The 2011 National Electrical Code® Article 690.11 requires photovoltaic systems on or penetrating a building to include a DC arc-fault protection device. In order to accelerate the development and testing of the Sensata Technologies Arc-Fault Detector (AFD), Sandia National Laboratories provided a number of prerecorded inverter and arc-fault noise data sets to them. Sensata Technologies created a data evaluation method focused on regeneration of the prerecorded arcing and baseline data with an arbitrary function generator. This method helped accelerate PV AFD development by eliminating the need for preliminary field testing, arc-generating hardware, and data acquisition systems. Further, more scenarios were tested without the need to reconfigure the PV system or locate different inverters. As a result, hardware selection and software algorithm tuning time were greatly shortened. Sensata Technologies employed this technique to accelerate the development of their alpha prototype arc-fault detector.

Sandia National Laboratories Arc-Fault Signature Library
Sandia has collected high frequency string current data from various PV systems in different meteorological conditions. The signatures represent a range of arcing and baseline noise conditions, including:
1. Series and parallel arc-fault noise on a range of systems with different modules and inverters
2. Different inverter baseline noise levels (e.g., inverters from different manufacturers and nameplate ratings)
3. Inverters at different levels of irradiance (<300 W/m², ~500 W/m², and >900 W/m²)
4. DC disconnect noise from switchgear

Variation in inverter noise between manufacturers and nameplate ratings. AFDs must be tested on many inverters to avoid nuisance trips.

Test of inverter noise repeatability by comparing 10 signatures from four identical 3000 W inverters.

Difference in inverter operation during high and low irradiance levels. It is important to test AFDs on a range of irradiances for each inverter.

Sensata Technologies AFD Evaluation
Using an arbitrary function generator, prerecorded baseline and arc-fault waveforms were regenerated to adjust the Sensata Technologies arc-fault detector (AFD) hardware and software to robustly detect arc-faults while avoiding nuisance trips.

SNL signatures provided to Sensata Technologies for AFD development.

Arc-Fault Detector Results
After tuning the AFD detection parameters, arc-fault detection was consistent. For this recorded arc-fault, the device trips in ~400 ms, well within UL 1699B listing requirements.

Acknowledgements
The authors would like to thank Sigifredo Gonzalez, Armando Fresquez, and Michael Montoya for their assistance in the Distributed Energy Technologies Laboratory collecting inverter and arc-fault signatures.

This poster does not contain any proprietary or confidential information.