. Elastic and viscoplastic parameters for Al
matrix

Property Symbol Value

Elastic modulus C11 108.2 GPa
Elastic modulus C12 61.3 GPa
Elastic modulus C44 28.5 GPa
Rate sensitivity m 0.02
Reference shearing rate _c0 20 s�1

Magnitude of the Burgers vector b 0.286 nm
Initial CRSS sCRSS, 0a 45.0 MPa
Scaling factor k 0.5
Taylor hardening parameter h1

KM 1.07 9 108 m�1

Taylor hardening parameter h2
KM 27.97
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spatial discretization and an explicit central-difference
stepping method in time. The simulations use eight-
node, uniform strain, (hexahedral) 3-D isoparametric
elements. Hourglass control is used to manage zero-
energy modes associated with the uniform strain ele-
ment. Further details on the formulation of the
ALEGRA framework are provided in the technical
report by Love and Wong.42 A set of 12 different 3-D
calculations were conducted using 1e4 processor-hours
each. Velocity boundary conditions were prescribed
as a Gaussian rightward compressive moving pulse
of an approximate duration of 200 ns with a half
height width of 65 ns at the left end side of the
microstructure and with a magnitude of 200 m/s.
The lateral sides of the microstructure have peri-
odic boundary conditions. Typical results are pre-
sented in Fig. 2 for a microstructure containing 5%
of SiC particulates. The input pulse results in a
compressive stress wave moving from left to right
in the microstructure, which reflects off the free
surface after approximately 400 ns producing a
release wave. Figure 2 shows grain-scale contour
plots of longitudinal velocity at various stages of
the wave propagating through the microstructure
with sharp contrast between the Al matrix and SiC
inclusions. As further illustrated in Fig. 3, which
shows the velocity on sample cross sections, spatial
variation in the velocity field is produced by the
heterogeneity of the material resulting a decidedly
multiaxial strain state at this length scale.

MICROCONTINUUM MODEL OF MMCS

Multiresolution Continuum Modeling

In an effort to bypass the limitations of compu-
tational speed associated with DNS while retaining

microstructural effects, the second step of the con-
struction of the multiresolution continuum model is
to pursue the development of an upscaling method
informed with details from the mesoscale simula-
tions. Incorporating some effects of characteristic
microstructural features of the materials into con-
stitutive modeling is possible via the mechanics of
generalized continua. The goal is to endow the
continuum with additional degrees of freedom that
are supposedly independent from the usual trans-
lational degrees of freedom and representative of
the microstructure.44 The article by Germain45 and
the book by Eringen46 provide detailed reviews of
the mechanics of higher order continua. In a
microcontinuum model, the underlying microstruc-
ture at any material point of the continuum can
rotate and deform. In this context, if we consider a
continuum D as a deformable continuous distribu-
tion of material points, each of them is geometrically
represented by a point M and characterized kine-
matically by a macroscopic and microscopic dis-
placement field. The macroscopic displacement field
u is defined as ui ¼ xi � Xi; i ¼ 1 . . . 3, where xi and
Xi are the coordinates of a material point in the
deformed and undeformed reference coordinate
system, respectively. The microdisplacement u0 is
defined by its components u0i ¼ x0i � X 0i, where x0i are
the coordinates of a point M0 belonging to a mic-
rovolume X Mð Þ around M and measured from the
center of mass M of this microvolume.

Following the development of Mindlin,47 the bal-
ance equations for a microstructured material can
be expressed as

r � ðrþ sÞ ¼ q€u inD (15)

r � lþ s ¼ c � Il inD (16)

where r is the Cauchy macrostress tensor, s is the
relative (interactive) stress tensor, l is the double
(micro)stress tensor, c is the microacceleration, q is
the density, and Il is the second moment of micro-
density. The macrostress can be viewed in a classi-
cal manner as the macroscopic average of forces per
unit area, while the microstress can be interpreted
as a spatial average of the forces arising from the
collective nonlocal behavior of the surrounding
microstructure.

Concerning the stress and strain measures, we
generalize the conventional concept by replacing the
Cauchy stress tensor by a generalized stress tensor
such that, in the Voigt notation (in which a 9 by 9
tensor can be replaced by a 27-dimensional vector),
the generalized stress tensor is expressed as

R ¼ r; s; l½ � (17)

Similarly a generalized strain tensor can be
expressed as

E ¼ �; �� v; r � v½ � (18)

Fig. 1. Typical discretization of Al/SiC MMC. Longitudinal and lateral
dimensions are 2.0 mm and 0.5 mm, respectively, and the micro-
structure is periodic with mesh resolution of 2.5 lm. Aluminum
matrix is semitransparent, and SiC reinforcement is opaque.
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where � ¼ r � u is the classical Cauchy strain tensor
and v is the microstrain tensor such that the
microdisplacement can be approximated by u0i ¼
x0jvji xi; tð Þ.

In the elastic regime, the generalized stress and
strain are linearly related through a generalized
elastic stiffness tensor �C that can be written as a
block diagonal matrix

�C ¼
C0 A0l 0
A0l C0l 0
0 0 Cl

2

4

3

5 (19)

where C0 is the macroscopic stiffness tensor, Cl is
the microscopic stiffness tensor introducing a length
scale parameter associated with the microstructure,
C0l is a transition stiffness tensor between the
macroscopic and microscopic kinematics, and A0l is
another coupling term. In this work, we assume
that there is no elastic coupling among the macro-
scales and microscales (A0l ¼ 0). The tensor C0l is
assumed to be associated with a softening/stiffening
microstructure such that the resistance to local
deformation in the microstructured solid is
less/more than the resistance to macroscopic

Fig. 2. Comparison of predicted velocity profiles for pulse loading: (a) time = 8.0 9 10�8 s, (b) time = 1.8 9 10�7 s, (c) time = 2.8 9 10�7 s,
and (d) time = 3.8 9 10�7 s.

Fig. 3. Comparison of predicted velocity profiles for pulse loading. Cut planes are located at the peak of the pulse. (a) Time = 8.0 9 10�8 s,
(b) time = 1.8 9 10�7 s, (c) time = 2.8 9 10�7 s, and (d) time = 3.8 9 10�7 s.
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deformation, i.e., C0l ¼ a1C0. The microstructural
stiffness tensor Cl contains information about the
length scale �‘ of heterogeneity in the microstruc-
tured solid and is taken for simplicity as the second
moment of stiffness over the microvolume X Mð Þ; i.e.,
Cl ¼ �‘

2
a1C0. Overall, the elastic microcontinuum

constitutive model is characterized by two addi-
tional constitutive parameters: a1 and �‘.

The constitutive relation in the plastic regime is
based on a classic J2 plasticity model at the mac-
roscopic level, while the microscopic level is
assumed to stay elastic. Again, we point out that
that the focus of this work is on developing multi-
resolution schemes to study the dynamic behavior of
heterogeneous materials, rather than the physical
models themselves. Therefore, no specific effort has
been dedicated in developing a microscale plasticity
model. In this context, the plastic potential U r; jð Þ is
assumed to be solely a function of the Cauchy
macrostress tensor and of the equivalent plastic
strain j such that

�p ¼ _k
@U
@r

(20)

where �p is the plastic deformation, _k is a Lagrange
plastic multiplier, and @U=@r denotes the direction
of the plastic flow. As in conventional plasticity, the
stress point must remain on the yield surface during
plastic deformation, which gives the consistency
condition for continuing plastic flow

@UT

@r
_rþ @U

@j
_j ¼ 0 (21)

If we use the gradient to the yield surface n
according to

n ¼ @U
@r

(22)

and the hardening/softening modulus h as defined
in conventional plasticity

h ¼ �1
_k

@U
@j

_j (23)

then the consistency equation can be rewritten as

nT _r� h _k ¼ 0 (24)

In this article, we apply the strain-hardening/soft-
ening hypothesis as defined by

_j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
�p : �p

r
(25)

combined with the Von Mises yield criteria based on
the second invariant of the stress tensor.

For the sake of comparison with more classic
homogenization methods, the composite macroscale
response is also computed by assuming a uniform
normal stress in the direction of propagation given
the mass fractions mi and the constitutive behavior

of the individual materials in a classic rule of mix-
ture manner.48 When nonlinear compressibility is
accounted for, a Mie–Grüneisen equation of state is
used. This method is referred to as homogenization
in the rest of this manuscript.

Extracting Microcontinuum Constitutive
Relationships from DNS

Before analyzing the dynamic response of MMCs
and heterogeneous materials through the current
multiresolution continuum model, we will briefly
overview the last step of the construction of this
model, which consists of extracting the microcon-
tinuum constitutive relationships from the DNS
calculations. The goal is achieved here by minimiz-
ing the error between the response given by DNS
with the one obtained from the microcontinuum
model. Note that many strategies can be adopted to
optimize and calibrate the parameters from the
microcontinuum model to give a best fit to the DNS
results, but this discussion is beyond the scope of
this article. In this work, in order to calibrate the
microcontinuum parameters, we chose to minimize
the error between the average velocity given by the
DNS with the one obtained from the microcontinu-
um model. Calibration starts by defining a conven-
tional 3-D RVE and loading with a given
compressive pulse input. The average of the velocity
over the transverse plane (normal to the propaga-
tion direction) is recorded and used to calibrate the
microcontinuum model. This is done through a
classic multidimensional least-square method such
that, if the microcontinuum constitutive model is
described by a set of n parameters a1; . . . ; an½ �, then
those can be extracted from the DNS simulations
through

a1;...;an½ �¼argmin
a1;...;an½ �

Z

t

Z

x

Z

y

Z

z

vdns x;y;z;tð Þ�vl x;t; a1;...;an½ �ð Þ

0

B@

1

CA

2

dxdt

0

B@

1

CA

(26)

where vdns x; y; z; tð Þ is the velocity obtained from
DNS, while vl x; t; a1; . . . ; an½ �ð Þ is the velocity from
the microcontinuum calculation. In the case of our
elastic microcontinuum model, calibration is done
for the microstructural parameters, a1 and �‘.

As an illustration of the data extraction method-
ology, we use a specific example involving a linear
elastic layered Al/SiC composite as shown by the
schematic in Fig. 4. Each layer of the composite has
a thickness of ‘ = 250 lm and is assumed to behave
elastically. DNS have been performed on this one-
dimensional (1-D) configuration and used as a basis
for extracting the microcontinuum constitutive
parameters which reduce to two parameters a1; �‘

� �

in the elastic regime based on Eq. 26. Figure 5a
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presents the results of the calibration of the micro-
continuum model done for a compressive loading
pulse of a given width and height. Based on this
calibration, parameters for the microcontinuum
model are given by �‘ ¼ 165 lm and a1 = 0.0618. Note
that the microcontinuum length scale �‘ is slightly
different than the physical length scale ‘ associated
with the thickness of the layers of the Al/SiC com-
posite. �‘ could be interpreted as a characteristic
dispersion length. The parameter a1 could be
interpreted as a softening microstructure such that

the resistance to local deformation in this micro-
structured layered composite is less than the resis-
tance to macroscopic deformation. It is also
worthwhile to note the qualitative agreement
between DNS and the microcontinuum model. In
contrast with the results from static homogenization,
the microcontinuum model picks up the dispersive
character of a loading wave propagating through the
medium. In order to verify that these parameters are
indeed a reflection of microstructural effects, the
same microstructure was subjected to different
loading inputs and results were computed keeping
the calibrated parameters fixed. Figure 5b, c show
the effect of halving and doubling, respectively, the
input pulse width while keeping an excellent quan-
titative comparison with the DNS. Figure 5d illus-
trates the same comparison for a symmetric impact
loading configuration. Again, the agreement between
the DNS and the microcontinuum model is pre-
served. In other words, only a limited number of
RVEs and DNS is required to calibrate the consti-
tutive relationships of the aforementioned micro-
continuum model. It is also worth pointing out that
certain qualitative features given by the DNS results
are absent from the classic homogenization such as
the attenuation of the peak velocity or the higher
frequency ringing after the initial pulse.Fig. 4. Schematic of a layered medium used for calibration.
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Fig. 5. Comparison of predicted velocity profiles between DNS and the microcontinuum model for a 1-D layered Al/SiC composite in the elastic
regime. (a) For a Gaussian input used for initial calibration, (b) for a short pulse loading, (c) for a long pulse loading, (d) for an impact loading.
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RESULTS AND DISCUSSION

The DNS model presented in the ‘‘Direct
Numerical Simulation of MMCs’’ section and the
microcontinuum model overviewed in the ‘‘Micro-
continuum Model of MMCs’’ section are first applied
to a layered and then to a prototypical particulate-
reinforced Al/SiC MMC. The layered composite can
be viewed as a 1-D heterogeneous medium while the
particulate-reinforced composite is considered as a
fully 3-D microstructured medium.

First, we consider the comparison between the
results obtained from the microcontinuum model of
a nonlinear elastoplastic 1-D layered composite with
those obtained by DNS. Following the procedure
presented in the ‘‘Extracting Microcontinuum Con-
stitutive Relationships from DNS’’ section, Fig. 6
presents the comparisons between DNS and the
microcontinuum model in the elastoplastic regime.
Similar to the purely elastic case, a good agreement
is found between DNS and the reduced model.
Specifically, the pulse widening and attenuation
that is observed in the DNS in the case of a short
pulse (see Fig. 6b) is captured by the microcontin-
uum model. This observation is due to the fact that
the length scale associated with the input pulse is of
the same order of magnitude as the microstructural

features of the 1-D composite. In contrast, Fig. 6c
shows the response to a substantially wider input
pulse. In this case, the dispersion of the wave
propagating through the microstructured medium
is not as pronounced. More interestingly, in the case
of an impact loading (see Fig. 6d), both the DNS and
microcontinuum model exhibit the continuous
broadening of the wave front as it propagates, as
opposed to the classic homogenization method, that
show two sharp elastic fronts. The results given by
the microcontinuum model of wave propagating
through the layered composite are consistent with
those calculated through DNS but without the
associated computational cost. Note that the above
features evident in the microcontinuum model and
DNS simulations are not captured by the homoge-
nization method because dispersive effects are not
present in classic homogenization models.

Second, we examine the case of a three-
dimensional particulate-reinforced Al/SiC MMC
(see the ‘‘Direct Numerical Simulation of MMCs’’
section) subjected to a short duration pulse input.
Recall that, even though at the continuum scale this
is generally considered a uniaxial strain condition,
at the scale of the microstructure, the deformation
state is fully three dimensional. Ideally, one would
have models that capture the dispersion effects
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Fig. 6. Comparison of predicted velocity profiles between DNS and the microcontinuum model for a 1-D layered Al/SiC composite in the
elastoplastic regime. (a) For a Gaussian input pulse, (b) for a short pulse loading, (c) for a long pulse loading, and (d) for an impact loading.
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associated with the three dimensionality of the
microscale response. Figure 7 illustrates how the
present multi-resolution scheme constitutes a step
in this direction. The DNS incorporates the disper-
sion behavior of the microstructure directly, so the
rate at which the compressive wave steepens due
nonlinear stiffening of the volumetric response will
be reduced.49 In the case of the one-dimensional
models, the classic homogenization method tends to
steepen more rapidly as the wave propagates due to
its nondispersive nature; however, the microcon-
tinuum model encapsulates some of the features
from the DNS and strikes a balance between the
nonlinear volumetric response and dispersion due to
the microstructural character of the medium.

The overall trend of the influence of microstruc-
tural bias emerging from this multiresolution par-
adigm illustrates the predictive capability of the
microcontinuum model compared to fully resolved
models and shows its applicability in the study of
dynamic response of heterogeneous materials.
Although this approach has shown promise, there
are the following outstanding issues warrant fur-
ther attention:

� In this work, the microscale response was strictly
elastic, while the comparison with DNS might

benefit from an elasto-plastic model at this scale.
In a separate work,50 we have examined the
impact of microscale plasticity on dispersive
behavior, and it is currently under investigation.

� The DNS data that were used in the extraction
were an average over the transverse plane. An
improvement would be to develop data extraction
techniques that incorporate lateral spatial varia-
tion present in the three-dimensional DNS into
the resulting microstructural parameters, there-
by accommodating more information from the
DNS.

� While our goal is to develop a lower dimensional
model for planar wave propagation, the transition
from 3-D DNS to 1-D microcontinuum may incur
too much information loss for some applications.
Future work will use similar data extraction
techniques to inform 3-D microcontinuum models
that will be used to quantify the information loss
through different levels of abstraction.

� Another issue of considerable interest to the
dynamic materials community is the dependence
of shock formation rate and eventual thickness on
material microstructure. Our results indicate
these dispersion effects can be represented by
the microcontinuum formulation and can be
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Fig. 7. Comparison of predicted velocity profiles between DNS and the microcontinuum model for a 3-D particulate-reinforced Al/SiC MMC in the
elastoplastic regime. The profiles shown of the DNS results are the average of three random microstructural realizations and include an upper
and lower envelope that shows the standard deviation in velocity on the transverse plane at the given position. (a) For a Gaussian input pulse with
a volume fraction of SiC of 5%, (b) for a long pulse loading with a volume fraction of SiC of 5%, (c) for a Gaussian input pulse with a volume
fraction of SiC of 10%, and (d) for a long pulse loading with a volume fraction of SiC of 10%.
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improved by refining the physical models both for
the DNS and the microcontinuum model.

� In order for the numerical methods in this work to
be used with confidence, experimental validation
is required. We are currently developing plate
impact experiments in well-characterized poly-
crystalline copper using photon doppler velocime-
try for this purpose. Further experiments in
MMCs are warranted.

CONCLUSION

A multiresolution continuum paradigm has been
presented to study the dynamic behavior of hetero-
geneous materials such as MMCs. This framework
relies on DNS to spatially resolve the complexity
and richness of a wave propagating through micro-
structured heterogeneous media. The DNS model is
based on a combination of a crystal plasticity for-
mulation for the nonlinear behavior of the host
matrix and the JH-1 model for behavior of the par-
ticulate reinforcements. The results from the
mesoscale DNS inform a nonlinear plastic micro-
continuum model that introduces richer kinematics
to account for microstructural features without
explicitly modeling them and with far fewer total
degrees of freedom. The microcontinuum model is
based on the mechanics of generalized continua and
introduces characteristic parameters (characteristic
microstructural length scale and microstructural
materials parameters for example) arising from the
inhomogeneous behavior of the microstructure.
These parameters are generally related to micro-
structural features such as grains and particulate
reinforcements.

The resulting multiresolution continuum frame-
work can predict the evolution of continuum fields
propagating through a microstructured medium
without having to perform the fully resolved micro-
structural simulations for each loading configura-
tion. Only the DNS used for the calibration of these
models are required to determine the microstruc-
tural parameters used in the definition of the con-
stitutive behavior of the microcontinuum model.

This multiresolution paradigm has been applied
to model the dynamic behavior of layered and par-
ticulate-reinforced Al/SiC MMCs. The results from
the calibrated microcontinuum model are consistent
with those calculated through DNS but without the
associated computational cost. Qualitative compar-
isons of this multiresolution scheme with classic
homogenization methods suggest that the result
obtained are be more realistic for a wide range of
compressive loading inputs. In particular, the dis-
persive characteristics seem to be better captured
when microscale features are in the same order of
magnitude as the microstructure. Again, we note
that the classic homogonization technique we com-
pare to cannot capture these dispersive effects as
those physics are not present in that model.

Such results show great promise for developing
accurate and efficient modeling tools and establish
the connection between microstructure and proper-
ties. As such, this type of paradigm would be useful
in developing new materials with optimal properties
for high-strain-rate conditions. For the same reason,
such a paradigm would enable and improve our
understanding of deformation mechanisms in het-
erogeneous materials at high strain rates.
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26. H.J. Böhm, A. Eckschlager, and W. Han, Comput. Mater.

Sci. 25 (1–2), 42 (2002).
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