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Introduction

Background

• The choice of the airfoils is a crucial step in wind turbine design in 
order to obtain competitive performances.

• NREL airfoils (Somers and Tangler)
• FFA airfoil family (Bjork)
• Stuttgart airfoils (Althaus, Wortmann)
• DU airfoils (Timmer et al.)
• Risoe airfoil families
• In house developed airfoils (Companies….)

• Most of the airfoils available in literature are designed for the outer 
part of the blade (15%-25% relative thickness).
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Thick Airfoils for Wind Turbines 
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Thick Airfoils for Wind Turbines 

State of the art
• Beside the aerodynamic performance, the airfoils for inner part of the blade 

have to guarantee the structural resistance of the blade.

• Research in this area are focused on exploring new solutions to accomplish 
both aerodynamic and structural performance (i.e. flatback airfoils improve 
both lift performance and structure1,2).

1. Hoerner, S. F., and Borst, H. V., Fluid-Dynamic Lift, Hoerner Fluid Dynamics, Bricktown, NJ, 1985, pp. 2-10, 2-11
2. van Dam, C.P., Mayda, E.A., and Chao, D.D., “Computational Design and Analysis of Flatback Airfoil Wind Tunnel Experiments”, SAND2008-1782, Sandia National 

Laboratories, Albuquerque, NM, March 2008
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Thick Airfoils for Wind Turbines 

Requirements
• Structure

- High structural strength
- Not too strong blade torsion

• Aerodynamics
- High aerodynamic efficiency (L/D)
- Good performance in off-design conditions
- Insensitivity to the roughness
- Good stall characteristics
- Margin between design condition and stall 

(gust robustness)
• Geometry

- Sufficient internal space for the spar
- Compatibility with the other airfoils along the 

blade

Inboard sections are 
usually working at high 
assets. 
Smooth stall behavior and 
margin before stall for gust 
can be desiderable 
features
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Design Approach
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Design Approach

Numerical optimization - the general formulation
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Design Approach

Numerical optimization - hybrid scheme:

• Genetic Algorithms (GA) are less sensitive to local optima and able 
to explore wide domains, but computationally expensive.

• Gradient Based Algorithms (GBA) are usually more accurate than 
GA but also more sensitive to the initial condition and to local 
optima.

• A combination of GA and GBA can improve the accuracy and 
robustness of the optimal solution.
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Design Approach

Geometry parameterization:
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Design Approach

Objective function definition and evaluation:

)/()1( DLkWkF +−=
RFOIL
• Improvements in boundary layer description
• Effects due to the rotation taken into account

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 2 4 6 8 10 12 14 16 18 20

alpha [deg]

C
l

experiments RFOIL XFOIL

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

Cd

C
l

RFOIL experiments RFOIL+10% XFOIL

NACA 633-418 airfoil, Re=6*106 

free transition  (Experimental 
data from Abbott1)

1. Abbott, I., Von Doenhoff, A., Theory of Wing Sections, Dover Publications, Inc., Dover edition, 1958

)1,0(∈t



12 26-6-2012

Design Approach

Validation of RFOIL for thick airfoils:
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Design Approach

Validation of RFOIL for thick airfoils:
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Design Approach

Validation of RFOIL for thick airfoils:
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Hybrid Scheme: preliminary tests
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Hybrid Scheme: preliminary tests

• Objective function
- Maximize L/D @ 6deg

• Design conditions
- Re: 3 million
- Fixed transition: 1% on suction side, 10% 

on pressure side

• Constraints
- Airfoil thickness > 35%c
- Trailing edge thickness > 1%c
- Cmc/4@ 6deg > -0.15

Definition of the problem: general settings
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Hybrid Scheme: preliminary tests

Definition of the problem: degrees of freedom

TE thickness can change 
up to 20%c

Airfoil thickness can 
change between 10%c 
and 50%c
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Hybrid Scheme: preliminary tests

Results

ID microGA population children Time (min) L/D 
A yes 5 1 25 55.48 
B yes 10 1 130 68 
C no 5 1 43 62.1 
D no 5 2 30 52.4 
E no 10 1 150 60 
F no 10 2 70 57.7 

ID microGA population children Time (min) L/D 
A yes 5 1 110 55.7 
B yes 10 1 130 55.7 
C no 5 1 170 56 
D no 5 2 120 53 
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Design of New Thick Airfoils
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Design of New Thick Airfoils

Definition of the problem: design requirements
• Structure

1. High structural strength
2. Not too strong blade torsion

• Aerodynamics
3. High aerodynamic efficiency (L/D)
4. Good performance in off-design 

conditions
5. Insensitivity to the roughness
6. Good stall characteristics
7. Margin between design condition 

and stall (gust robustness)
• Geometry

8. Sufficient internal space for the spar
9. Compatibility with the other airfoils 

along the blade

• Objective function
- Maximize moment of resistance (1)
- Maximize L/D @ 6deg (3)
- Aerodynamics and structure are mixed together 

by weighted linear combination

• Design conditions
- Re: 3 million
- Fixed transition: 1% on suction side, 10% 

on pressure side (4, 5)

• Constraints
- Airfoil thickness > 35%c (8, 9)
- Trailing edge thickness > 1%c (9)
- Cmc/4@ 6deg > -0.15 (2,9)
- Cl drop @15-16deg <-0.3 (6, 7)
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Design of New Thick Airfoils

Definition of the problem: degrees of freedom

TE thickness can change 
up to 20%c

Airfoil thickness can 
change between 10%c 
and 50%c
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Design of New Thick Airfoils

Results: geometries

• Family of thick airfoils

• Feasible shapes, 
consistent with the 
requirements

• Thickness ranging 
between 35% (priority to 
the aerodynamics) to the 
50% (priority to the 
structure)

• The thicker geometries 
exhibit flatback TE



23 26-6-2012

Design of New Thick Airfoils

Results: aerodynamic efficiency (RFOIL predictions, Re 3million, free transition)

w.r.t k0.8 and k0.9 airfoils

• Good L/Dmax value, 
higher than DU00-w2-350 
airfoil

• Good general 
performance, also in off 
design conditions
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Design of New Thick Airfoils

Results: lift coefficient (RFOIL predictions, Re 3million, free transition)

w.r.t k0.8 and k0.9 airfoils

• Good value of Clmax

• Good extension of the 
linear part of the curve

• K0.8 airfoil exhibits quite 
smooth stall

• Good margin before stall

• Better Cl performance. 
w.r.t. DU00-w2-350 can 
lead to chord and mass 
reduction
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Design of New Thick Airfoils

Results: rotational effects1 (RFOIL predictions, Re 3million, free and fixed transition)
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1. Snel, H., Houwink, R., van Bussel, G.J.W., Bruining, A., ‘Sectional Prediction of 3D Effects for Stalled Flow on Rotating Blades and Comparison with Measurements’, 
Proc. European Community Wind Energy Conference, Lübeck-Travemünde, Germany, 8-12 March, 1993, pp. 395-399, H.S. Stephens & Associates
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The Role of the Base Drag
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The Role of the Base Drag
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The Role of the Base Drag

Effects on the airfoil:
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Conclusions & Remarks

• A hybrid optimization scheme making use of genetic algorithms 
and gradient based algorithms has been developed. The 
preliminary results are promising

• The results showed that this approach improves the accuracy 
and the robustness of the design.

• The base drag plays an important role on the performance of 
thick airfoils. A semi-empirical model is in development at ECN

• Wind tunnel tests are anyway necessary to validate numerical 
results.


