

SANDIA REPORT
SAND2013-6733
Unlimited Release
Printed August 2013

Grid Integrated Distributed PV (GridPV)

Matthew J. Reno, Kyle Coogan

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States Government, nor any agency thereof,

nor any of their employees, nor any of their contractors, subcontractors, or their employees,

make any warranty, express or implied, or assume any legal liability or responsibility for the

accuracy, completeness, or usefulness of any information, apparatus, product, or process

disclosed, or represent that its use would not infringe privately owned rights. Reference herein

to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,

recommendation, or favoring by the United States Government, any agency thereof, or any of

their contractors or subcontractors. The views and opinions expressed herein do not

necessarily state or reflect those of the United States Government, any agency thereof, or any

of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from

 U.S. Department of Energy

 Office of Scientific and Technical Information

 P.O. Box 62

 Oak Ridge, TN 37831

 Telephone: (865) 576-8401

 Facsimile: (865) 576-5728

 E-Mail: reports@adonis.osti.gov

 Online ordering: http://www.osti.gov/bridge

Available to the public from

 U.S. Department of Commerce

 National Technical Information Service

 5285 Port Royal Rd.

 Springfield, VA 22161

 Telephone: (800) 553-6847

 Facsimile: (703) 605-6900

 E-Mail: orders@ntis.fedworld.gov

 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

3

SAND2013-6733

Unlimited Release

Printed August 2013

Grid Integrated Distributed PV (GridPV)

Matthew J. Reno

Photovoltaics and Distributed Systems Integration

Sandia National Laboratories

P.O. Box 5800

Albuquerque, New Mexico 87185-1033

Kyle Coogan

School of Electrical and Computer Engineering

Georgia Institute of Technology

777 Atlantic Drive NW

Atlanta, GA 30332-0250

Abstract

This manual provides the documentation of the MATLAB toolbox of functions for

using OpenDSS to simulate the impact of solar energy on the distribution system. The

majority of the functions are useful for interfacing OpenDSS and MATLAB, and they

are of generic use for commanding OpenDSS from MATLAB and retrieving

information from simulations. A set of functions is also included for modeling PV

plant output and setting up the PV plant in the OpenDSS simulation. The toolbox

contains functions for modeling the OpenDSS distribution feeder on satellite images

with GPS coordinates. Finally, example simulations functions are included to show

potential uses of the toolbox functions. Each function in the toolbox is documented

with the function use syntax, full description, function input list, function output list,

example use, and example output.

4

5

 CONTENTS

1. Introduction ... 9
1.1. Objectives .. 9
1.2. Overview of GridPV Features ... 10

2. Download and Installation .. 11

2.1. OpenDSS Installation... 11
2.2. Download GridPV ... 11
2.3. GridPV Installation Instructions .. 11
2.4. License Agreement .. 11
2.5. GridPV Uninstall Instructions.. 13

3. OpenDSS... 15
3.1. OpenDSS Resources .. 15

3.1.1. Websites ... 15
3.1.2. Documents .. 16

4. Getting Started with the Toolbox .. 17
4.1. OpenDSS COM Object Interface... 18

4.1.1. Initiating the COM Interface .. 18
4.1.2. Compiling the Circuit ... 18
4.1.3. Getting Data into MATLAB from OpenDSS ... 19

4.1.4. Active Elements ... 21
4.1.5. Running Commands ... 21

4.1.6. Adding/Editing Elements ... 22

4.2. Circuit Information Retrieval Using GridPV ... 22

4.2.1. Using the GridPV Get Functions .. 23
4.2.2. Working with Structures from the Toolbox ... 24

4.3. Circuit Check Function .. 24
4.3.1. Running Circuit Check Function .. 25
4.3.2. Interpreting Circuit Check Output .. 25

4.4. Plotting Tutorial ... 29

4.4.1. Plotting Circuits .. 29
4.4.2. Circuit Interaction ... 30
4.4.3. Plot Editing ... 31

4.5. Coordinate Conversion Tutorial .. 32
4.5.1. Manual Conversion .. 33

4.5.2. UTM Conversion .. 35
4.6. Solar Tutorial ... 36

4.6.1. Placing PV on the Circuit ... 36
4.6.2. Adding Central PV ... 37
4.6.3. Adding Distributed PV ... 38
4.6.4. Editing Plant Info ... 38
4.6.5. Editing Power Factor .. 39

4.6.6. Creating the PV DSS Files ... 41
4.7. Example Analyses .. 42

4.7.1. Static Analysis .. 42

6

4.7.2. Time-Series Analysis in OpenDSS .. 43

4.7.3. Time-Series Analysis in MATLAB ... 44

5. Distribution System Models ... 45
5.1. Example Circuit ... 45

5.2. Links to Other Circuits ... 46

6. Feedback and Help .. 47

7. Function Help Files ... 49
7.1. OpenDSS Functions ... 50

7.1.1. DSSStartup ... 51

7.1.2. getBusCoordinatesArray .. 52
7.1.3. getBusInfo .. 53

7.1.4. getCapacitorInfo ... 55
7.1.5. getCoordinates .. 57
7.1.6. getLineInfo ... 58
7.1.7. getLoadInfo .. 61

7.1.8. getPVInfo ... 64
7.1.9. getTransformerInfo .. 66

7.1.10. isinterfaceOpenDSS ... 69
7.2. Circuit Analysis Functions ... 70

7.2.1. circuitCheck .. 71

7.2.2. findDownstreamBuses .. 72
7.2.3. findHighestImpedanceBus ... 73

7.2.4. findLongestDistanceBus .. 74
7.2.5. findSubstationLocation .. 75

7.2.6. findUpstreamBuses .. 76
7.3. Plotting Functions .. 77

7.3.1. plotAmpProfile ... 78
7.3.2. plotCircuitLines .. 80
7.3.3. plotCircuitLinesOptions ... 86

7.3.4. plotKVARProfile .. 87
7.3.5. plotKWProfile .. 90

7.3.6. plotMonitor ... 93
7.3.7. plotVoltageProfile .. 94

7.4. Geographic Mapping Functions ... 98
7.4.1. initCoordConversion .. 99
7.4.2. createCircuitCoordConversion ... 100

7.4.3. createCircuitCoordConversionUTM .. 101
7.4.4. plot_google_map .. 102

7.5. Solar Modeling Functions .. 105
7.5.1. placePVplant .. 106

7.5.2. createPVscenarioFiles .. 107
7.5.3. distributePV .. 108
7.5.4. findMaxPenetrationTime .. 109
7.5.5. IneichenClearSkyModel ... 110
7.5.6. makePFoutputFunction .. 111

7

7.5.7. makePFprofile .. 112

7.5.8. makePFschedule ... 113
7.5.9. makeVVCcurve .. 114
7.5.10. WVM .. 115

7.6. Example Simulations ... 117
7.6.1. examplePeakTimeAnalysis .. 118
7.6.2. exampleTimeseriesAnalyses .. 121
7.6.3. exampleVoltageAnalysis .. 128

8. References ... 131

9. Distribution ... 132

 FIGURES

Figure 1. Selecting an Element with Left Click. ... 30

Figure 2. Selecting an Element with Right Click. .. 30
Figure 3. Avoid Using Plot Tools. .. 31

Figure 4. Use Property Editor to Modify. ... 31
Figure 5. Returning to the Default View. ... 32
Figure 6. Coordinate Conversion Initializer. .. 32

Figure 7. Manual Coordinate Conversion GUI. .. 33
Figure 8. Satellite Image Map Tools... 33

Figure 9. Feeder Map Tools. ... 34
Figure 10. Coordinate File Backup Warning. ... 34

Figure 11. Coordinate Conversion Successful. ... 35
Figure 12. UTM Coordinate Conversion GUI. ... 35

Figure 13. GUI of placePVPlant. .. 37
Figure 14. Central PV Location Prompt. .. 37
Figure 15. Distributed PV Location Prompt. .. 38

Figure 16. Create Schedule GUI. .. 39
Figure 17. Create Function GUI. .. 40

Figure 18. Create VV Control GUI... 40
Figure 19. Circuit diagram for GridPV example circuit (EPRI Test Ckt24). 45

 TABLES

Table 1. Summary of EPRI Test Ckt24. ... 45

8

 NOMENCLATURE

COM Component Object Model

DG Distributed Generation

DOE Department of Energy

EPRI Electric Power Research Institute

GUI Graphical user interface

IEEE Institute of Electrical and Electronics Engineers

LDC Line Drop Compensation

LTC Load Tap Changer

MW Megawatts (AC)

OpenDSS Open Distribution System Simulator™

PCC Point of Common Coupling

pu per unit

PV Photovoltaic

UTM Universal Transverse Mercator

VBA Visual Basic for Applications

WVM Wavelet Variability Model

9

1. INTRODUCTION

The power industry is beginning to see a change to larger amounts of generation on the

distribution system. This presents a new set of issues, especially for renewable generation with

variable intermittent power output. It is important to precisely model the impact of solar energy

on the grid and to help distribution planners perform the necessary interconnection impact

studies. The variability in the load, throughout the day and year, and the variability of solar,

throughout the year and because of clouds, makes the analysis increasingly complex. Both

accurate data and timeseries simulations are required to fully understand these variations.

This manual describes the functionality and use of a MATLAB toolbox for using OpenDSS to

model the variable nature of the distribution system load and solar energy. OpenDSS is an

electric power distribution system simulator that is open source software from the Electric Power

Research Institute (EPRI) [1]. OpenDSS is used to model the distribution system with

MATLAB providing the frontend user interface through a COM interface. OpenDSS is designed

for distribution system analysis and is very good at timeseries analysis with changing variables

and dynamic control. OpenDSS is command based and has limited visualization capabilities.

By bringing control of OpenDSS to MATLAB, the functionality of OpenDSS is utilized while

adding the looping, advanced analysis, and visualization abilities of MATLAB.

The functions in the toolbox are categorized into five main sections in the manual: OpenDSS

functions, Solar Modeling functions, Plotting functions, Geographic Mapping functions, and

Example Simulations. Each function is documented with the function use syntax, full

description, function input list, function output list, and an example use. The function example

also includes an example output of the function.

1.1. Objectives

The GridPV Toolbox for MATLAB provides a set of well-documented functions for simulating

the performance of photovoltaic energy systems. Version 1 contains functions, example scripts,

and sample data files.

The toolbox was developed at Sandia National Laboratories and it implements many of the

models and methods developed at the Labs. Future versions are planned that will add more

functions and capability.

10

1.2. Overview of GridPV Features

Integrates GIS functionality

through Google Maps and

includes functions to

convert between

coordinate systems

Standardizes interface between MATLAB and

OpenDSS for easy parameter queries

Validates OpenDSS

feeders and checks

for errors

Performs time-series and

steady-state simulations

Models solar power easily and accurately

• GUI for setting up PV plants

• Model solar variability for size and dispersion of PV

• Power factor and reactive power control for PV plants

• Central and distributed plants

Plots and visualizes results

• Clean and interactive plots with numerous options

• Integrated plotting options such as feeder circuit

diagram and voltage, current, and power profiles

Substation

Loads

LTC/VREG

Step Transformer

Fixed Capacitor

Substation

Loads

LTC/VREG

Step Transformer

Fixed Capacitor

MATLAB COM OpenDSS

11

2. DOWNLOAD AND INSTALLATION

2.1. OpenDSS Installation

Before using the GridPV toolbox, the current version of OpenDSS must be installed. To install

OpenDSS, go to http://sourceforge.net/projects/electricdss/ [1]. No settings need to be changed

from the default installation choices.

2.2. Download GridPV

To download the GridPV toolbox, go to www.gridintegration.org and download the GridPV zip

file. You will have to sign in before you can download the toolbox. Please review the license

agreement before downloading the GridPV toolbox.

2.3. GridPV Installation Instructions

Once you have download the GridPV zip file, follow these steps:

1. Extract the zip file to the desired location

2. Open MATLAB

3. Go to the FILE menu -> SET PATH. (For MATLAB 2013, “Set Path” button under the

HOME toolbar ribbon.

4. Push “Add with Subfolders” and select GridPV folder and press OK (this will add the

GridPV Toolbox to your path file)

5. Click “Save”

6. **Important** Make sure you remove previous versions of the GridPV Toolbox from

your path.

7. Go to MATLAB‟s help and you should see GridPV Toolbox listed with your other

toolboxes. (For MATLAB 2013, in the MATLAB help click “Supplemental Software” at

the bottom left.)

2.4. License Agreement

Copyright

© Copyright 2013, Matthew J. Reno and Kyle Coogan

Georgia Institute of Technology and Sandia National Laboratories

Please acknowledge any contributions of the GridPV Toolbox by citing [2] in the following

format:

M. J. Reno and K. Coogan, "Grid Integrated Distributed PV (GridPV)," Sandia National

Laboratories SAND2013-6733, 2013.

http://sourceforge.net/projects/electricdss/
http://www.gridintegration.org/

12

Restricted Software License Agreement

Sandia Corporation (“SANDIA”), under its Contract No. DE-AC04-94AL85000 with the United

States Department of Energy for the management and operation of the Sandia National

Laboratories, Livermore, California and Albuquerque, New Mexico, has developed the

MATLAB GridPV Toolbox, herein called “GridPV Toolbox”. By downloading this software, the

licensee (“YOU”) agree to the following terms:

1. Grants

1. Subject to the terms and conditions of this Agreement, including Attachment A,

YOU are granted a nontransferable, nonexclusive right and license, without the

right to sublicense, to: use, modify, and/or make derivative works or compilations

of the GridPV Toolbox.

2. YOU agree that this restricted license does not allow YOU to sell, or offer for sale

any software product containing or making use of the GridPV Toolbox or any

modifications, derivative works, or compilations making use of the GridPV

Toolbox.

3. YOU agree to give credit to the original authors (Matthew J. Reno and Kyle

Coogan) at SANDIA in any work that results from using the GridPV Toolbox.

4. If YOU intend to sell or offer for sale any products or services making use of the

GridPV Toolbox, then YOU must obtain the appropriate license from SANDIA

for use of GridPV Toolbox by contacting Sandia Software Licensing Manager,

Craig A. Smith at +1 (925) 294-3358.

2. Reproduction and Distribution

1. YOU agree not to use the GridPV Toolbox except as authorized herein, and that

YOU will not make, have made, or permit to be made, any copies of the GridPV

Toolbox.

2. YOU agree to have other users download the GridPV Toolbox from its

distribution web site, currently www.gridintegration.org.

3. Disclaimer

1. NEITHER SANDIA, THE UNITED STATES NOR THE UNITED STATES

DEPARTMENT OF ENERGY, NOR ANY OF THEIR EMPLOYEES MAKES

ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING ANY

WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY

FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY

INFORMATION, APPARATUS, PRODUCT, OR PROCESS OR

REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY

OWNED RIGHTS, OR ASSUMES ANY LIABILITY FOR INCIDENTAL OR

CONSEQUENTIAL DAMAGES RESULTING FROM ITS USE BY ANYONE.

2. The U.S. Government has a paid-up, nonexclusive, irrevocable worldwide license

in the GridPV Toolbox to reproduce, prepare derivative works, and perform

publicly and display publicly by or on behalf of the U.S. Government.

3. The U.S. Government is neither a party to nor assumes any liability for activities

of the Contractor (SANDIA) in connection with this License Agreement.

4. Indemnity

http://www.gridintegration.org/

13

1. Except for negligent acts or omissions of SANDIA, if YOU, your assignees or

licensees, make, use or sell a product, process or service making use of the

GridPV Toolbox, then YOU shall indemnify SANDIA and the U.S. Government

for all damages, costs, and expenses, including attorneys‟ fees, arising from

personal injury or property damage occurring as a result of making, using or

selling the product, process or service.

2. SANDIA warrants that the GridPV Toolbox is an original work of authorship

owned or controlled by SANDIA.

3. SANDIA warrants that it has the right to license copyrights in the GridPV

Toolbox.

5. Export Control Notice

1. The export of articles and information from the U.S. may require a government

license; violators subject to criminal penalties.

6. No Waivers

1. The failure of SANDIA, at any time, to exercise any right or remedy of this

Agreement shall not be construed to be a waiver of such right or remedy nor

preclude SANDIA from exercising such right and remedy thereafter.

7. Controlling Law

1. This Agreement shall be construed according to the laws of the State of California

and the United States of America.

Attachment A
1. GridPV Toolbox:

GridPV Toolbox is a Sandia Corporation copyrighted software, SCR 1507.0, that

provides a collection of MATLAB routines for that can be used to model photovoltaic

power systems.

2. License Fees:

GridPV Toolbox is being offered at no cost under this agreement. Commercial

distribution licenses for GridPV Toolbox are available from Sandia at reasonable rates.

2.5. GridPV Uninstall Instructions

1. Open MATLAB

2. Go to the FILE menu -> SET PATH. (For MATLAB 2013, “Set Path” button under the

HOME toolbar ribbon.

3. Select the main folder and all sub-folders where you previously installed the GridPV

toolbox.

4. Click “Remove”

5. Click “Save”

6. You can now navigate to the location of the toolbox files and delete them.

15

3. OPENDSS

OpenDSS is an open source electric power distribution system simulator from the Electric Power

Research Institute (EPRI) [1]. It is a 3-phase distribution system analysis power flow solver that

can handle unbalanced phases. OpenDSS is commonly used to model solar on the grid because

of its high-resolution time series analysis capabilities [3-7]. Currently available utility-standard

simulation tools are not generally well suited for sequential or dynamic simulations needed to

fully characterize the effects of PV output variability on distribution feeders. The program was

designed to help distribution planners analyze various issues with distributed generation

integration and future smart grid applications.

The GridPV toolbox uses OpenDSS to run all electrical simulations and to solve the power

flows. Each electrical component in the circuit is modeled in OpenDSS. To perform analysis,

the feeder must be setup and compiled into OpenDSS memory. This can be done through

MATLAB, but the easiest way is to setup a circuit is through the OpenDSS program and file

structure independently. One example feeder is seen in the toolbox documentation folder

(Section 5), and other feeders can also be downloaded from the OpenDSS website [1]. These

other feeders are included in the OpenDSS installation in two folders: one for the EPRI feeders,

and another for the IEEE feeders. Existing feeder models can be converted from other software

into the OpenDSS format. OpenDSS is very flexible with respect to scenario analysis; however,

it has a basic interface that supports a manual, script-based study process. To facilitate analysis

in OpenDSS, this toolbox provides supplemental tools for research and customized analysis

through MATLAB.

3.1. OpenDSS Resources

There are many online sources for help and documentation on OpenDSS, so this manual

provides very little material or training on using OpenDSS. A few references have been included

here for assistance in getting started with OpenDSS or learning more details. The OpenDSS

Help Menu is also a very good reference for DSS commands and properties. Specific details

about using the OpenDSS COM interface are discussed in Section 4, but for more information on

the details, models, or syntax of OpenDSS, see the references below.

3.1.1. Websites

Main OpenDSS Sourceforge

 http://sourceforge.net/projects/electricdss/

Help Forum

 http://sourceforge.net/p/electricdss/discussion/

OpenDSS Wiki

 http://sourceforge.net/apps/mediawiki/electricdss/index.php?title=Main_Page

OpenDSS Getting Started Wiki

 http://sourceforge.net/apps/mediawiki/electricdss/index.php?title=Getting_Started

http://sourceforge.net/projects/electricdss/
http://sourceforge.net/p/electricdss/discussion/
http://sourceforge.net/apps/mediawiki/electricdss/index.php?title=Main_Page
http://sourceforge.net/apps/mediawiki/electricdss/index.php?title=Getting_Started

16

OpenDSS Training Materials from Dr. Luis Ochoa

 https://sites.google.com/site/luisfochoa/research/opendss-training

3.1.2. Documents

OpenDSS Manual

 http://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/Doc/OpenDSSManual.pdf

OpenDSS New User Primer

 http://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/Doc/OpenDSSPrimer.pdf

Introduction to OpenDSS

 http://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/Doc/Introduction%20to%2

0the%20OpenDSS.pdf

Training Presentation

 http://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/Training/AtlantaWorkshop

.pdf

https://sites.google.com/site/luisfochoa/research/opendss-training
http://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/Doc/OpenDSSManual.pdf
http://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/Doc/OpenDSSPrimer.pdf
http://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/Doc/Introduction%20to%20the%20OpenDSS.pdf
http://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/Doc/Introduction%20to%20the%20OpenDSS.pdf
http://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/Training/AtlantaWorkshop.pdf
http://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/Training/AtlantaWorkshop.pdf

17

4. GETTING STARTED WITH THE TOOLBOX

This guide will demonstrate how to initiate the COM interface within MATLAB, load and

compile a circuit, check the distribution circuit for any errors, generate the coordinate conversion

for the circuit, add PV to the existing circuit, and produce plots with the analysis results.

Each toolbox function has its own example contained in the header file, as well as in Section 7.

These examples will run on their own using the example circuit and may be useful for becoming

familiar with the toolbox.

The basic process for getting started with the toolbox is:

% 1. Start the OpenDSS COM. Needs to be done each time MATLAB is opened
 [DSSCircObj, DSSText, gridpvPath] = DSSStartup;
% 2. Compiling the circuit
 DSSText.command = ['Compile "' gridpvPath

'ExampleCircuit\master_Ckt24.dss"'];
% 3. Solve the circuit. Call anytime you want the circuit to resolve
 DSSText.command = 'solve';
% 4. Run circuitCheck function to double-check for any errors in the circuit

before using the toolbox
 warnSt = circuitCheck(DSSCircObj);

There is much documentation for each toolbox function contained within the toolbox in the form

of standard MATLAB help. These help files can be accessed via the typical help browser or by

querying the help via the command line.

help getBusInfo

The help files are also included online at www.gridintegration.org as well as in Section 7 of the

manual. For OpenDSS help, see the references in Section 3 on OpenDSS resources.

Section 4 is organized as follows:

4.1. OpenDSS COM Object Interface – Overview of the OpenDSS COM object and

interactions with OpenDSS

4.2. Circuit Information Retrieval Using GridPV – Use of the toolbox functions for pulling

OpenDSS parameters from the COM object

4.3. Circuit Check Function – Description of the OpenDSS circuit validation process

4.4. Plotting Tutorial – Introduction to the GridPV plotting tools

4.5. Coordinate Conversion Tutorial – Converting the circuit coordinates into

latitude/longitude coordinates

4.6. Solar Tutorial – Overview of the process and functions for setting up PV on the

distribution system model

4.7. Example Analyses – Description of the analysis example provided in the toolbox

www.gridintegration.org

18

4.1. OpenDSS COM Object Interface

This section provides an overview of the interaction between MATLAB and OpenDSS through

the COM server object. The features and methods described in Section 4.1 are built in to the

OpenDSS COM server and can be accessed from other programs such as VBA in Excel. The

purpose is to give the reader a basic understanding of the OpenDSS COM, and further

information about the OpenDSS COM server can be found in the OpenDSS resources in Section

3.

4.1.1. Initiating the COM Interface

The first step is to initiate the COM interface. A MATLAB function in the toolbox does this for

the user by calling DSSStartup:

 [DSSCircObj, DSSText, gridpvPath] = DSSStartup;

DSSStartup starts up OpenDSS in the background and returns the handle pointer to MATLAB

for interface. DSSStartup returns three outputs:

 DSSCircObj, which is the pointer to the COM interface. This contains the active circuit

(DSSCircObj.ActiveCircuit), which is not yet compiled, and the text interface to

OpenDSS (DSSCircObj.Text). DSSCircObj will be empty until a circuit is compiled, as

discussed in Section 4.1.2 Compiling the Circuit.

 DSSText is the text interface contained within DSSCircObj. It has been redefined in this

manner for easier use within the MATLAB command window.

DSSCircObj.Text.Command and Text.command point to the same text interface, except

the latter requires less typing.

 gridpvPath is a string containing the toolbox path location on your computer.

DSSStartup will return an error if MATLAB was unable to create a link to OpenDSS. The most

common reasons for this error are if OpenDSS is not installed on the computer or if an older

version of OpenDSS was installed.

Note that the OpenDSS program that MATLAB interfaces with via the COM server is different

than the graphical interface window of the OpenDSS executable. Any information, circuits,

solutions, or parameters set in the graphical interface window of OpenDSS will not show up in

the COM server version of OpenDSS, and vice versa.

4.1.2. Compiling the Circuit

To open a circuit in OpenDSS, use the text interface to pass the „compile‟ command into

OpenDSS.

 DSSText.command = 'Compile C:\GridPV\ExampleCircuit\Run_Ckt24.dss';

19

Relative file paths can be used in the compile command, but the OpenDSS directory will change

to the folder that contains the .dss file during the compile command. To ensure that the compile

command works every time, it is recommended to use the full file path.

When working with the example circuit in the toolbox, the gridpvPath returned from

DSSStartup can be used to link to the circuit. For example, use

 DSSText.command = ['Compile "', gridpvPath,

'ExampleCircuit\master_Ckt24.dss"'];

IMPORTANT NOTE: At this point you have opened an instance of OpenDSS in the background

and compiled a circuit. This instance of OpenDSS is entirely unassociated with any visible

instance of OpenDSS (the GUI) that you may already have open. Changes to a circuit in the

OpenDSS GUI will not be reflected in the MATLAB OpenDSS circuit.

To make changes to the circuit, use either the DSSText interface inside MATLAB. Alternatively,

manually edit the .dss files, save them, and recompile the circuit in MATLAB.

4.1.3. Getting Data into MATLAB from OpenDSS

Now that the COM interface has been started and the circuit has been solved, you can begin to

use the Command Window to interact with the COM interface structure.

Call DSSCircObj.methods to view the available methods with which you can use to interact

with the interface. Use the DSSCircObj.get method to view the main interface. For information

on the rest of the methods, refer to OpenDSS documentation and resources in Section 3.

In the return for DSSCircObj.get, notice that there are several other pointers to OpenDSS

interface COM objects. One such sub-pointer is the ActiveCircuit interface. The ActiveCircuit

refers to the compiled circuit in OpenDSS and contains all parameters and power flow solutions.

Since the ActiveCircuit pointer will be used regularly, redefining the active circuit interface as its

own, separate handle can save on the amount of typing in the future:

 DSSCircuit = DSSCircObj.ActiveCircuit;

Now call DSSCircuit.methods to view the methods pertaining to the solved circuit. Again, use

the DSSCircuit.get method to view all the different fields and interfaces present in the circuit

interface:

DSSCircuit.methods

DSSCircuit.get

In the return after calling DSSCircuit.get, you will notice several more OpenDSS COM

interface pointers, each referring to specific elements in the circuit. You can also view the

methods of any of these interfaces that appear as fields of DSSCircuit. Notice the fields that

20

show up in the return. Now that you are aware of what the lines interface contains, you can query

a specific field.

 DSSCircuit.Lines.methods

 DSSCircuit.Lines.get

DSSCircuit.Lines.LineCode

 DSSCircuit.Capacitors.get

 DSSCircuit.Capacitors.Name

However, you should also notice that most of these fields in these interfaces are populated with

information about an individual line. The fields refer to data about the element that you are

currently viewing, which is initially the first element by default.

This is an important observation to understanding how iteration is used to retrieve all the data

about a circuit. The .first and .next methods that were present in the return for

DSSCircuit.Lines.get are used to change the index of the object. Use the .first method to

be certain that you have reset the current line, capacitor, etc. to the first one in the list. Then, use

the .next method while iterating to step through the list. This is true for each type of circuit

element present in the OpenDSS COM, such as Lines, Capacitors, Transformers, etc.

 % Set transformer element to beginning
DSSCircuit.Transformers.first;
% Get total number of transformers
numXfmr = DSSCircuit.Transformers.count;
% Preallocate
xfmrNames = cell(numXfmr, 1);
% Iterate
for ii = 1:numXfmr
 %Get current transformer name
 xfmrNames{ii} = DSSCircuit.Transformers.Name;
 % Advance to next transformer
 DSSCircuit.Transformers.Next;

end

Notice the use of the numXfmr variable. Initially, it may seem useful to save this line of code and

just use DSSCircuit.Transformers.count in the two locations that numXfmr appears.

However, DSSCircuit.Transformers.count has to go through the COM server and takes more

time; therefore, it is most efficient to call this just once and then use the workspace variable

going forward.

The above transformer example is solely for demonstration of using iteration with the interfaces.

It is not the easiest way to obtain all of the transformer names. This highlights another point

about these element interfaces: even though many of the fields will be specific to a single

element, there are several methods and fields that return or contain global information. Be sure to

look over what methods and fields are available, as they can save resources by avoiding iteration.

Notice that the following method is effectively the same as the above loop:

xfmrNames = DSSCircuit.Transformers.AllNames;

21

4.1.4. Active Elements

When interacting with the COM server, there are two main locations from which you can get

data about a particular circuit element. The first location was just shown in the previous section

and involves using the interface specific to the type of element (e.g. the line interface or the

capacitor interface).

Another interface, the active element interface, can also be used to find data about any element

type. If you call DSSCircuit.ActiveCktElement.get you will see a list of fields that,

individually, may or may not apply to each type of circuit element. You will also see that there is

some data that will be pertinent to a particular type of element but was not present in that

element‟s interface. This is why the active element interface is so useful: it contains relevant data

that cannot be found elsewhere. In general, the class interfaces (lines, transformers, etc.) contain

the information about the circuit element (ratings, connections, impedances, etc.) and the active

element interface contains the power flow solution values for that element.

After calling DSSCircuit.ActiveCktElement.methods, you may notice that there are no

.first or .next methods. This is because the active element interface requires that you set the

active element manually. This can be done with the DSSCircuit.SetActiveElement method.

See the below example to see how to effectively use the active element interface:

%Get line names and set up structure

lineNames = DSSCircuit.Lines.AllNames;

Lines = struct('name',lineNames);

% Iterate and retrieve line buses

for ii=1:length(Lines)

 % Set the active element as the current line

 DSSCircuit.SetActiveElement(['line.' Lines(ii).name]);

 % Get the bus names, a cell array of length 2

 lineBusNames = DSSCircuit.ActiveElement.BusNames;

 Lines(ii).bus1 = lineBusNames{1};

 Lines(ii).bus2 = lineBusNames{2};

end

4.1.5. Running Commands

Apart from the circuit interface, the other primary tool for interacting with the COM server is the

text interface. The text interface can be used to pass command strings to OpenDSS, as shown

before when the example circuit was compiled. The text interface allows string commands to be

passed to OpenDSS and run directly in OpenDSS. For example:

DSSText.command = 'Set controlmode=static';
DSSText.command = 'Set mode=snapshot number=1 hour=0 h=1 sec=0';
DSSText.command = 'solve';

22

Here, the text interface was used to solve the circuit after setting the particular control mode, the

time, and the time step h. The command string is compiled in OpenDSS, so the text interface can

be used to do anything that can be done via scripting in OpenDSS.

An important aside about solutions: when solving the circuit, OpenDSS solves for the current

time and then steps to the next timestep. After setting h=1 (h is the timestep in seconds), passing

the solve command again without resetting the hour and second would yield results for the next

second in time.

4.1.6. Adding/Editing Elements

One of the most common uses of the text interface within the toolbox is to add and edit circuit

elements. Using the OpenDSS commands “new” and “edit”, different elements can be added,

moved, and changed via MATLAB as shown in the following example:

% Note that there are currently no generators
DSSCircuit.Generators.get;

% Add PV in the form of a generator object

 DSSText.command = 'new generator.PV bus1= n292757 phases=3 kv=34.5

kw=500 pf=1 enabled=true';

% You can now see the generator that was added
DSSCircuit.Generators.get;

% Set it as the active element and view its bus information
DSSCircuit.SetActiveElement('generator.pv');
DSSCircuit.ActiveElement.BusNames

% Now change it to another bus and observe the change
DSSText.command = 'edit generator.PV bus1=n1325391 kv=13.2';
DSSCircuit.ActiveElement.BusNames

4.2. Circuit Information Retrieval Using GridPV

Much of the most useful COM server interaction described in Section 4.1 has already been

incorporated into the toolbox in the form of seven “get-functions” (e.g. getLineInfo,

getCapacitorInfo, etc.). They use the iteration mentioned in the previous section to obtain all

of the circuit element data from OpenDSS and return it as an organized structure. Some of the

information is also formatted during entry in the structure, for example phase power flows, so

that it is consistent between object types and individual elements. These get-functions can save

new users a significant amount of time in learning how to interact with OpenDSS, as all

information can be queried and loaded into MATLAB using the GridPV toolbox.

23

4.2.1. Using the GridPV Get Functions

The get-functions are useful toolbox functions that automate some of the most tedious aspects of

interacting with the COM-server. When calling them, pass the pointer to the COM-object and

optionally, a cell array of element names. If you do not include the element names, all of the

enabled elements will be returned by default. If you include element names, each element will be

in the output, even if the element is disabled.

% Calling it without specifying names to return all buses
Buses = getBusInfo(DSSCircObj);

% Calling it with specifying names (don’t forget braces)
Buses = getBusInfo(DSSCircObj,{'N1311915'});

% Calling it with a cell array of names
Buses = getBusInfo(DSSCircObj,{'N1311915', 'N312536'});

 % Calling it with specifying all names via the COM-server
Buses = getBusInfo(DSSCircObj, DSSCircObj.ActiveCircuit.AllBusNames);

If you include element names in the input, there will be some parameters in the structure that are

not returned. This is due to how OpenDSS uses both the active element interface as well as the

object-specific interface to return data. The object-specific interfaces do not include disabled

elements in their stack. Because the toolbox functions return any disabled elements that are

requested when element names are provided by the user, there would be a potential mismatch

between the data obtained from the active element interface and the data from the object-specific

interface. Not only does the object-specific interface solely return enabled elements, but the only

way to query a specific element in the object is to iterate through every object. Therefore, to

optimize the speed of the specific element calls for a few objects, the object-specific properties

will not be returned.

The get-functions have been designed to return all possible parameters for each object. This

presents a comprehensive list of object properties, but the result is that the get-functions can take

significant time to pull every parameter for every element in a large circuit. For applications

where the user will be doing numerous repetitive calls to get-functions for large datasets, it is

recommended that the user optimize the get-functions for their application. There are two ways

to improve the speed of the get-functions. The first method was previously discussed of sending

only the names of the required elements. This limits the looping necessary to get through all

objects. The other method is to customize the get-function for specific applications to only query

the parameters that are needed. For example, the getLineInfo function could be saved as

getLineCurrents and all COM property queries other than obtaining the line currents could be

commented out. Reducing the number of properties pulled does not have significant impact to

the time for a single call, but this can have substantial advantages for repetitive calls during an

extended simulation.

Important Note: The get-functions do not return pointers to any objects. They are structures

containing static data from the most recent power flow solution of the circuit. Any time the

circuit is modified or there is a new power flow solution, the get-functions will have to be called

again to populate the structures with the most recent data.

24

4.2.2. Working with Structures from the Toolbox

In order to most effectively use the structures that are obtained by using the toolbox‟s get-

functions it is necessary to recall some MATLAB syntax for working with structures. The value

of each field in the structure is accessed by placing the fieldname after a period. The fieldnames

for a given structure can be found by calling the MATLAB function fieldnames(). The results

of the get-functions are returned in a structure array, for example Buses, where each bus is in a

structure in Buses and the values of that bus are found by indexing the correct bus in Buses.

% Find all field names in the Buses structure

fields = fieldnames(Buses);

% Return the name of the first bus
Buses(1).name
% Return the number of phases of the second bus
Buses(2).numPhases

% Return how many buses are in the structure
length(Buses)

When trying to access data from multiple elements in the structure, be sure to include the call

inside of brackets (or braces for cells) to obtain an array result.

Loads = getLoadInfo(DSSCircObj);

% Calling it without brackets returns each kW separately
Loads.kW
% Versus calling it with brackets, which returns all kW in an array
[Loads.kW]
% The same holds true for cell arrays

{Loads.name}

This use of the MATLAB syntax is useful for filtering for certain criteria. For example, you can

filter the loads structure to contain only three-phase loads or loads below a specific voltage

rating.

% Filter for three-phase loads
ThreePhaseLoads = Loads([Loads.numPhases]==3);

% Filter for low voltage secondary system loads
SecondaryLoads = Loads([Loads.kV]<=0.24);

4.3. Circuit Check Function

One particularly useful tool at the outset of any analysis for a particular circuit is the

circuitCheck function. This function will examine the OpenDSS circuit for any potential

typos or inconsistencies that may yield a rather curious solution from OpenDSS. It is helpful for

troubleshooting actual MATLAB errors returned by toolbox functions. It is also useful for

tracking down anomalies visible in the plots from typos that are creating apparent errors in the

circuit but are still allowing it to compile. It is recommended that you run this circuitCheck

function on any OpenDSS circuit before using it with the toolbox. The circuitCheck function

25

has been run on the example circuit included in the toolbox, but the function should be run on all

other circuits, including the example circuits mentioned in Section 5.

The circuitCheck function checks for numerous issues with the circuit model. One example is

incorrectly entering a load size causing it to be too large. You will obtain a solution that works

with the toolbox, but your transformer would be impractically overloaded. The circuit checker

function would provide you with the name of the overloaded transformer so you can edit your

circuit accordingly. Another example may be having a b-phase line beginning at a bus with only

phases a and c. This particular OpenDSS solution would generate an error in the data parsing of

the toolbox function getLineInfo. All of the get-functions are contained in a try-catch block

that will automatically run the circuit checker algorithm in the event of a failure. After reaching

this error, the toolbox would identify the cause and return the original error along with the circuit

checker result, which would contain the offending line name.

4.3.1. Running Circuit Check Function

To run circuitCheck manually, first compile and solve the circuit. Then, include the pointer to

the COM-object as well as the warning option in a call to circuitCheck. The warnings field is

optional, and the default value is to have warnings on.

 warnSt = circuitCheck(DSSCircObj, 'Warnings', 'off');

 warnSt = circuitCheck(DSSCircObj);

If warnings are on, the warnSt.str will be printed to the Command Window after completing

the check. Regardless of the warnings setting, the warnSt.offenders will always have to be

accessed via the workspace. Open the warnSt variable from the MATLAB workspace by double

clicking on it and browsing the errors found in the circuit.

The circuitCheck function is automatically called in any of the get-functions if an error is

encountered.

4.3.2. Interpreting Circuit Check Output

With warnings turned on, any issues with the circuit will show as a warning in the Command

Window. Regardless of whether or not warnings are on, circuitCheck will always output a

warning structure. By checking this structure you can view any of warnings caught by the

function. Each element of the structure corresponds to a single warning and will contain a string

describing the warning as well as a list of elements that violate that error-check. After receiving

warnings, you should always check this structure to begin troubleshooting your circuit (or if

warnings are set to off, always check to see whether the output structure is empty).

The default thresholds for each check can be changed by editing the thresholds towards the top

of the circuitCheck.m file.

26

The purpose of circuitCheck is to identify potential issues. Not every warning returned by

circuitCheck is necessarily something that is wrong with the circuit. The user will have to

inspect the output to determine which of the warnings are actually errors in the circuit that should

be corrected.

The warnings that may be shown are listed below:

warnSt.NoBusCoords

 Purpose: To check for the presence of bus coordinates

 Threshold: n/a

warnSt.str: “ There are no bus coordinates with this compiled

circuit. Toolbox functionality will be severely

limited. ”

Reasoning: The toolbox relies on bus coordinates to do the circuit line plots as

well as for any solar integration.

 warnSt.offenders: n/a

warnSt.InvalidLineBusName

Purpose: To check that bus naming conventions for specifying lines‟ buses

match the designated phases of that line

Threshold: n/a

warnSt.str: “ One or more line has a bus name that does not match
the number of phases of the line. (e.g. A 2-phase

line should have both bus 1 and 2 with names similar

to ‘BUSNAME.2.3’ with 2 phases indicated in the

decimal notation. ”

Reasoning: The toolbox uses this naming convention to help determine the

phases present on a particular line. The number of phases on the

line should match the number of phases on the bus that it is

connected to.

warnSt.offenders: Each row of the table includes the LineName, the NumPhases of

that line, and the names of each bus. From this, it should be

obvious which part of the lines definition is causing issues.

warnSt.LineLength

Purpose: To check for incorrectly entered lines with nonsensically long

lengths

Threshold: 5 km

 warnSt.str: “ n of the lines exceed 5 km. ”

 Reasoning: Accidental input of large lengths may fail to be an obvious issue

and may cause power flow irregularities

warnSt.offenders: Line name and length

warnSt.LineOverLoading

Purpose: To check for thermal violations on lines

Threshold: 100%

27

warnSt.str: “ n Lines are load more than 100%. Visualize using

plotCircuitLines(DSSCircObj,'Coloring','lineLoading')”

Reasoning: Notifies you of line loading violations that may be a result of

incorrect parameters in the circuit such as line ratings

 warnSt.offenders: Line names and their loading percentages

warnSt.BusDistance

Purpose: To check for incorrectly entered lines causing nonsensically far

buses

Threshold: 25 km

warnSt.str: “ n of the bus distances exceeds 25 km from the

substation. ”

Reasoning: Accidental incorrect input of circuit parameters, such as a line

length, may cause a bus to be unintentionally far from the

substation.

warnSt.offenders: Bus name and distance

warnSt.BusVoltage

Purpose: To check for over/under voltage violations

Threshold: 1 +/- 0.05 pu

warnSt.str: “ n of the enabled bus voltages are outside of the
range 1+/- 0.05 pu. Visualize using

plotVoltageProfile(DSSCircObj)”

Reasoning: Notifies you of voltage violations that may be a result of incorrect

parameters in the circuit causing large voltage changes

warnSt.offenders: Bus name and voltage (both pu and kV) along with rated kV

warnSt.CapacitorRatingMismatch

Purpose: To check for elements that may have accidentally had incorrectly

entered kV ratings

Threshold: 5%

warnSt.str: “ n of the capacitor kV ratings differs from its bus

kV rating by more than 5%. ”

Reasoning: Incorrectly entered ratings may cause irregularities in the solution

without immediately giving an error or drawing attention to the

problem. Most likely this is an issue where single-phase values

were not entered line to neutral or two/three-phase values were not

entered line to line.

warnSt.offenders: Each element name and its line-line kV ratings as well as each

bus‟s name and its line-line kV rating

warnSt.LoadRatingMismatch

Purpose: To check for elements that may have accidentally had incorrectly

entered kV ratings

Threshold: 5%

warnSt.str: “ n of the load kV ratings differs from its bus kV

rating by more than 5%. ”

28

Reasoning: Incorrectly entered ratings may cause irregularities in the solution

without immediately giving an error or drawing attention to the

problem. Most likely this is an issue where single-phase values

were not entered line to neutral or two/three-phase values were not

entered line to line.

warnSt.offenders: Each element name and its line-line kV ratings as well as each

bus‟s name and its line-line kV rating

warnSt.PVRatingMismatch

Purpose: To check for elements that may have accidentally had incorrectly

entered kV ratings

Threshold: 5%

warnSt.str: “ n of the PV kV ratings differs from its bus kV

rating by more than 5%. ”

Reasoning: Incorrectly entered ratings may cause irregularities in the solution

without immediately giving an error or drawing attention to the

problem. Most likely this is an issue where single-phase values

were not entered line to neutral or two/three-phase values were not

entered line to line.

warnSt.offenders: Each element name and its line-line kV ratings as well as each

bus‟s name and its line-line kV rating

warnSt.TransformerRatingMismatch

Purpose: To check for elements that may have accidentally had incorrectly

entered kV ratings on either side of the transformer

Threshold: 5%

warnSt.str: “ n of the transformer kV ratings differs from its bus

kV rating by more than 5%. ”

Reasoning: Incorrectly entered ratings may cause irregularities in the solution

without immediately giving an error or drawing attention to the

problem. Most likely this is an issue where single-phase values

were not entered line to neutral or two/three-phase values were not

entered line to line.

warnSt.offenders: Each element name and its line-line kV ratings as well as each

bus‟s name and its line-line kV rating

warnSt.TransformerOverloaded

Purpose: To check for thermal violations on the transformers

Threshold: 5%

warnSt.str: “ n of the transformer kVA ratings differs from its
bus1 power by more than %. Check that the loads on

the transformer are entered correctly. ”

Reasoning: Notifies you of transformer loading violations that may be a result

of incorrect parameters in the circuit

warnSt.offenders: Transformer names and their loading percentages

warnSt.LineRatingMismatch

29

Purpose: To check for elements that may have accidentally had incorrectly

entered line codes

Threshold: 150%

warnSt.str: “ n of the line ratings are 150% the size of the
immediately upstream line. Visualize using

plotCircuitLines(DSSCircObj,'Thickness','lineRating')”

Reasoning: Line ratings that increase downstream may be indicative of

incorrectly entered linecodes (or may be by design)

warnSt.offenders: The upstream line name (smaller line) and the downstream line

name (larger line), followed by each line respective line rating as

well as each lines respective line code.

4.4. Plotting Tutorial

This section includes an overview of the plotting features in the GridPV toolbox. Many of the

examples are shown for plotCircuitLines, but the descriptions apply to all plotting function

from section 7.3.

It is important to recall the fact that the OpenDSS COM server in MATLAB is an entirely

separate entity from the OpenDSS GUI that you are able to use independently apart from

MATLAB. This means that any circuit that you may have solved and plotted in your OpenDSS

program outside of MATLAB is irrelevant. Furthermore, any changes to a circuit file will only

take affect once the circuit is recompiled.

4.4.1. Plotting Circuits

Generating the plots is relatively straight forward and is fully demonstrated in section 7.3;

however, there are some particularities that are worth mentioning when generating and using the

toolbox plots.

Firstly, the plots that are generated are representative of the most recent time step power flow

solution. When in doubt, reset the time step to the specific time of interest:

DSSText.command = 'Set mode=duty number=10 hour=13 h=1 sec=1800';
DSSText.command = 'Set controlmode = static';
DSSText.command = 'solve';

figure; plotCircuitLines(DSSCircObj);

As stated in section 7, calling plotCircuitLines in this manner without assigning any property

values will default to opening the GUI by calling plotCircuitLinesOptions.

plotCircuitLinesOptions is the function associated with the GUI and can also be called on its

own in the same manner; however, it does not accept and other parameters.

figure; plotCircuitLinesOptions(DSSCircObj);

30

It is also possible to call plotCircuitLines with any number of possible parameters described

in Section 7.3.2.

 figure;

plotCircuitLines(DSSCircObj,'Coloring','PerPhase','Thickness',3,'Mappin

gBackground','on');

The plotting functions use the MATLAB parameter name and value argument pair notation for

all input options after the handle to the DSSCircObj. If you are unfamiliar with this method of

passing parameters into a MATLAB function, note that while the order of specific options does

not matter, each option requires a pair of inputs: the string denoting which option you are about

to define as well as the corresponding specification for that option. For example, in the line

above, the 'Coloring' parameter is being set to 'PerPhase' and the 'Thickness' parameter

will equal 3.

4.4.2. Circuit Interaction

Once the circuit is plotted, there are some user interactions available that make accessing and

viewing the OpenDSS power flow data extremely simple. Any line, transformer, capacitor, load,

or PV system is capable of being left and right clicked.

A left click selects the element, displaying its name, as shown in Figure 1. A right click displays

the menu shown in Figure 2, which has options to display properties, voltages, currents, and

powers for that element. (Note that the right click menu is only available if the right click is

precisely over the circuit element. It is often easier to right click a circuit element that is not

already selected)

Figure 1. Selecting an Element with Left Click.

Figure 2. Selecting an Element with Right Click.

31

Clicking any of the menu options after right-clicking will display the associated OpenDSS

window with that information. These view windows (properties, voltages, currents, and powers)

are OpenDSS popup windows, so OpenDSS must be allowing forms. This means the

DSSCircObj.AllowForms must be 1, which is the default value. Currently, OpenDSS 7.6.3 (the

current version as of this writing) does not allow for setting the AllowForms field back to 1 after

setting it to 0 (thereby requiring a restart of the COM server to view these windows).

The abilities to left and right click exist in all of the profile plots as well.

4.4.3. Plot Editing

After plotting, you may need to edit the plots. Some users who are more experienced with

MATLAB and its plots may be used to using the “show plot tools” toggle shown in Figure 3. By

default, this will switch to “Plot Browser View” (as shown in the “View” drop-down). In our

case, this is ill-advised.

Figure 3. Avoid Using Plot Tools.

The plots generated by the toolbox often contain a very large number of lines plotted in the

figure. It is strongly advised, unless your circuit is quite small (less than 150 nodes), that you do

not use this route to edit your plot. Opting to “show plot tools” may cause MATLAB to freeze as

it populates the long list of plotted items in the Plot Browser. Depending on your computer

specifications, and because MATLAB defaults to using a single processor core, you may be

forced to kill the MATLAB process and restart it in order to continue working.

Therefore, the best way to edit is to use the “Property Editor” view shown in Figure 4.

Figure 4. Use Property Editor to Modify.

32

After selecting this view, you will be able to select various objects around the plot to edit. The

Property Editor mode can be used to edit objects in the plot (line colors and thicknesses) and

axes titles and labels.

To return to the standard view, just select the “Hide Plot Tools” toggle shown in Figure 5.

Figure 5. Returning to the Default View.

4.5. Coordinate Conversion Tutorial

If your circuit is not currently using latitude and longitude values for the coordinate system, the

coordinate conversion functions can be used to transfer the coordinates to lat/lon values. The

toolbox generally assumes that the coordinate system is in lat/lon, and some functions will not

work otherwise. Latitude and longitude values allow the toolbox to plot the Google map

background with the circuit. The lat/lon coordinates are also required for some of the solar

analysis functions that require calculations of the land area of pieces of the circuit. To convert

from one coordinate system into latitude/longitude values, start by using the initializer:

 initCoordConversion();

Figure 6. Coordinate Conversion Initializer.

If your circuit is in UTM coordinates, choose that option. If it is not, choose the manual

conversion.

33

4.5.1. Manual Conversion

If you chose the manual conversion option, you should see the following GUI:

Figure 7. Manual Coordinate Conversion GUI.

Use the zoom and pan tools, shown in Figure 8, in the upper left corner to situate the map

approximately where the feeder is.

Figure 8. Satellite Image Map Tools.

Once you have the map zoomed in on the correct area, click the “plot circuit” button to the left to

open the .dss file for the feeder. After selecting the main .dss file for the feeder, the GUI will

load its topography onto your current map. It may take a while to load the circuit, depending on

its size.

Note that after loading a circuit, you can no longer use the tools in Figure 8 to reposition the

satellite image.

34

Figure 9. Feeder Map Tools.

Once the circuit is loaded, you can position it over the satellite image, attempting to line up the

circuit‟s lines with the roadways or any other visual cues. To slide the circuit, use the “y-axis

shift” and “x-axis shift” sliders. To resize the circuit relative to the satellite image, use the “y-

axis zoom” and “x-axis zoom” sliders.

After positioning the circuit to the appropriate location, click “Apply Conversion to Coordinates

File” to commit the changes to your circuit‟s coordinates file.

When prompted to “Select bus coordinates file,” use the window to navigate to the file

containing your coordinates. The GUI will now make a back-up of your old coordinates file. If

you see the warning dialog shown in Figure 10, the backup was not successfully created. If this

happens, you should manually make a backup copy of your coordinates file before pressing

“OK.”

Figure 10. Coordinate File Backup Warning.

35

Once the old coordinates file has been backed up, a new coordinates file will be saved with the

bus coordinates now in latitude and longitude. When you see the success dialog shown in Figure

11, your coordinates file has been updated to contain lat/lon coordinates.

Figure 11. Coordinate Conversion Successful.

4.5.2. UTM Conversion

If you chose the UTM conversion from the options shown in Figure 6, you should see the

following GUI:

Figure 12. UTM Coordinate Conversion GUI.

If your feeder is in the United States, you can click the number/letter combination corresponding

to its UTM zone, which will automatically update the list box selections on the right. Otherwise,

manually select the letter/number pair from the list boxes on the right.

36

Once you have selected the appropriate letter/number combination for your circuit‟s UTM zone,

select “Apply Conversion to Coordinate File.”

When prompted to “Select the OpenDSS file with the circuit,” use the window to navigate to the

master file for your circuit.

Then, when prompted to “Select bus coordinates file,” use the window to navigate to the file

containing your coordinates.

The GUI will now make a back-up of your coordinates file. If you see the warning dialog shown

in Figure 10, the backup was not successfully created. In your file explorer, you should manually

make a backup copy of your coordinates file before pressing “OK.”

Once the old coordinates file has been backed up, a new coordinates file will be saved with the

bus coordinates now in latitude and longitude. When you see the success dialog shown in Figure

11, you coordinates file has been updated to contain lat/lon coordinates.

4.6. Solar Tutorial

This section provides a tutorial for setting up PV on the distribution system. Most of the toolbox

is useful for any type of analyses or studies using OpenDSS, but this section discusses the

functions that directly apply to solar. The toolbox functions provide an easier method for setting

up solar interconnection studies with PV on the distribution system. GridPV applies the Wavelet

Variability Model (WVM) to convert measured irradiance to power plant output using the

physical layout of the PV plant to smooth the variability accounting for the plant size and

density. Section 4.6 walks you through setting up the PV plant, with all necessary OpenDSS

code produced by the end.

4.6.1. Placing PV on the Circuit

You can add PV to any circuit by calling:

 placePVplant();

A dialog box will appear asking for the .dss basecase file. Navigate to the .dss master file for

your circuit and click open.

The toolbox will then load the circuit, bringing up the GUI. This may take a while depending on

the size of your circuit. Make sure that the circuit bus coordinates are in latitude/longitude before

using placePVplant. If the coordinates are not in latitude/longitude, see section 4.5 on

coordinate conversion.

The satellite image for the example circuit, EPRI Ckt 24, is the ocean, as shown in Figure 13,

because the true location of the feeder is not public.

37

Figure 13. GUI of placePVPlant.

To add PV select between the two radio buttons labeled “Central PV” and “Distributed PV.”

4.6.2. Adding Central PV

After selecting the “Central PV” radio button, a dialog will appear:

Figure 14. Central PV Location Prompt.

As the message says, click near the bus on which the plant should be connected. Note that central

plants are three phase, so be sure to choose a location on a three phase line (represented by black

lines). Regardless of where you click, any central plant will be added to the three-phase bus

geometrically nearest the coordinates of your click.

38

Be sure to edit the “MW Size” and “Density” text boxes to be the appropriate values. The

density value represents the amount of land area filled with panels. A value of approximately 0.3

is around the correct value for a central PV plant that has land filled with panels with typical

spacing between module string rows. A smaller density value will assume a larger land area for

the same MW size, thus slightly decreasing the variability of the plant.

4.6.3. Adding Distributed PV

After selecting the “Distributed PV” radio button, a dialog will appear:

Figure 15. Distributed PV Location Prompt.

As the message says, create a polygon surrounding the area that the distributed PV should be

placed by clicking to create each vertex. (You will know you have closed the shape when the

cursor turns from a cross to a circle, depicting that you are about to complete the polygon.)

If you have the Image Processing toolbox, you will be able to edit the shape after closing,

including: shifting the area, adding/removing vertices, moving vertices, etc. Without this

toolbox, if you wish to edit your area, you will have to reselect the “distribute PV” radio button,

which will then delete your current area and allow you to redefine a new one.

Be sure to edit the “MW Size” text box to be the appropriate value and the density will change

accordingly. The density value represents the amount of land area filled with panels. A value of

approximately 0.05 is around the correct value for distributed rooftop PV in a residential

neighborhood with PV on each house. The density value can be changed by modifying the MW

size of the plant or adjusting the drawn polygon to contain more land area.

The GUI distributes the total PV proportionally by transformer size over all of the transformers

contained within the area indicted. If your feeder does not contain transformer objects, the GUI

will distribute the PV evenly over all load buses in the area irrespective of load size.

4.6.4. Editing Plant Info

Use the plant info text to indicate the tilt and azimuth of the PV panels. There is a check box to

toggle PV tracking on and off.

39

4.6.5. Editing Power Factor

Choose between a fixed power factor, a scheduled power factor, using a power factor function,

and using volt/var control by selecting the appropriate radio button.

If you choose fixed, you can edit the fixed value in the text box. A negative power factor

represents absorbing Vars, and positive power factor represents producing Vars.

If you choose any of the other three types of power factor control, you need to load in the .mat

file pertaining to that PF control by clicking “function filename.” This will open a standard file

navigation GUI. When the PV scenarios are created, the file path to the .mat file is used for the

power factor control. If you do not already have a file corresponding to your desired power

factor control, you can click the button directly next to your selection (labeled “Create

Schedule,” “Create Function,” or “Create VV Control”) to create such a .mat file. These buttons

load a specific GUI allowing you to create the corresponding power factor control. The three

GUIs are shown below:

Figure 16. Create Schedule GUI.

40

Figure 17. Create Function GUI.

Figure 18. Create VV Control GUI.

For the GUIs in Figure 16 and Figure 17, use the + and – buttons at the bottom to edit the graph.

For the GUI in Figure 18, the table on the right is editable and will change the graph accordingly.

You can manually set the parameters at the bottom as well.

41

For all three GUIs, use the save button at the bottom to save the information to a .mat file.

After saving, you still need to point the placePVPlant GUI to the .mat file you just created by

clicking in the appropriate “function filename” text box, opening the file browser.

When you have chosen the location and prepared all relevant information, click “Save Plant

Info,” and choose the correct location and name for your file. This will save a .mat file of all the

information pertaining to your plant.

In the following step, you will use this plant info file to create the necessary OpenDSS files.

4.6.6. Creating the PV DSS Files

Now that you have successfully created a .mat file containing all of your desired PV plant

parameters, it is necessary to add it to the OpenDSS circuit. To do this, the toolbox can create a

.dss file pertaining to the specific PV scenario you just created:

 createPVscenarioFiles();

(If you refer to the documentation, you will notice that it is possible to give this function inputs;

however, it is also possible to call the function without inputs and use the GUI file chooser.)

If you opt to call it without inputs you will first do the following as they appear:

 When prompted to “Select the file with the PV plant info”, direct the file browser to the

.mat file you previously created in section 4.6.5.Next, navigate to and select the .mat file

containing the irradiance data when prompted to “Select the file the sensor info.” The

contents of the sensor info file are described in the header help information for WVM.

There is an example sensor info file:

 .\Subfunctions\WVM_subfunctions\Example_Alamosa_2011_8_21_IrradSensor.mat.

 Then, you will be asked to “Insert an A value.” Do so and click “OK.”

Important Note: If you receive an error indicated that there is a reference to a “non-existent

field,” it is likely that an incorrect file was accidentally selected during the above process,

resulting in loading the wrong structure. Please, restart the GUI and double check your file

selections.

Now that all the inputs are determined, you will see a few more dialogs necessary to create and

save the OpenDSS files.

 First, a save dialog will appear asking you to “Save the PV Loadshape file” that was

created. Choose a filename and location and then click “save.”

 After saving the PV loadshape, a prompt will ask you to “Select the OpenDSS Circuit

File of Your Circuit.” Navigate to and select the master file for the OpenDSS circuit to

which you are adding PV.

42

 Lastly, you will be asked to “Save the OpenDSS Solar Scenario.” This is the .dss file for

your PV generators. Choose a filename and location and then click “save.”

Now you are finished. You have successfully created the PV loadshape .txt file as well as the

.dss file, which contains the information for the PV generator objects in OpenDSS. The .dss file

contains a link to the loadshape .txt file that will read the PV profile into OpenDSS. The PV .dss

file only contains the PV generator information, and it should be compiled after the master

circuit file.

To analyze the circuit with the PV that was just added, compile the master .dss file and the PV

.dss file that was just created.

DSSText.command = 'Compile ExampleCircuit\master_ckt24.dss';
DSSText.command = 'Compile ExampleCircuit\Ckt24_PV_Central_7_5.dss';
cd(location)
DSSText.command = 'Set mode=duty number=10 hour=13 h=1 sec=1800';
DSSText.command = 'Set controlmode = static';
DSSText.command = 'solve';

4.7. Example Analyses

There are three example functions included in the toolbox. These functions will run as a

demonstration for the example circuit included. However, without slight modification, not all of

these will work for other circuits. The three functions are meant to exhibit ways of incorporating

the toolbox into your own scripts and only serve as demonstrations of use of the toolbox for

some example analyses. They are examples of three general uses: a static analysis, a time-series

analysis with MATLAB, and a time-series analysis with OpenDSS.

4.7.1. Static Analysis

An example static analysis is shown by the examplePeakTimeAnalysis function. This function

may work with another circuit that has been set up with central or distributed PV in a separate

file with duty loadshapes. The example function uses findMaxPenetrationTime to identify

when to do the snapshot static analysis, but the user could also pick a specific period. After

solving the analysis at that timestep, a voltage contour and voltage profile plot are created for

each solar scenario.

Note that the control mode for a static analysis is set to static. This allows all control like LTC

and capacitor switching to act during the power flow solution.

 %% Run the simulation in static mode for the peak time
 DSSText.command = sprintf('Set mode=duty number=1 hour=%i h=1.0

sec=%i',floor((maxTimeIndex)/3600),round(mod(maxTimeIndex,3600)));
 DSSText.Command = 'Set Controlmode=Static'; %take control actions

immediately without delays
 DSSText.command = 'solve';

43

After the solve command, DSSCircObj is passed into plotCircuitLines. All of the data in

DSSCircObj is from the last solution, which corresponds to the peak penetration time.

Ultimately, this function is retrieving the voltage contour and the voltage profile at the time of

peak penetration.

4.7.2. Time-Series Analysis in OpenDSS

Time-series simulations are very important to understand the impact of the variability of solar

and to characterize the time-dependent aspects of the system [8, 9]. To perform a time-series

analysis there are two options. The first method uses MATLAB to iterate and is discussed in the

next section. The second, discussed here, uses OpenDSS to iterate.

Unlike the method above that only solved for a single time step, this method will solve for

several time steps by using a number greater than 1. The control mode should also be set to time.

OpenDSS monitors are placed in the circuit and record the time-series data.

Open exampleTimeseriesAnalyses to begin tracing through it. The OpenDSS time series

solve starts at line 79:

%% Run OpenDSS simulation for 1-week at 1-minute resolution
 DSSText.command = 'Set mode=duty number=10080 hour=0 h=60 sec=0';
 DSSText.Command = 'Set Controlmode=TIME';
 DSSText.command = 'solve';

All data from the time series simulation is stored in the monitors that are in the circuit. The call

to plotMonitor in line 86 uses the COM interface to access the monitor data using the export

command. The export command and parsing of the monitor data is also done explicitly in this

example function as shown in line 93:

 %% Feeder Power Factor
 DSSText.Command = 'export mon fdr_05410_Mon_PQ';
 monitorFile = DSSText.Result;
 MyCSV = importdata(monitorFile);
 delete(monitorFile);
 Hour = MyCSV.data(:,1); Second = MyCSV.data(:,2);
 feederPower = MyCSV.data(:,[3,5,7]);
 feederReactivePower = MyCSV.data(:,[4,6,8]);

In order for this example to run with another circuit, the circuit must have monitors in place and

the monitor names in the example must be changed to reflect the monitor names in the OpenDSS

file. For an example of how to insert monitors into an OpenDSS circuit, refer to the example

circuit‟s Monitors_ckt24.dss file. Also, refer to the OpenDSS documentation for help

regarding the various monitor fields.

44

4.7.3. Time-Series Analysis in MATLAB

A time-series analysis with MATLAB involves using the COM interface to solve each time step

within MATLAB and retrieve the data you are interested in at each time-step. Open

exampleVoltageAnalysis to view an example of this process. View the set-up for the time-

series iteration at line 79:

%% Run simulations every 1-minute and find max/min voltages
 simulationResolution = 60; %in seconds
 simulationSteps = 24*60*7;

 DSSText.Command = sprintf('Set mode=duty number=1 hour=0 h=%i

sec=0',simulationResolution);
 DSSText.Command = 'Set Controlmode=TIME';

You can see in line 96 where the time-series iteration begins. Recall that OpenDSS automatically

steps to the next time step after each solve command. Therefore, the code at line 99 is

automatically populating the DSSCircuit interface with data for the next time step. Because the

control mode is set to time, OpenDSS automatically remembers previous solution states and

handles any delays on the controls correctly. The remainder of the for-loop example is retrieving

particular data about this time step. The result is a time-series analysis without the need for

placing monitors. This form of solving time series simulations is slower because MATLAB is

stopping OpenDSS and processing data after each solution, but it allows for any custom

processing such as finding the maximum voltage of all buses. This form of time series analysis

can also be useful when MATLAB will take control actions at each solution time step, such as a

custom battery controller or demand response setup. An example of using this type of solutions

for MATLAB to create custom voltage regulator control algorithms can be seen in [10].

45

5. DISTRIBUTION SYSTEM MODELS

5.1. Example Circuit

The example circuit included in the GridPV toolbox is EPRI Test Circuit Ckt24. All .dss files

for the example circuit can be found in the ExampleCircuit folder in the GridPV installation

folder. From running the circuitCheck function, a few parameters in the example circuit were

modified and are slightly different than EPRI Ckt24. The loadshapes in the example circuit were

also changed from yearly to duty loadshapes in order to demonstrate the duty simulation mode.

The summary of Ckt24 provided by EPRI is shown in Table 1. The circuit diagram is shown in

Figure 19.

Table 1. Summary of EPRI Test Ckt24.

Circuit Alias Ckt24

System voltage (kV) 34.5

Number of customers 3885

Service xfmr connected kVA 69373

Total feeder kvar 3300

Subtransmission Voltage (kV) 230

3-Ph SCC at Sub Sec. (MVA) 422

Primary circuit miles total 74

Percent residential by load 87

No. of feeders on the Sub bus 2

Substation

Loads

LTC/VREG

Step Transformer

Fixed Capacitor

Figure 19. Circuit diagram for GridPV example circuit (EPRI Test Ckt24).

46

5.2. Links to Other Circuits

Creating the distribution system model in OpenDSS, debugging, and validation can be very time

consuming. As a starting point, EPRI has provided three test circuits of actual electric power

distribution systems. The example circuit in the GridPV toolbox is based on one of these test

circuits. The three distribution system models can be found in the folder EPRITestCircuits

inside the OpenDSS program folder where it was installed on the hard drive.

There are a few other OpenDSS circuit models included in the OpenDSS installation, such as the

various IEEE test cases. These models are in the IEEETestCases folder inside the OpenDSS

program folder. These circuits are commonly used for research purposes to test and simulation

ideas.

47

6. FEEDBACK AND HELP

User feedback can be submitted at www.gridintegration.org. When submitting a request, please

classify the feedback as reporting a bug, new feature request, or help and assistance.

http://www.gridintegration.org/

49

7. FUNCTION HELP FILES

The function help files are group by categories of their use. While all function help header

information is included here, this content can also be found directly in MATLAB. These help

files can be accessed via the typical help browser or by querying the help via the command line.

help getBusInfo

The help files are also included online at www.gridintegration.org. For OpenDSS help, see the

references in Section 3 on OpenDSS resources.

The functions by category are:

7.1. OpenDSS Functions ... 50

7.2. Circuit Analysis Functions ... 70

7.3. Plotting Functions .. 77

7.4. Geographic Mapping Functions ... 98

7.5. Solar Modeling Functions .. 105

7.6. Example Simulations ... 117

www.gridintegration.org

50

7.1. OPENDSS FUNCTIONS

The distribution system electrical modeling is done in the open source software OpenDSS from

the Electric Power Research Institute (EPRI) [1]. All power flows are solved with OpenDSS and

the results can be transferred to MATLAB through a COM interface. MATLAB runs and

commands OpenDSS to do actions, with the results being available to MATLAB through the

COM server structure. These functions provide a standardized way to obtain information from

OpenDSS. Each “get”-function returns a structure to MATLAB with all OpenDSS circuit

elements of that type. Note that the returned structure represents the variables at the most recent

power flow solution in OpenDSS and needs to be called each time the circuit or solution has

changed.

Function List

DSSStartup - Function for starting up OpenDSS and linking to MATLAB

getBusCoordinatesArray - Gets the coordinates for all buses that have a location in OpenDSS

getBusInfo - Gets the information for all Bus in busNames

getCapacitorInfo - Gets the information for all capacitors in the circuit

getCoordinates - Gets the coordinates for the buses in busNames

getLineInfo - Gets the information for all lines in the circuit

getLoadInfo - Gets the information for all loads in the circuit

getPVInfo - Gets the information for all PV plants in the circuit

getTransformerInfo - Gets the information for all transformers in the circuit

isinterfaceOpenDSS - Used to check for a valid interface input.

51

7.1.1. DSSStartup

Function for starting up OpenDSS and linking to MATLAB

Syntax
[DSSCircObj, DSSText, gridpvPath] = DSSStartup;

Description

Function to start up OpenDSS in the background and bring the program handle into MATLAB to

allow control of OpenDSS from MATLAB through the COM interface. This function only

needs to be executed once per MATLAB session. The same handle to OpenDSS can be used the

rest of the session. Note: the OpenDSS session started through the COM interface is separate

from the executable program, so the active circuits and parameters can be different between the

COM and visual executable.

Inputs

 none

Outputs

 CircuitObj is the handle to the object in the OpenDSS program containing the circuit

object as well as the text object used to the send commands to OpenDSS. Note:

CircuitObj will be empty until Text.command = 'compile example.dss' is done to load in

an active circuit into the OpenDSS workspace.

 Text can be used to send commands to OpenDSS through Text.command; it can also be

called with CircuitObj.Text.command.

 gridpvPath is a string containing the toolbox location

Example

Intiating OpenDSS from MATLAB:

DSSCircObj =

 COM.OpenDSSEngine_DSS

DSSText =

 Interface.OpenDSS_Engine.IText

gridpvPath =

C:\OpenDSS_ToolBox\GridPV\

[DSSCircObj, DSSText, gridpvPath] = DSSStartup

52

7.1.2. getBusCoordinatesArray

Gets the coordinates for all buses that have a location in OpenDSS

Syntax
[busCoordNames busCoordArray] = getBusCoordinatesArray(DSSCircObj);

Description

Function to get the buses and their coordinates for all buses that have a location in OpenDSS.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

Outputs

 busCoordNames is the array of the bus names

 busCoordArray is the matrix of bus coordinates (X,Y) corresponding to the bus name in

busCoordNames.

Example

Returns the bus names and coordinates for the active circuit in OpenDSS

ans =

 1347 2

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
[busCoordNames busCoordArray] = getBusCoordinatesArray(DSSCircObj);
size(busCoordArray)

53

7.1.3. getBusInfo

Gets the information for all Bus in busNames

Syntax
Buses = getBusInfo(DSSCircObj);
Buses = getBusInfo(DSSCircObj,busNames);
Buses = getBusInfo(DSSCircObj,busNames,forceFindCoords);

Description

Function to get the information for buses in the OpenDSS circuit. If optional input busNames

contains a cell array, the function will return a structure for each busName, otherwise Buses will

contain all buses in the circuit.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

 busNames - optional cell array of bus names to get information for

 forceFindCoords - optional input to force the function to try to find the coordinates for

the busNames by searching for other connected buses that do have coordinates

Outputs

Buses is a structure with all the parameters for the buses in busNames. Fields are:

 name - The busname acquired from the busNames input.

 numPhases - Returns the number of nodes on the bus.

 phaseVoltages - Value of voltage magnitudes calculated from. the complex voltage

returned by OpenDSS. Length is always 3, returning 0 for phases not on the bus.

 phaseVoltagesPU - Per-unit value of voltage magnitudes calculated from the complex

per-unit voltage returned by OpenDSS. Length is always 3, returning 0 for phases not on

the bus.

 voltage - Mean of the phastVoltages.

 voltagePU - Mean of the phaseVoltagesPU.

 coordinates - Returns coordinates stored in OpenDSS for the active bus. If coordinates do

not exist and forceFindCoords is 1, it returns coordinates of the coordinates of the nearest

upstream element.

 distance - Line distance from the bus to the substation.

 kVBase - The bus's base voltage in kV.

 Miscellaneous parameters being pulled from OpenDSS but are currently unused within

the toolbox (May return null if undefined in OpenDSS): seqVoltages, cplxSeqVoltages,

Voc, Isc, ZscMatrix, Zsc1, Zsc0, YscMatrix

Example

Returns bus information

54

Buses =

6058x1 struct array with fields:

 name
 numPhases
 voltageAngle
 voltage
 voltagePU
 phaseVoltages
 phaseVoltagesPU
 distance
 kVBase
 seqVoltages
 cplxSeqVoltages
 Voc
 Isc
 ZscMatrix
 Zsc1
 Zsc0
 YscMatrix
 coordinates

Buses =

 name: 'N1311915'
 numPhases: 1
 voltageAngle: 0.6602
 voltage: 2.0486e+04
 voltagePU: 1.0285
 phaseVoltages: [2.0486e+04 0 0]
 phaseVoltagesPU: [1.0285 0 0]
 distance: 2.3813
 kVBase: 19.9186
 seqVoltages: [-1 -1 -1]
 cplxSeqVoltages: [-1 -1 -1 -1 -1 -1]
 Voc: [0 0]
 Isc: [0 0]
 ZscMatrix: 0
 Zsc1: [0 0]
 Zsc0: [0 0]
 YscMatrix: 0
 coordinates: [31.6145 -80.9461]

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
Buses = getBusInfo(DSSCircObj) %Get information for all buses
Buses = getBusInfo(DSSCircObj,{'N1311915'}) %Get information for one bus

55

7.1.4. getCapacitorInfo

Gets the information for all capacitors in the circuit

Syntax
Capacitors = getCapacitorInfo(DSSCircObj);
Capacitors = getCapacitorInfo(DSSCircObj, capacitorNames);

Description

Function to get the information about the capacitors in the circuit and return a structure with the

information. If the optional input of capacitorNames is filled, the function returns information for

the specified subset of capacitors, excluding the miscellaneous parameters mentioned in the

outputs below.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

 capacitorNames - optional cell array of capacitor names to get information for

Outputs

Capacitors is a structure with all the parameters for the capacitors in the active circuit. Fields

are:

 name - The capacitor name.

 busName - Name of the associated bus.

 numPhases - Number of phases associated with the capacitor bank.

 enabled - {1|0} indicates whether this element is enabled in the simulation.

 phaseVoltages - Value of voltage magnitudes calculated from the complex voltage

returned by OpenDSS. Length is always 3, returning 0 for phases not on the bus

 phaseVoltagesPU - Per-unit value of voltage magnitudes calculated from the complex

per-unit voltage returned by OpenDSS. Length is always 3, returning 0 for phases not on

the bus.

 voltage - Mean of the phaseVoltages.

 voltagePU - Mean of the phaseVoltagesPU.

 current - average phase current

 coordinates - Coordinates for the capacitor's bus, obtained from getBusInfo.

 distance - Line distance from the capacitor's bus to the substation, obtained from

getBusInfo.

 isDelta - {1|0} 1 is it connected via delta connection, 0 otherwise.

 kvar - Total kvar, if one step, or ARRAY of kvar ratings for each step. Evenly divided

among phases.

 kV - For 2, 3-phase, kV phase-phase. Otherwise specify actual cap rating.

 switching - {1|0} 1 if CapControl lists the capacitor as one of its elements, 0 otherwise.

 capControl - Name of the CapControl element controlling the capacitor if the capacitor is

being controlled.

 controlMode - Mode of control if the capacitor is being controlled.

56

 Miscellaneous parameters being pulled from OpenDSS but are currently unused within

the toolbox (May return null if undefined in OpenDSS): seqVoltages, cplxVoltages,

seqCurrents, cplxSeqCurrents, powers, seqPowers, losses, phaseLosses,

hasSwitchControl, hasVoltControl

 Additional parameters regarding the control object for capacitors on which one is present

are also retrieved: monitoredObj, monitoredTerm, CTratio, PTratio, onSetting, offSetting,

Vmax, Vmin, useVoltOverride, delay, delayOff, deadTime

Example

Returns capacitor information in the circuit

Capacitors =

3x1 struct array with fields:
 name
 busName
 numPhases
 enabled
 coordinates
 distance
 voltage
 phaseVoltages
 current
 voltagePU
 phaseVoltagesPU
 switching
 seqVoltages
 cplxSeqVoltages
 seqCurrents
 cplxSeqCurrents
 powers
 seqPowers
 losses
 phaseLosses
 hasSwitchControl
 hasVoltControl
 kvar
 isDelta
 kV

Capacitors =
 name: 'cap_g2101ae7400'
 busName: 'n284062'
 numPhases: 3
 enabled: 1
 coordinates: [31.6512 -80.9620]
 distance: 5.4491
 voltage: 2.0413e+04
 phaseVoltages: [2.0328e+04 2.0405e+04 2.0508e+04]
 current: 20.5807
 voltagePU: 1.0248
 phaseVoltagesPU: [1.0206 1.0244 1.0296]
 switching: 0
 seqVoltages: [53.6077 2.0413e+04 66.9674 0 0 0]
 cplxSeqVoltages: [1x12 double]
 seqCurrents: [1x12 double]
 cplxSeqCurrents: [1x12 double]
 powers: [1x12 double]
 seqPowers: [1x12 double]
 losses: [7.2760e-12 -1.2604e+06]
 phaseLosses: [0 -416.6194 0 -419.7602 7.2760e-15 -424.0095]
 hasSwitchControl: 0
 hasVoltControl: 0
 kvar: 900
 isDelta: 0
 kV: 34.5000

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
Capacitors = getCapacitorInfo(DSSCircObj) %Get information for all capacitors
Capacitors = getCapacitorInfo(DSSCircObj, {'cap_g2101ae7400'}) %Get information for one
capacitor
Capacitors = getCapacitorInfo(DSSCircObj, [{'cap_g2100pl6500'};{'cap_g2100fk7800'}]); %Get
information for two capacitors

57

7.1.5. getCoordinates

Gets the coordinates for the buses in busNames

Syntax
coordinates = getCoordinates(DSSCircObj);
coordinates = getCoordinates(DSSCircObj,busNames);

Description

Function to get coordinates for the buses in busNames. If optional input busNames contains a

cell array, the function will return a structure for each busName, otherwise coordinates will

contain all buses in the circuit.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

 busNames - optional cell array of bus names to find locations for

Outputs

 coordinates is the array of bus coordinates corresponding to busNames. The first

column is the y values, and second column is x values

Example

Returns the coordinates for buses

coordinates =

 31.6145 -80.9461

coordinates =

 31.6145 -80.9461
 31.6493 -80.9596

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
coordinates = getCoordinates(DSSCircObj); %Get all bus coordinates
coordinates = getCoordinates(DSSCircObj,{'N1311915'}) %Get coordinates for bus N1311915
coordinates = getCoordinates(DSSCircObj,[{'N1311915'}; {'n284022'}]) %Get coordinates for two
buses

58

7.1.6. getLineInfo

Gets the information for all lines in the circuit

Syntax
Lines = getLineInfo(DSSCircObj);
Lines = getLineInfo(DSSCircObj, lineNames);

Description

Function to get the information about the lines in the circuit and return a structure with the

information. If the optional input of lineNames is filled, the function returns information for the

specified subset of lines, excluding the miscellaneous parameters mentioned in the outputs

below.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

 lineNames - optional cell array of line names to get information for

Outputs

Lines is a structure with all the parameters for the lines in the active circuit. Fields are:

 name - Name of the line.

 bus1 - Name of the starting bus.

 bus2 - Name of the ending bus.

 enabled - {1|0} indicates whether this element is enabled in the simulation.

 bus1Coordinates, bus1Distance, bus1PhaseVoltages,

 bus1PhaseVoltagesPU, bus1Voltage, bus1VoltagePU - Information regarding the starting

bus. All obtained from the corresponding fields of the structure returned by getBusInfo

when called with 'bus1' as an input.

 bus2Coordinates, bus2Distance, bus2PhaseVoltages,

 bus2PhaseVoltagesPU, bus2Voltage, bus2VoltagePU - Information regarding the starting

bus. All obtained from the corresponding fields of the structure returned by getBusInfo

when called with 'bus2' as an input.

 numPhases - Number of phases associated with the line.

 lineRating - The line's current rating.

 bus1Current - Average current magnitude for all included phases on bus 1.

 bus2Current - Average current magnitude for all included phases on bus 2.

 bus1PhasePowerReal - 3-element array of the real components of each phase's complex

power at bus 1. Phases that are not present will return 0.

 bus1PhasePowerReactive - 3-element array of the imaginary components of each phase's

complex power at bus 1. Phases that are not present will return 0.

 bus2PhasePowerReal - 3-element array of the real components of each phase's complex

power at bus 2. Phases that are not present will return 0.

 bus2PhasePowerReactive - 3-element array of the imaginary components of each phase's

complex power at bus 2. Phases that are not present will return 0.

 bus1PowerReal - Total real component at bus 1 of all present phases.

59

 bus1PowerReactive - Total imaginary component at bus 1 of all present phases.

 bus2PowerReal - Total real component at bus 2 of all present phases.

 bus2PowerReactive - Total imaginary component at bus 2 of all present phases.

 parentObject - name of the line or object directly upstream (parent) of the line

 Miscellaneous parameters being retrieved from OpenDSS but are currently unused within

the toolbox (May return null if undefined in OpenDSS): lineCode, length, R1, X1, R0, X0,

C1, C0, Rmatrix, Xmatrix, Cmatrix, emergAmps, geometry, Rg, Xg, Rho, Yprim,

numCust, totalCust, spacing

Example

Returns line information in the circuit

Lines =

5221x1 struct array with fields:

 name
 bus1
 bus2
 enabled
 bus1PhasePowerReal
 bus1PhasePowerReactive
 bus2PhasePowerReal
 bus2PhasePowerReactive
 bus1PowerReal
 bus1PowerReactive
 bus2PowerReal
 bus2PowerReactive
 bus1Current
 bus2Current
 bus1PhaseCurrent
 bus2PhaseCurrent
 numPhases
 lineRating
 losses
 bus1Coordinates
 bus1Distance
 bus1CoordDefined
 bus1VoltageAngle
 bus1Voltage
 bus1VoltagePU
 bus1PhaseVoltages
 bus1PhaseVoltagesPU
 bus2Coordinates
 bus2Distance
 bus2CoordDefined
 bus2VoltageAngle
 bus2Voltage
 bus2VoltagePU
 bus2PhaseVoltages
 bus2PhaseVoltagesPU
 parentObject
 lineCode
 length
 R1
 X1
 R0
 X0
 C1
 C0
 Rmatrix
 Xmatrix
 Cmatrix
 emergAmps
 geometry
 Rg

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
Lines = getLineInfo(DSSCircObj) %Get information for all lines
Lines = getLineInfo(DSSCircObj, {'g2102cg5800_n284428_sec_1'}); %Get information for a single
line
Lines = getLineInfo(DSSCircObj,[{'05410_8168450ug'};{'05410_52308181oh'}]); %Get info for two
lines

60

 Xg
 Rho
 Yprim
 numCust
 totalCust
 spacing

61

7.1.7. getLoadInfo

Gets the information for all loads in the circuit

Syntax
Loads = getLoadInfo(DSSCircObj)
Loads = getLoadInfo(DSSCircObj, loadNames)

Description

Function to get the information about the loads in the circuit and return a structure with the

information. If the optional input of loadNames is filled, the function returns information for the

specified subset of loads, excluding the miscellaneous parameters mentioned in the outputs

below.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

 loadNames - optional cell array of line names to get information for

Outputs

Loads is a structure with all the parameters for the loads in the active circuit. Fields are:

 name - Name of the load.

 voltage - Average magnitude of the phase voltages.

 busName - Name of the associated bus.

 numPhases - Number of phases associated with the load.

 xfkVA - The kVA rating of the associated transoformer.

 kW, kvar, kva - Rated power of the load.

 kV - Rated voltage.

 PF - Rate power factor of the load.

 Miscellaneous parameters retrieved from OpenDSS but are currently unused within the

toolbox (May return null if undefined in OpenDSS): currents, powers, losses,

phaseLosses, seqVoltages, cplxSeqVotlages, seqCurrents, cplxSeqCurrents, seqPowers,

hasSwitchControl, hasVoltControl, energyMeter, Idx, pctMean, pctStdDev,

allocationFactor, Cfactor, class, isDelta, CVRcurve, CVRwarrs_, daily, duty, kwhdays,

model, numCust, Rneut, spectrum, VmaxPU, VminEmerg, VminNorm, VminPU, Xneut,

yearly, status, growth

Example

Returns load information in the circuit

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
Loads = getLoadInfo(DSSCircObj) %Get information for all loads
Loads = getLoadInfo(DSSCircObj, {'360667000'}) %Get information for one load
Loads = getLoadInfo(DSSCircObj, [{'530877691_1'};{'331431200'}]); %Get information for two
loads

62

Loads =

3891x1 struct array with fields:

 name
 enabled
 voltage
 busName
 numPhases
 currents
 powers
 losses
 phaseLosses
 seqVoltages
 cplxSeqVoltages
 seqCurrents
 cplxSeqCurrents
 seqPowers
 hasSwitchControl
 hasVoltControl
 energyMeter
 xfkVA
 kW
 kvar
 kva
 kV
 PF
 Idx
 pctMean
 pctStdDev
 allocationFactor
 Cfactor
 class
 isDelta
 CVRcurve
 CVRwatts
 CVRvars
 daily
 duty
 kwhdays
 model
 numCust
 Rneut
 spectrum
 VmaxPU
 VminEmerg
 VminNorm
 VminPU
 Xneut
 yearly
 status
 growth

Loads =

 name: '360667000'
 enabled: 1
 voltage: 241.6734
 busName: 'g2101ra0900_n300678_sec_2.1'
 numPhases: 1
 currents: [0.0302 -0.0385 -0.0302 0.0385]
 powers: [0.0116 0.0024 0 0]
 losses: [11.5782 2.3873]
 phaseLosses: [0.0116 0.0024]
 seqVoltages: [1 1 1]
 cplxSeqVoltages: [-1 0 -1 0 -1 0]
 seqCurrents: [1 1 1]
 cplxSeqCurrents: [-1 0 -1 0 -1 0]
 seqPowers: [-1 -1 -1 -1 -1 -1]
 hasSwitchControl: 0
 hasVoltControl: 0
 energyMeter: ''
 xfkVA: 3.2512
 kW: 2.5812
 kvar: 0.5241
 kva: 1.4597
 kV: 0.2400
 PF: 0.9800
 Idx: 1
 pctMean: 50
 pctStdDev: 10
 allocationFactor: 0.8101
 Cfactor: 4
 class: 1
 isDelta: 0
 CVRcurve: ''
 CVRwatts: 0.8000
 CVRvars: 3
 daily: ''

63

 duty: ''
 kwhdays: 30
 model: 'dssLoadCVR'
 numCust: 1
 Rneut: -1
 spectrum: 'defaultload'
 VmaxPU: 1.0500
 VminEmerg: 0
 VminNorm: 0
 VminPU: 0.7000
 Xneut: 0
 yearly: ''
 status: 'dssLoadVariable'
 growth: ''

64

7.1.8. getPVInfo

Gets the information for all PV plants in the circuit

Syntax
PV = getPVInfo(DSSCircObj);
PV = getPVInfo(DSSCircObj, pvNames);

Description

Function to get the information about the PV plants in the circuit and return a structure with the

information. If the optional input of pvNames is filled, the function returns information for the

specified subset of PV installations, excluding the miscellaneous parameters mentioned in the

outputs below.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

 pvNames - optional cell array of PV names to get information for

Outputs

PV is a structure with all the parameters for the PV plants in the active circuit. Fields are:

 name - Name of the PV source.

 busName - Name of the associated bus.

 numPhases - Number of phases associated with the PV.

 phaseVoltages - Value of voltage magnitudes calculated from the complex voltage

returned by OpenDSS. Length is always 3, returning 0 for phases not on the bus

 phaseVoltagesPU - Per-unit value of voltage magnitudes calculated from the complex

per-unit voltage returned by OpenDSS. Length is always 3, returning 0 for phases not on

the bus.

 current - average phase current output

 coordinates - Coordinates for the PV bus

 distance - Line distance from the PV bus to the substation, obtained from getBusInfo.

 phasePowerReal - 3-element array of the real components of each phase's complex power

injected by PV. Phases that are not present will return 0.

 phasePowerReactive - 3-element array of the imaginary components of each phase's

complex power injected by PV. Phases that are not present will return 0.

 powerReal - Total phasePowerReal.

 powerReactive - Total phasePowerReactive.

 Miscellaneous parameters retrieved from OpenDSS but are currently unused within the

toolbox (May return null if undefined in OpenDSS): numTerminals, numPhases, losses,

phaseLosses, seqVoltages, cplxSeqVoltages, seqCurrents, cplxSeqCurrents, seqPowers,

enabled, hasSwitchControl, hasVoltControl, energyMeter, controller, kW, kvar, PF,

numPhases

Example

Returns PV information in the circuit

65

PV =

99x1 struct array with fields:

 name
 busName
 numPhases
 voltage
 phaseVoltages
 current
 coordinates
 distance
 voltagePU
 phaseVoltagesPU
 phasePowerReal
 phasePowerReactive
 powerReal
 powerReactive
 numTerminals
 losses
 phasesLosses
 seqVoltages
 cplxSeqVoltages
 seqCurrents
 cplxSeqCurrents
 seqPowers
 enabled
 hasSwitchControl
 hasVoltControl
 energyMeter
 controller
 kV
 kW
 kvar
 PF

PV =

 name: 'pvn312429.1.2.3'
 busName: 'n312429.1.2.3'
 numPhases: 3
 voltage: 2.0580e+04
 phaseVoltages: [2.0505e+04 2.0547e+04 2.0689e+04]
 current: 5.3306
 coordinates: [31.6376 -80.8964]
 distance: 6.2216
 voltagePU: 1.0332
 phaseVoltagesPU: [1.0294 1.0316 1.0387]
 phasePowerReal: [-109.7031 -109.7033 -109.7031]
 phasePowerReactive: [-0.0014 -0.0012 -7.6144e-04]
 powerReal: -329.1094
 powerReactive: -0.0033
 numTerminals: 1
 losses: [-3.2911e+05 -3.3314]
 phasesLosses: [1x6 double]
 seqVoltages: [112.0575 2.0580e+04 38.3146]
 cplxSeqVoltages: [1x6 double]
 seqCurrents: [0.0098 5.3305 0.0290]
 cplxSeqCurrents: [0.0095 0.0025 -4.2581 3.2066 -0.0286 0.0048]
 seqPowers: [1x6 double]
 enabled: 1
 hasSwitchControl: 0
 hasVoltControl: 0
 energyMeter: ''
 controller: ''
 kV: 34.5000
 kW: 1.0970e+03
 kvar: 0
 PF: 1

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\Ckt24_PV_Distributed_7_5.dss"'];
DSSText.command = 'solve';
PV = getPVInfo(DSSCircObj) %Get information for all PV
PV = getPVInfo(DSSCircObj, {'pvn312429.1.2.3'}) %Get information for one PV
PV = getPVInfo(DSSCircObj, [{'pvn300557.3'};{'pvn300587.2'}]); %Get information for two PV

66

7.1.9. getTransformerInfo

Gets the information for all transformers in the circuit

Syntax
Transformers = getTransformerInfo(DSSCircObj)
Transformers = getTransformerInfo(DSSCircObj, transformerNames)

Description

Function to get the information about the transformers in the circuit and return a structure with

the information. If the optional input of transformerNames is filled, the function returns

information for the specified subset of transformers, excluding the miscellaneous and additional

parameters mentioned in the outputs below.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

 transformerNames - optional cell array of transformer names to get information for

Outputs

Transformers is a structure with all the parameters for the transformers in the active circuit.

Fields are:

 name - Name of the transformer.

 bus1 - Primary bus.

 bus2 - Secondary bus.

 bus1Voltage, bus2Voltage - Primary and secondary voltage respectively.

 numPhases - Number of phases associated with the transformer.

 bus1Distance, bus2Distance - Distance to the substation from the primary and secondary

bus respectively.

 kva - Transformer power rating.

 controlled - Whether or not the transformer is tap-controlled.

 Miscellaneous parameters being pulled from OpenDSS but are currently unused within

the toolbox (May return null if undefined in OpenDSS): numTerminals, currents, powers,

losses, phaseLosses, seqVoltages, cplxSeqVoltages, seqCurrents, cplxSeqCurrents,

seqPower, enabled, normalAmps, emergAmps, hasSwitchControl, hasVoltControl,

energyMeter, controller, XfmrCode, wdg, R, tap, minTap, maxTap, numTaps, kV, Xneut,

Rneut, isDelta, Xhl, Xht

 Additional parameters regarding the control object for transformers on which one is

present are also retrieved: controller, CTPrimary, delay, forwardBand, forwardR,

forwardVreg, forwardX, isInverseTime, _isReversible, maxTapChange, monitoredBus,

PTratio, reverseBand, reverseR, reverseVreg, reverseX, tapDelay, tapWinding,

voltageLimit, winding

Example

Returns transformer information in the circuit

67

Transformers =

843x1 struct array with fields:

 name
 bus1Voltage
 bus2Voltage
 bus1
 bus2
 numPhases
 bus1Distance
 bus2Distance
 controlled
 numTerminals
 currents
 powers
 losses
 phaseLosses
 seqVoltages
 cplxSeqVoltages
 seqCurrents
 cplxSeqCurrents
 seqPower
 enabled
 normalAmps
 emergAmps
 hasSwitchControl
 hasVoltControl
 energyMeter
 inputkva
 kva
 XfmrCode
 wdg
 R
 tap
 minTap
 maxTap
 numTaps
 bus1kV
 Xneut
 Rneut
 isDelta
 Xhl
 Xht
 bus2kV
 controller
 CTPrimary
 delay
 forwardBand
 forwardR
 forwardVreg
 forwardX
 isInverseTime
 isReversible
 maxTapChange
 monitoredBus
 PTratio
 reverseBand
 reverseR
 reverseVreg
 reverseX
 tapDelay
 tapWinding
 voltageLimit
 winding

Transformers =

 name: '05410_g2101ak7700'
 bus1Voltage: 7.6872e+03
 bus2Voltage: 240.8940
 bus1: 'n284223.1'
 bus2: 'g2101ak7700_n284223_sec.1'
 numPhases: 1
 bus1Distance: 7.5266

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
Transformers = getTransformerInfo(DSSCircObj) %Get information for all transformers
Transformers = getTransformerInfo(DSSCircObj, {'05410_g2101ak7700'}) %Get information for one
transformer
Transformers = getTransformerInfo(DSSCircObj, [{'05410_g2101ah4300'};{'05410_g2101ae2300'}]);
%Get information for two transformers

68

 bus2Distance: 7.5266
 controlled: 0
 numTerminals: 2
 currents: [1x8 double]
 powers: [18.8783 4.2165 0 0 -18.7226 -3.8157 0 0]
 losses: [155.6803 400.8587]
 phaseLosses: [0.1557 0.4009]
 seqVoltages: [1 1 1 1 1 1]
 cplxSeqVoltages: [-1 0 -1 0 -1 0 -1 0 -1 0 -1 0]
 seqCurrents: [1 1 1 1 1 1]
 cplxSeqCurrents: [-1 0 -1 0 -1 0 -1 0 -1 0 -1 0]
 seqPower: [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1]
 enabled: 1
 normalAmps: 7.2169
 emergAmps: 9.8412
 hasSwitchControl: 0
 hasVoltControl: 0
 energyMeter: ''
 inputkva: 18.9326
 kva: 45000
 XfmrCode: ''
 wdg: 1
 R: 0.0027
 tap: 1
 minTap: 0.9000
 maxTap: 1.1000
 numTaps: 32
 bus1kV: 34.5000
 Xneut: 0
 Rneut: -1
 isDelta: 0
 Xhl: 0.0605
 Xht: 0.3000
 bus2kV: 13.2000

69

7.1.10. isinterfaceOpenDSS

Used to check for a valid interface input.

Syntax
isinterface = isinterfaceOpenDSS(DSSCircObj);

Description

Used for input parsing. Checks if the input is an OpenDSS COM interface and that it is

compiled. Returns 1 if it is a compiled OpenDSS object, 0 otherwise. If it returns 0, it returns an

error indicating whether it failed the interface test or the compiled-circuit test.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

Outputs

 isinterface - Returns 1 if it is a compiled OpenDSS object, 0 otherwise

Example

Showing interface check

isinterface =

 1

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
isinterface = isinterfaceOpenDSS(DSSCircObj)

70

7.2. CIRCUIT ANALYSIS FUNCTIONS

Certain pieces of the circuit analysis can better be performed in MATLAB. OpenDSS solves the

power flow and returns the state of the system, but custom queries about features of the circuit

can be accomplished in MATLAB.

Function List

circuitCheck - Used to error-check the circuit for any obvious abnormalities

findDownstreamBuses - Finds all buses downstream of the busName

findHighestImpedanceBus - Finds the highest impedance bus for each phase to the source bus

findLongestDistanceBus - Finds the bus for each phase that is farthest distance away

findSubstationLocation - Locates the substation coordinates

findUpstreamBuses - Finds all buses upstream of the busName

71

7.2.1. circuitCheck

Used to error-check the circuit for any obvious abnormalities.

Syntax
warnSt = circuitCheck(DSSCircObj);
warnSt = circuitCheck(DSSCircObj,'Warnings','off');

Description

Used for checking OpenDSS circuits for errors or abnormalities that do not prevent OpenDSS

from running but will cause errors during analysis (e.g. Phase-a line downstream of a bus with

only phases b and c). It is capable of performing a complete circuit check with a warning

describing each error found. Warnings can be turned off. A more comprehensive list of elements

that cause the errors can be found inside the structure, warnSt, that is outputted at the end of the

check.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

 'Warnings' - indicates if the user wants command-prompt warnings on or not {'on'} |
'off'

Outputs

 warnSt is a structure with parameters relating to the results of various validity check. If

the circuit failed a check, an entry for that check appears in this structure with fields for

the check name, a string with the description, and a list of offenders that caused the fail.

Example

Example of a circuit test:

warnSt =

 LineOverLoading: [1x1 struct]

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
warnSt = circuitCheck(DSSCircObj)
warnSt = circuitCheck(DSSCircObj, 'Warnings', 'off');

72

7.2.2. findDownstreamBuses

Finds all buses downstream of the busName

Syntax
downstreamBuses = findDownstreamBuses(DSSCircObj,busName);

Description

Function to get all the bus names for buses that are downstream of the busName. The

downstream buses are defined as buses that are farther from the substation on the electrical path

of busName.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

 busName - string of the bus name to start search downstream

Outputs

 downstreamBuses is a cell array of the bus names downstream from busName

Example

Returns downstream buses

downstreamBuses =

 'n292792'
 'n292783'
 'g2101fk7100_n292792_sec'
 'n292782'
 'g2101fj5700_n292783_sec'
 'g2101fk7100_n292792_sec_1'
 'g2101fk7100_n292792_sec_2'
 'g2101fk7100_n292792_sec_3'
 'g2101fk7100_n292792_sec_4'
 'g2101fk7100_n292792_sec_5'
 'n292769'
 'g2101fj5700_n292783_sec_1'
 'g2101fj5700_n292783_sec_2'
 'g2101fj5700_n292783_sec_3'
 'g2101fj5700_n292783_sec_4'
 'g2101fj5700_n292783_sec_5'
 'g2101fj5700_n292783_sec_6'
 'n292752'

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
downstreamBuses = findDownstreamBuses(DSSCircObj,'N292792')

73

7.2.3. findHighestImpedanceBus

Finds the highest impedance bus from the substation

Syntax
[highestImpedance highestImpedanceBus] = findHighestImpedanceBus(DSSCircObj,
requiredLineRating, threePhase);

Description

Function to find highest impedance bus from the substation.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

 requiredLineRating - the minimum allowed conductor size (amps) line rating for PV

placement. A larger plant requires a higher required line rating. To not restrict the search

algorithm, set this to zero.

 threePhase - optional input, logical value for if the bus must be 3 phase. If the input is a

logical true, only 3 phase buses will be returned.

Outputs

 highestImpedance - impedance rating between fromBus to toBus

 fromBus - name of source bus for highest impedance

 toBus - name of bus with highest impedance to the source bus (fromBus)

Example

Returns the bus names for the highest impedance bus in the circuit

highestImpedance =

 10.3991

highestImpedanceBus =

 'N284454'

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
[highestImpedance highestImpedanceBus] = findHighestImpedanceBus(DSSCircObj, 220)

74

7.2.4. findLongestDistanceBus

Finds the bus for each phase that is farthest distance from the source bus

Syntax
[longestDistance toBus] = findLongestDistanceBus(DSSCircObj, phaseOption);

Description

Function to find the bus for each phase that is farthest distance from the source bus. This can be

run to find the farthest bus for each phase (generally single phase) or farthest 3 phase bus.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

 phaseOption - 'perPhase' for the farthest bus on each phase or '3phase' for the farthest 3

phase bus

Outputs

 longestDistance - distance between fromBus to toBus

 toBus - name of bus with highest impedance to the energy monitor

Example

Returns the bus names and distance for the farthest bus

longestDistance =

 12.8993 11.2051 10.9983

toBus =

 'n284397.1' 'n292752.2' [1x27 char]

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
[longestDistance toBus] = findLongestDistanceBus(DSSCircObj, 'perPhase')

75

7.2.5. findSubstationLocation

Locates the substation coordinates

Syntax
coordinates = findSubstationLocation(DSSCircObj);

Description

Function to find the coordinates of the substation. This is used for plotting the substation on

circuit diagrams. The substation is located at the bus coordinate with the shortest "distance".

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

Outputs

 coordinates is the [Y X] coordinates for the substation bus location

Example

Returns the substation location

coordinates =

 31.6160 -80.9734

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
coordinates = findSubstationLocation(DSSCircObj)

76

7.2.6. findUpstreamBuses

Finds all buses upstream of the busName

Syntax
upstreamBuses = findUpstreamBuses(DSSCircObj,busName);

Description

Function to get all the bus names for buses that are upstream of the busName. The upstream

buses are defined as buses that are closer to the substation on the electrical path to busName.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

 busName - string of the bus name to start search upstream

Outputs

 upstreamBuses is a cell array of the bus names upstream from busName

Example

Returns upstream buses

upstreamBuses =

 Columns 1 through 6

 'n292286' 'n292300' 'n283640' 'n283641' 'n283648' 'n283663'

 Columns 7 through 11

 'n283672' 'n1386726' 'n1386727' 'n283677' 'n283680'

 Columns 12 through 17

 'n283682' 'n283661' 'n283639' 'n283622' 'n283615' 'n283609'

 Columns 18 through 22

 'n283606' 'n283602' 'n283575' '05410' 'subxfmr_lsb'

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
upstreamBuses = findUpstreamBuses(DSSCircObj,'n292286')

77

7.3. PLOTTING FUNCTIONS

These functions create plots in MATLAB from the OpenDSS system. While some of these plots

can be created directly in OpenDSS, plotting in MATLAB provides more customization and

functionality. These plot functions can be called at any time during an OpenDSS simulation, and

they will plot the current state of the OpenDSS feeder. If there are any solar generators in the

simulation, the functions will identify the location and mark the PV in the plots.

Function List

plotAmpProfile - Plots the line currents profile and line rating vs. distance

plotCircuitLines - Plots the feeder circuit diagram

plotCircuitLinesOptions - GUI for providing options for how to plot the feeder circuit diagram

plotKVARProfile - Plots the feeder profile for the kVAR power flow on the lines

plotKWProfile - Plots the feeder profile for the kW power flow on the lines

plotMonitor - Plots a monitor from the simulation

plotVoltageProfile - Plots the voltage profile for the feeder (spider plot)

78

7.3.1. plotAmpProfile

Plots the line currents profile and line rating vs. distance

Syntax
plotAmpProfile(DSSCircObj,BusName);
plotAmpProfile(DSSCircObj,BusName, _'PropertyName'_ ,PropertyValue);

Description

Function to plot line currents in in each between the selected bus and the substation. The line

current and line rating is plotted vs. distance from the substation. Clicking on objects in the

figure will display the name of the object, and right clicking will give a menu for viewing

properties of the object.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

 BusName - Property for the name of the bus (string) that the current (amp) profile should

be plotted to. Only the direct line between the bus and the substation will be plotted

 Properties - optional properties as one or more name-value pairs in any order

 -- 'AveragePhase' - Property for if the average power should be plotted alone or in

addition to the phase plots 'on' | {'off'} | 'addition'

Outputs

 none - a figure is displayed with the plot

Notes

For the right-click visualizations, the AllowForms field of DSSCircObj must be set to 1, which is

the default value. Currently, OpenDSS 7.6.3 (the current version as of this writing) does not

allow for setting the AllowForms field back to 1 after setting it to 0.

Example

Example of an Amp profile plot to a bus

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
figure; plotAmpProfile(DSSCircObj, 'G2101JK1400_N300995_sec_1','AveragePhase','addition')
ylim([0 1000])

79

80

7.3.2. plotCircuitLines

Plots the feeder circuit diagram

Syntax
plotCircuitLines(DSSCircObj);
plotCircuitLines(DSSCircObj, _'PropertyName'_ ,PropertyValue);

Description

Function to plot the feeder circuit diagram. The coloring and line thickness plotting styles can be

customized by the user through the function property inputs. If no properties are selected, the

plotCircuitLinesOptions GUI window is displayed to assist the user is selecting plotting options.

Clicking on objects in the figure will display the name of the object, and right clicking will give

a menu for viewing properties of the object.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

 Properties - optional properties as one or more name-value pairs in any order

 -- 'Coloring' - Defines how the circuit lines are colored in the figure. {'numPhases'}
| 'PerPhase' | 'voltage' | 'lineLoading' | 'distance' | 'unbalance' |
[0,0,0]

 ------ ColorSpec - three-element RGB vector specifying the line color

 ------ 'numPhases' - black for 3-phase lines and a light gray for 1 or 2 phase lines

 ------ 'PerPhase' - colors each phase (or combination of phases) a different color in the

figure

 ------ 'voltage120' - contours the line colors according to the voltage on a 120V base

 ------ 'voltagePU' - contours the line colors according to the per unit voltage

 ------ 'voltage' - contours the line colors according to the voltage (kV)

 ------ 'lineLoading' - contours the line colors according to the line loading (current/line

rating)

 ------ 'realLosses' - contours the line colors according to the real power line losses

(kW/km)

 ------ 'reactiveLosses' - contours the line colors according to the reactive power line

losses (kVAR/km)

 ------ 'distance' - contours the line colors according to the distance from the substation

 ------ 'unbalance' - contours the line colors according to the power (kVA) unbalance

between phases

 ------ 'voltageAngle' - contours the line colors according to the angle of the bus voltage

phasor

 ------ 'powerFactor' - contours the line colors according to the power factor of the

power flow

 -- 'ContourScale' - Defines the minimum and maximum value for contouring or auto

scaling {'auto'} | [0 5]

 -- 'Thickness' - Defines how the thickness of the circuit lines is displayed.
{'numPhases'} | 'current' | 'lineRating' | 0 - 10

 ------ 0 - 10 - numeric value for the fixed line width

81

 ------ 'numPhases' - thicker lines for 3-phase power lines

 ------ 'current' - thickness is linearly related to the current flowing through the lines

relative to the maximum current in any line

 ------ 'lineRating' - thickness is linearly related to the current rating of the line relative

to the maximum line rating

 -- 'SubstationMarker' - Property for if the substation should be marked {'on'} |
'off'

 -- 'PVMarker' - Property for if the PV PCC should be marked (if it exists) {'on'} |
'off'

 -- 'LoadMarker' - Property for if loads should be marked {'on'} | 'off'

 -- 'TransformerMarker' - Property for if controlled transfomer (LTC and VREG) and

step transformers (>1000V) should be marked {'on'} | 'off'

 -- 'CapacitorMarker' - Property for if capacitors should be marked {'on'} | 'off'

 -- 'CustomMarker' - Property for marking a custom bus by the user specifying a bus

name {'off'} | busNameString

 -- 'CustomLegend' - Text to place in the legend describing the custom bus specified in

CustomMarker

 -- 'NumPhases' - Property for if only lines with the specified number of phases should be

plotted [1,2,3] | 1 | [2,3] | [1,2]

 -- 'PhasesToPlot' - Property for which phases to plot (A,B,C). True/False values for

each phase [1,1,1] | [1,0,0]

 -- 'MappingBackground' - Property for if the satellite image should be displayed in the

background. Note, this only works if the coordinates are in latitude/longitude values or if

initCoordConversion was performed. 'on' | {'off'}

 -- 'BusName' - Property for the name of the bus (string) that the circuit should be plotted

to. Only the direct line between the bus and the substation will be plotted, unless all

buses are selected. {'all'} | busName

 -- 'Downstream' - If a BusName is given, all buses in the electrical path to the substation

(upstream) will be plotted, and if this property is on, all buses in the electrical path

downstream of BusName will be plotted too 'on' | {'off'}

Outputs

 none - a figure of the circuit is displayed based on the option inputs

Notes

For the right-click visualizations, the AllowForms field of DSSCircObj must be set to 1, which is

the default value. Currently, OpenDSS 7.6.3 (the current version as of this writing) does not

allow for setting the AllowForms field back to 1 after setting it to 0.

Example

Examples of several different circuit plots that can be created

82

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
figure; plotCircuitLines(DSSCircObj,'CapacitorMarker','on')
figure;
plotCircuitLines(DSSCircObj,'Coloring','PerPhase','Thickness',3,'MappingBackground','on')
figure; plotCircuitLines(DSSCircObj,'Coloring','voltage')
figure; plotCircuitLines(DSSCircObj,'Coloring','voltage120')
figure; plotCircuitLines(DSSCircObj,'Coloring','lineLoading')
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\Ckt24_PV_Central_7_5.dss"'];
DSSText.command = 'solve';
figure; plotCircuitLines(DSSCircObj,'Coloring','voltage120')

83

84

85

86

7.3.3. plotCircuitLinesOptions

GUI for providing options for how to plot the feeder circuit diagram

Syntax
plotCircuitLinesOptions(DSSCircObj);

Description

plotCircuitLines plots the feeder circuit diagram and has many different input argument

parameters for changing coloring, line thickness, background, etc. This function provides a GUI

for selecting the plotting styles for plotCircuitLines instead of through text arguments. This

function can be called directly with the OpenDSS circuit object, or plotCircuitLines.m will call

this function if no input arguments were selected.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

Outputs

 none - a figure of the circuit is displayed based on the option inputs

Example

Examples of calling the GUI for plotCircuitLinesOptions

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
figure; plotCircuitLinesOptions(DSSCircObj)

87

7.3.4. plotKVARProfile

Plots the feeder profile for the kVAR power flow on the lines

Syntax
plotKVARProfile(DSSCircObj);
plotKVARProfile(DSSCircObj, _'PropertyName'_ ,PropertyValue);

Description

Function to plot the feeder profile for the kVAR power flow on the lines. This is the kVAR

power vs. distance from the substation graph. Clicking on objects in the figure will display the

name of the object, and right clicking will give a menu for viewing properties of the object.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

 Properties - optional properties as one or more name-value pairs in any order

 -- 'Only3Phase' - Property for if only 3-phase power lines should be plotted 'on' |
{'off'}

 -- 'AveragePhase' - Property for if the average power should be plotted alone or in

addition to the phase plots 'on' | {'off'} | 'addition'

 -- 'BusName' - Property for the name of the bus (string) that the kVAR profile should be

plotted to. Only the direct line between the bus and the substation will be plotted, unless

all buses are selected. {'all'} | busName

 -- 'Downstream' - If a BusName is given, all buses in the electrical path to the substation

(upstream) will be plotted, and if this property is on, all buses in the electrical path

downstream of BusName will be plotted too 'on' | {'off'}

 -- 'PVMarker' - Property for if the PV PCC should be marked (if it exists) {'on'} |
'off'

Outputs

 none - a figure is displayed with the plot

Notes

For the right-click visualizations, the AllowForms field of DSSCircObj must be set to 1, which is

the default value. Currently, OpenDSS 7.6.3 (the current version as of this writing) does not

allow for setting the AllowForms field back to 1 after setting it to 0.

Example

Example of a feeder kVAR profile plot

88

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
figure; plotKVARProfile(DSSCircObj,'AveragePhase','addition','BusName','N300558');
figure; plotKVARProfile(DSSCircObj,'AveragePhase','on');
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\Ckt24_PV_Central_7_5.dss"'];
DSSText.command = 'Set mode=duty number=1 hour=12 h=1 sec=0';
DSSText.command = 'Set controlmode=static';
DSSText.command = 'solve';
figure; plotKVARProfile(DSSCircObj,'BusName','N300558')

89

90

7.3.5. plotKWProfile

Plots the feeder profile for the kW power flow on the lines

Syntax
plotKWProfile(DSSCircObj);
plotKWProfile(DSSCircObj, _'PropertyName'_ ,PropertyValue);

Description

Function to plot the feeder profile for the kW power flow on the lines. This is the kW power vs.

distance from the substation graph. Clicking on objects in the figure will display the name of the

object, and right clicking will give a menu for viewing properties of the object.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

 Properties - optional properties as one or more name-value pairs in any order

 -- 'Only3Phase' - Property for if only 3-phase power lines should be plotted 'on' |
{'off'}

 -- 'AveragePhase' - Property for if the average power should be plotted alone or in

addition to the phase plots 'on' | {'off'} | 'addition'

 -- 'BusName' - Property for the name of the bus (string) that the kW profile should be

plotted to. Only the direct line between the bus and the substation will be plotted, unless

all buses are selected. {'all'} | busName

 -- 'Downstream' - If a BusName is given, all buses in the electrical path to the substation

(upstream) will be plotted, and if this property is on, all buses in the electrical path

downstream of BusName will be plotted too 'on' | {'off'}

 -- 'PVMarker' - Property for if the PV PCC should be marked (if it exists) {'on'} |
'off'

Outputs

 none - a figure is displayed with the plot

Notes

For the right-click visualizations, the AllowForms field of DSSCircObj must be set to 1, which is

the default value. Currently, OpenDSS 7.6.3 (the current version as of this writing) does not

allow for setting the AllowForms field back to 1 after setting it to 0.

Example

Example of a feeder kW profile plot

91

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
figure; plotKWProfile(DSSCircObj,'AveragePhase','addition','BusName','N300558');
figure; plotKWProfile(DSSCircObj,'AveragePhase','on');
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\Ckt24_PV_Central_7_5.dss"'];
DSSText.command = 'Set mode=duty number=1 hour=12 h=1 sec=0';
DSSText.command = 'Set controlmode=static';
DSSText.command = 'solve';
figure; plotKWProfile(DSSCircObj,'BusName','N300558')

92

93

7.3.6. plotMonitor

Plots a monitor from the simulation

Syntax
plotMonitor(DSSCircObj,monitorName);

Description

Function to plot simulation results saved in an OpenDSS monitor

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

 monitorName - string with the name of the OpenDSS monitor

Outputs

 none - a figure is displayed with the plot

Example

Example of a feeder power monitor plot

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'Set mode=duty number=8760 hour=0 h=1h sec=0';
DSSText.command = 'Set controlmode = time';
DSSText.command = 'solve';
plotMonitor(DSSCircObj,'fdr_05410_Mon_PQ')

94

7.3.7. plotVoltageProfile

Plots the voltage profile for the feeder (spider plot)

Syntax
plotVoltageProfile(DSSCircObj);
plotVoltageProfile(DSSCircObj, _'PropertyName'_ ,PropertyValue);

Description

Function to plot the voltage profile for the feeder. This is the bus voltage vs. distance from the

substation plot. Also called a spider plot. Clicking on objects in the figure will display the name

of the object, and right clicking will give a menu for viewing properties of the object.

Inputs

 DSSCircObj - link to OpenDSS active circuit and command text (from DSSStartup)

 Properties - optional properties as one or more name-value pairs in any order

 -- 'SecondarySystem' - Property for if the secondary system should be plotted (if it

exists) {'on'} | 'off'

 -- 'Only3Phase' - Property for if only 3-phase power lines should be plotted 'on' |
{'off'}

 -- 'AveragePhase' - Property for if the average voltage should be plotted alone or in

addition to the phase plots 'on' | {'off'} | 'addition'

 -- 'BusName' - Property for the name of the bus (string) that the voltage profile should be

plotted to. Only the direct line between the bus and the substation will be plotted, unless

all buses are selected. {'all'} | busName

 -- 'Downstream' - If a BusName is given, all buses in the electrical path to the substation

(upstream) will be plotted, and if this property is on, all buses in the electrical path

downstream of BusName will be plotted too 'on' | {'off'}

Outputs

 none - a figure is displayed with the plot

Notes

For the right-click visualizations, the AllowForms field of DSSCircObj must be set to 1, which is

the default value. Currently, OpenDSS 7.6.3 (the current version as of this writing) does not

allow for setting the AllowForms field back to 1 after setting it to 0.

Example

Example of a feeder voltage profile plot

95

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\master_Ckt24.dss"'];
DSSText.command = 'solve';
figure; plotVoltageProfile(DSSCircObj,'BusName','N292743','Downstream','on');
figure; plotVoltageProfile(DSSCircObj)
figure;
plotVoltageProfile(DSSCircObj,'SecondarySystem','off','AveragePhase','addition','Only3Phase','
on')
DSSText.command = ['Compile "' gridpvPath 'ExampleCircuit\Ckt24_PV_Distributed_7_5.dss"'];
DSSText.command = 'Set mode=duty number=1 hour=12 h=1 sec=0';
DSSText.command = 'Set controlmode=static';
DSSText.command = 'solve';
figure; plotVoltageProfile(DSSCircObj)

96

97

98

7.4. GEOGRAPHIC MAPPING FUNCTIONS

If the OpenDSS feeder has geographical information, this can be used to map the feeder to the

real world. The OpenDSS feeder coordinates are generally located in a file called

“Buscoords.dss” and links each bus to an X and Y coordinate. This information comes from the

utility‟s coordinate system, which can be UTM, a state coordinate system, or their own

coordinates. If the conversion from the utility coordinate system is unknown, the

createCircuitCoordConversion function tool can be used to visually match the feeder layout to

satellite images.

With a known coordinate system, certain GIS or map plotting features are available in the

toolbox to visualize the location of the distribution system power lines. Google Maps is used to

display streets, location names, and satellite images. The API for Google Maps allows

MATLAB to interact and download maps with location specific data, including elevation [11].

The figure displays an example distribution system demonstrating the GIS functionality [6].

Function List

initCoordConversion - Function to initialize the coordinate conversion process

createCircuitCoordConversion - Function to create conversion of circuit coordinates to GPS

coordinates

createCircuitCoordConversionUTM - Function to create conversion of circuit coordinates in

UTM to GPS coordinates

plot_google_map - Plots a Google map on the current axes using the Google Static Maps API

99

7.4.1. initCoordConversion

Function to initialize the coordinate conversion process

Syntax
initCoordConversion();

Description

Function to allow the user to pick between coordinate conversion methods: manual creation or

UTM conversion.

Inputs

 None

Outputs

 None

Example

initCoordConversion();

100

7.4.2. createCircuitCoordConversion

Function to create conversion of circuit coordinates to GPS coordinates

Syntax
createCircuitCoordConversion();

Description

Function is a user interface to map the Google map and the circuit drawing on top of each other.

The user aligns the two images and the conversion is created for getting GPS Lat/Lon for the

OpenDSS bus coordinates. This is used when the OpenDSS coordinate system is unknown and

not any standard coordinate systems like UTM.

Inputs

 none

Outputs

 none - a Circuit Conversion file is saved for any future plotting

Example

Starts the user interface. Directions are in the interface.

createCircuitCoordConversion();

101

7.4.3. createCircuitCoordConversionUTM

Function to create conversion of circuit coordinates in UTM to GPS coordinates

Syntax
createCircuitCoordConversionUTM();

Description

Function is a user interface that allows the user to select the UTM zone the circuit coordinates

are currently in. The conversion is created for getting GPS Lat/Lon for the OpenDSS bus

coordinates and the new Lat/Lon OpenDSS buscoords are saved.

Inputs

 none

Outputs

 none - a Circuit Conversion file is saved for any future plotting

Example

Starts the user interface. Directions are in the interface.

createCircuitCoordConversionUTM();

102

7.4.4. plot_google_map

Plots a google map on the current axes using the Google Static Maps API

Syntax
h = plot_google_map(Property, Value,...);
[lonVec latVec imag] = plot_google_map(Property, Value,...);

Description

Plots the google map on the current axes given the input properties selected

Inputs

 Property - property name from the list below along with the

 Value for the property. The default for each porperty is in parenthesis.

 -- 'Height' (640) - Height of the image in pixels (max 640)

 -- 'Width' (640) - Width of the image in pixels (max 640)

 -- 'Scale' (2) - (1/2) Resolution scale factor . using Scale=2 will

double the resolution of the downloaded image (up to 1280x1280) and will result in finer

rendering, but processing time will be longer.

 -- 'MapType' - ('roadmap') Type of map to return. Any of [roadmap,

satellite, terrain, hybrid) See the Google Maps API for more information.

 -- 'Alpha' (1) - (0-1) Transparency level of the map (0 is fully

transparent). While the map is always moved to the bottom of the plot (i.e. will

not hide previously drawn items), this can be useful in order to increase readability

if many colors are plotted (using SCATTER for example).

 -- 'Marker' - The marker argument is a text string with fields

conforming to the Google Maps API. The following are valid examples:

'43.0738740,-70.713993' (dflt midsize orange marker) '43.0738740,-70.713993,blue'

(midsize blue marker) '43.0738740,-70.713993,yellowa' (midsize yellow

marker with label "A") '43.0738740,-70.713993,tinyredb' (tiny red marker

with label "B")

 -- 'Refresh' (1) - (0/1) defines whether to automatically refresh the

map upon zoom action on the figure.

 -- 'AutoAxis' (1) - (0/1) defines whether to automatically adjust the axis

of the plot to avoid the map being stretched. This will adjust the span to be correct

only if the figure window is square. If the figure window is rectangular, it will

still appear somewhat stretched.

 -- 'APIKey' - (string) set your own API key which you obtained from Google:

http://developers.google.com/maps/documentation/staticmaps/#api_key

This will enable up to 25,000 map requests per day, compared to 400

requests without a key. To set the key, use:

plot_google_map('APIKey','SomeLongStringObtaindFromGoogle')

To disable the use of a key, use: plot_google_map('APIKey','')

http://developers.google.com/maps/documentation/staticmaps/#api_key

103

Outputs

 h - Handle to the plotted map

 lonVect - Vector of Longidute coordinates (WGS84) of the image

 latVect - Vector of Latidute coordinates (WGS84) of the image

 imag - Image matrix (height,width,3) of the map

References:

http://www.mathworks.com/MATLABcentral/fileexchange/24113

http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/

http://developers.google.com/maps/documentation/staticmaps/
Acknowledgement to Val Schmidt for his submission of get_google_map.m
Author: Zohar Bar-Yehuda

Copyright

Copyright (c) 2010, Zohar Bar-Yehuda Copyright (c) 2010, Val Schmidt All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the distribution
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Example

Plot a map showing some capitals in Europe:

lat = [48.8708 51.5188 41.9260 40.4312 52.523 37.982];
lon = [2.4131 -0.1300 12.4951 -3.6788 13.415 23.715];
plot(lon,lat,'.r','MarkerSize',20)
plot_google_map

http://www.mathworks.com/matlabcentral/fileexchange/24113
http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/
http://developers.google.com/maps/documentation/staticmaps/

104

105

7.5. SOLAR MODELING FUNCTIONS

Simulating the impact of solar on the distribution system requires an accurate timeseries of PV

plant power output. The OpenDSS model is used to model the feeder and the loads, but

MATLAB is used to setup the PV plant model. The process of modeling solar plant output

begins with measured irradiance data. Generally, a specific day or time of year is used for

simulation. The IneichenClearSkyModel function can be used to generate a Global Horizontal

Irradiance time-series for a clear day for any location and dates to simulate the maximum output

from PV on the system each day [12]. Another method would be to identify a highly variable

day from measured irradiance data to simulate the impact of PV variability [13].

To simulate a PV plant from irradiance data, the PV plant information is setup using the user

interface in the placePVplant function. The interface allows the user to draw the location of a

PV plant directly on the Google map and feeder layout. The drawn PV plant is used for

smoothing the plant variability using the Wavelet Variability Model (WVM) [14-16]. There are

also several options for controlling the power factor of the PV output, such as a power factor

schedule, power factor function of output, and volt/var control [17, 18]. The function

createPVscenarioFiles will run the WVM model and create the OpenDSS solar scenario case

files with the correct loadshape for solar output and PV generators placed on the correct bus

locations.

Function List

placePVplant - Draw PV on the circuit diagram and save plant info for WVM input

createPVscenarioFiles - Runs the WVM model and puts out the OpenDSS PV scenario files

distributePV - Allocates PV based off of the load transformer size (kva)

findMaxPenetrationTime - Finds the max penetration time

IneichenClearSkyModel - Generates the clear sky irradiance using Ineichen and Perez model

makePFoutputFunction - GUI for creating power factor as a function of PV power output

makePFprofile - Creates varying Power Factor profile by schedule or PV output

makePFschedule - GUI for creating a power factor daily schedule

makeVVCcurve - GUI for setting up the OpenDSS VVControl function parameters

WVM - WVM Wavelet Variability Model

106

7.5.1. placePVplant

Draw PV on the circuit diagram and save plant info for WVM input

Syntax
placePVplant()

Description

This function is a user interface where the PV plant can be drawn on the circuit diagram. The

user will setup all the PV plant info and save it to a file for running WVM.

Inputs

 none

Outputs

 none saves a *.mat file with the structure plantinfo for input to WVM

Example

Showing the user interface:

placePVplant()

107

7.5.2. createPVscenarioFiles

Runs the WVM model and puts out the OpenDSS PV scenario files

Syntax
index =
createPVscenarioFiles(plantInfoFile,irradianceFile,A_value,circuitFile);
index = createPVscenarioFiles();

Description

Function to load in the inputs to the WVM (plant info and irradiance sensor info), run WVM,

create the loadshape file, and the solar scenario OpenDSS file.

Inputs

 plantInfoFile - optional input with the link to the MAT file with the require PV plant

information structure for WVM (see WVM.m and placePVplant.m)

 irradianceFile - optional input with the link to the MAT file with the require

irradiance sensor information structure for WVM (see WVM.m)

 A_value - optional input with A value for WVM

 circuitFile - optional input with the link to the file with the OpenDSS circuit

Outputs

 none - outputs both a .txt loadshape file and a .dss solar scenario OpenDSS file

Example

Example run of createPVscenarioFiles

createPVscenarioFiles('./ExampleCircuit/Ckt24_PV_Central_7_5.mat','./Subfunctions/WVM_subfunct
ions/Example_Alamosa_2011_8_21_IrradSensor.mat',1.5392,'.\ExampleCircuit\Run_Ckt24.dss');

108

7.5.3. distributePV

Allocates PV based off of the load transformer size (kva)

Syntax
distributePV(totalPVSize,area)

Description

Allocates distributed PV spread out around a designated area. PV is placed at each transformer

in the area based off of the load transformer size (kva)

Inputs

 totalPVSize - total size of the distributed PV system in kW

 area - matrix of vertices defining the area to distribute the PV inside, 1 row per vertex

with [X,Y]

Outputs

 text file allocatedPV.txt with the text to be copy and pasted in an OpenDSS file

Example

Distributes the total PV size around the given area.

area = [1.1732e7 3.708e6; 1.1732e6 3.728e6; 1.1748e7 3.708e6; 1.1748e7 3.728e6];
totalPVSize = 2e3;
distributePV(totalPVSize,area);

109

7.5.4. findMaxPenetrationTime

Finds the max penetration time

Syntax
index = findMaxPenetrationTime(loadFile,pvFile);
index = findMaxPenetrationTime();

Description

Function to calculate when the max penetration (PV output / load) time occurs. User inputs the

load file and PV output profile, max time is calculated.

Inputs

 loadFile - optional input with the link to the file with the load data

 pvFile - optional input with the link to the file with the PV output data

Outputs

 index - the index in the array with the maximum penetration

Example

Finds the maximum penetration time for sample files

index =

 39125

index =
findMaxPenetrationTime('ExampleCircuit\LS_ThreePhase.txt','ExampleCircuit\PVloadshape_7_5MW_Ce
ntral.txt')

110

7.5.5. IneichenClearSkyModel

Generates the clear sky irradiance using Ineichen and Perez model 2002

Syntax
GHI = IneichenClearSkyModel(times,latitude,longitude,elevation,Lz);

Description

Function to generate the clear sky global horizontal irradiance for a given time period and

location using the SoDa Linke Turbidity maps

Inputs

 times - MATLAB datenum (Example: datenum(2011,2,23)), can be an array of times

 latitude - site latitude (decimal degrees)

 longitude - site longitude (decimal degrees) (negative for West)

 elevation - site elevation (meters)

 Lz - standard times zone meridian (120 for PST, 105 for MST, 90 CST, and 75 for EST).

To find the time zone meridian, just take GMT offset and multiply by -15. (e.g. Eastern

time is GMT -5hrs, so the meridian is (-5)*(-15) = 75 degrees.

 Linke Turbidity images in a folder ('LinkeTurbidity'), images obtained from

(http://www.helioclim.org/linke/linke_helioserve.html)

Outputs

 GHI is an array of GHI values for each time in array times

Example

Generates the 1-minute GHI profile for Albuquerque for the first week in April, 2011.

times = datenum(2011,4,1):1/(24*60):datenum(2011,4,8);
GHI=IneichenClearSkyModel(times, 35.04, -106.62, 1617, 105);
plot(times, GHI,'LineWidth',2); datetick('x','mm/dd','keeplimits','keepticks');
set(gca,'FontSize',12,'FontWeight','bold');
ylabel('GHI (W/m^2)','FontSize',12,'FontWeight','bold');
xlabel('Time','FontSize',12,'FontWeight','bold');

http://www.helioclim.org/linke/linke_helioserve.html

111

7.5.6. makePFoutputFunction

GUI for creating power factor as a function of PV power output

Syntax
makePFoutputFunction()

Description

This function is a user interface to create the Power Factor as a function of PV power output.

The user draws the function and then saves it to a .mat file. This function is often called from

placePVplant.m when the PV plant power factor control is selected. The saved mat file is used in

createPVscenarioFiles.m when the solar scenario OpenDSS generators are created.

Inputs

 none

Outputs

 none saves a *.mat file with the power factor function of PV power output

Example

Showing the user interface:

makePFoutputFunction()

112

7.5.7. makePFprofile

Creates varying Reactive Power output profile from given power factor schedule or function of

PV output

Syntax
[MW MVar] = makePFprofile(pvTimes,pvOutput,type,filepath,ratedMVA);

Description

Function that takes a schedule (makePFschedule.m) or a function of PV output power

(makePFoutputFunction.m) and creates the time varying Reactive Power output profile for the

system. The input is the pvOutput (MW) and it is converted to MVar using the given power

factor. This is called from createPVscenarioFiles to create the reactive power timeseries given

the type of power factor profile

Inputs

 pvTimes - array of times

 pvOutput - array of net power output from the total plant (MVA)

 type - type of PF profile ('schedule' or 'function')

 filepath - filepath to PF schedule or function. These files are generated by either

makePFschedule.m or makePFoutputFunction.m

 ratedMVA - ratedMVA of the PV plant

Outputs

 MVar - array of MVar output from each timestep

Example

Runs sample irradiance data through WVM and then uses the saved power factor function to

calculate MVAR from MW and power factor

[DSSCircObj, DSSText, gridpvPath] = DSSStartup;
irr_sensor =
load([gridpvPath,'Subfunctions\WVM_subfunctions\Example_Alamosa_2011_8_21_IrradSensor.mat']);
load([gridpvPath,'ExampleCircuit\ExampleCentralPlantInfoPFfunction.mat']);
A_val = 1.5392;
[timeout,POA_plant,Power_plant,MWs]=WVM(irr_sensor,plantinfo,A_val);
MVar =
makePFprofile(timeout,Power_plant,plantinfo.powerFactor.type,plantinfo.powerFactor.filepath,pl
antinfo.MWs);
plot(timeout,Power_plant,'LineWidth',2); hold all;
plot(timeout,MVar,'LineWidth',2);
legend('Plant Output (MW)','MVAR (Absorbing)');
title('Power Factor as a Function of PV Output','FontWeight','bold','FontSize',12);
set(gca,'FontSize',10,'FontWeight','bold');
xlabel('Time','FontSize',10,'FontWeight','bold');

113

7.5.8. makePFschedule

GUI for creating a power factor daily schedule

Syntax
makePFschedule()

Description

This function is a user interface to create Power Factor daily schedule. The user draws the

schedule and then saves it to a .mat file. This function is often called from placePVplant.m when

the PV plant power factor control is selected. The saved mat file is used in

createPVscenarioFiles.m when the solar scenario OpenDSS generators are created.

Inputs

 none

Outputs

 none saves a *.mat file with the power factor daily schedule

Example

Showing the user interface:

makePFschedule()

114

7.5.9. makeVVCcurve

GUI for setting up the OpenDSS VVControl function parameters

Syntax
makeVVCcurve()

Description

This function is a user interface to create the Volt/Var control function in OpenDSS. The

required parameters are entered into the interface and a mat file is saved with the parameters.

This function is often called from placePVplant.m when the PV plant power factor control is

selected. The saved mat file is used in createPVscenarioFiles.m when the solar scenario

OpenDSS generators are created.

Inputs

 none

Outputs

 none saves a *.mat file with the VVControl parameters

Example

Showing the user interface:

makeVVCcurve()

115

7.5.10. WVM

WVM Wavelet Variability Model

Syntax
[timeout,POA_plant,Power_plant,MWs]=WVM(irr_sensor,plantinfo,A_val);

Description

Function from Matthew Lave for smoothing variability from a point irradiance sensor to

represent a larger PV array with decreased ramps. The method uses wavelets at different time

scales to provide all cooresponding smoothing.

Inputs

 irr_sensor is a struct with variables:

 irr_sensor.irr the irradiance measurement

 irr_sensor.time the time labels for irr_sensor.irr

 irr_sensor.Lat latitude of the sensor

 irr_sensor.Lon longitude of the sensor

 irr_sensor.tilt tilt angle of the sensor, 0 = flat

 irr_sensor.azimuth azimuth angle of the sensor, 180 = due south

 irr_sensor.tracking =1 if single-axis tracking (with tilt irr_sensor.tilt), =0 if not

 irr_sensor.UTCoffset=UTC offset

 plantinfo is a struct describing the plant to simulate with variables:

 plantinfo.tilt tilt angle of plant panels

 plantinfo.azimuth azimuth angle of plant panels

 plantinfo.tracking =1 if plant is single axis tracking (with tilt specified by plantinfo.tilt),

=0 if not

 plantinfo.square =1 if plant is square shape (i.e., a central plant), =0 if not square

 if plantinfo.square==1

 plantinfo.MWs if plant is square, then specify the plant size in MWs

 plantinfo.density density of PV (i.e., density = 0.25 for central plant)

 else

 plantinfo.polygons cell with polygon vertices. polygons{1}=first polygon vertices,

polygons{n}=nth polygon vertices

 plantinfo.densities vector with densities of polygons, corresponding to cells of polygons

 end

 A_val is the correlation scaling coefficient (A)

Outputs

 timeout - array of times

 POA_plant - array of plane of array irradiance values

 Power_plant - array of net power output from the total plant

 MWs - plant MW rating

116

Copyright

© 2012 The Regents of the University of California and Sandia National Laboratories. All

Rights Reserved. Created by Matthew Lave (UCSD and Sandia), Jan Kleissl (UCSD), and

Joshua Stein (Sandia). Do not distribute without permission.

Example

Runs the WVM to determine the geographically smoothed output for the specified input

irradiance and PV plant to be simulated

irr_sensor =
load([gridpvPath,'Subfunctions/WVM_subfunctions/Example_Alamosa_2011_8_21_IrradSensor.mat']);
plantinfo = load([gridpvPath,'Subfunctions/WVM_subfunctions/Example_Alamosa_PlantInfo.mat']);
A_val = 1.5392;
[timeout,POA_plant,Power_plant,MWs]=WVM(irr_sensor,plantinfo,A_val);
plot(irr_sensor.time,irr_sensor.irr,'LineWidth',2); hold all;
plot(timeout,POA_plant,'LineWidth',2);
legend('measured POA irradiance','simulated plant-averaged POA irradiance');
title('Alamosa on August 21st, 2011','FontWeight','bold','FontSize',12); axis tight;
set(gca,'FontSize',10,'FontWeight','bold');
set(gca,'xtick',irr_sensor.time(1)+1/24:4/24:irr_sensor.time(end));
datetick('x','HH:MM','keepticks','keeplimits');

117

7.6. EXAMPLE SIMULATIONS

These functions serve as examples for running simulations and analysis of solar on the

distribution system in OpenDSS. Once the feeder is setup in OpenDSS and the solar scenarios

are created, these functions can loop through the different predefined cases and perform analysis

during the simulations. As examples, these functions can be modified to perform any other

research analysis in the same framework with snapshot analyses or timeseries analyses.

Function List

examplePeakTimeAnalysis - Runs simulation during peak penetration time and generates plots

exampleTimeseriesAnalyses - Timeseries analysis and plots monitor values from the simulation

exampleVoltageAnalysis - Example analysis of maximum and minimum feeder voltages

through time

118

7.6.1. examplePeakTimeAnalysis

Runs simulation during peak penetration time and generates plots

Syntax
examplePeakTimeAnalysis(basecaseFile,solarScenarioFiles);
examplePeakTimeAnalysis();

Description

Function to calculate when the max penetration (PV output / load) time occurs. A snapshot

analysis is performed at this peak time, with both a voltage contour plot and voltage profile plot

being generated.

Inputs

 basecaseFile - optional input with the link to the OpenDSS file with the circuit.

 solarScenarioFiles - optional input with a cell array of links to the OpenDSS files

with the solar scenarios to run

Outputs

 none - generates 2 figures for each analysis scenario and saves them

Example

Runs the basecase circuit and the distributed solar case

examplePeakTimeAnalysis('ExampleCircuit\Run_Ckt24.dss',{'ExampleCircuit\Ckt24_PV_Distributed_7
_5.dss'})

119

120

121

7.6.2. exampleTimeseriesAnalyses

Timeseries analysis and plots monitor values from the simulation

Syntax
exampleTimeseriesAnalyses(basecaseFile,solarScenarioFiles);
exampleTimeseriesAnalyses();

Description

Example function for timeseries analysis and monitor plotting for net feeder power and

switching components like LTC and capacitors. Monitors must be setup in the basecaseFile

circuit definition. Place monitors in the desired locations, then use the same names in the code in

this function.

Inputs

 basecaseFile - optional input with the link to the OpenDSS file with the circuit.

 solarScenarioFiles - optional input with a cell array of links to the OpenDSS files

with the solar scenarios to run

Outputs

 none - generates several figures and saves them

Example

Runs the basecase circuit and the distributed solar case

exampleTimeseriesAnalyses('ExampleCircuit\Run_Ckt24.dss',{'ExampleCircuit\Ckt24_PV_Central_7_5
.dss'})

122

123

124

125

126

127

128

7.6.3. exampleVoltageAnalysis

Example analysis of maximum and minimum feeder voltages through time

Syntax
exampleVoltageAnalysis(basecaseFile,solarScenarioFiles);
exampleVoltageAnalysis();

Description

Example function for analysis of maximum and minimum feeder voltages through time. The

simulation stops at each time step for MATLAB to process the state of the OpenDSS simulation

Inputs

 basecaseFile - optional input with the link to the OpenDSS file with the circuit.

 solarScenarioFiles - optional input with a cell array of links to the OpenDSS files

with the solar scenarios to run

Outputs

 none - generates a plot of maximum and minimum voltage through time

Example

Runs the basecase circuit and the distributed solar case

exampleVoltageAnalysis('ExampleCircuit\master_ckt24.dss',{'ExampleCircuit\Ckt24_PV_Distributed
_7_5.dss'})

129

130

131

8. REFERENCES

[1] EPRI. (2013). Open Distribution System Simulator. Available:

http://sourceforge.net/projects/electricdss/

[2] M. J. Reno and K. Coogan, "Grid Integrated Distributed PV (GridPV)," Sandia National

Laboratories SAND2013-6733, 2013.

[3] J. W. Smith, R. Dugan, and W. Sunderman, "Distribution modeling and analysis of high

penetration PV," in Power and Energy Society General Meeting, 2011 IEEE, 2011, pp. 1-7.

[4] V. Ramachandran, S. K. Solanki, and J. Solanki, "Steady state analysis of three phase unbalanced

distribution systems with interconnection of photovoltaic cells," in Power Systems Conference and

Exposition (PSCE), 2011 IEEE/PES, 2011, pp. 1-7.

[5] J. E. Quiroz and C. P. Cameron, "Technical Analysis of Prospective Photovoltaic Systems in Utah,"

Sandia National Laboratories SAND2012-1366, 2012.

[6] M. J. Reno, A. Ellis, J. Quiroz, and S. Grijalva, "Modeling Distribution System Impacts of Solar

Variability and Interconnection Location," in World Renewable Energy Forum, Denver, CO, 2012.

[7] J. Quiroz and M. J. Reno, "Detailed Grid Integration Analysis of Distributed PV," in IEEE

Photovoltaic Specialists Conference, Austin, TX, 2012.

[8] R. J. Broderick, J. E. Quiroz, M. J. Reno, A. Ellis, J. Smith, and R. Dugan, "Time Series Power

Flow Analysis for Distribution Connected PV Generation," Sandia National Laboratories

SAND2013-0537, 2013.

[9] M. J. Reno, R. J. Broderick, J. Quiroz, and S. Grijalva, "PV Distribution Interconnection Study

Analysis," in 3rd European American Solar Deployment Conference, Atlanta, GA, 2013.

[10] J. E. Quiroz, M. J. Reno, and R. J. Broderick, "Time Series Simulation of Voltage Regulation

Device Control Modes," in IEEE Photovoltaic Specialists Conference, Tampa, FL, 2013.

[11] Google. Google Maps API Family. Available: http://code.google.com/apis/maps/index.html

[12] M. J. Reno, C. W. Hansen, and J. S. Stein, "Global Horizontal Irradiance Clear Sky Models:

Implementation and Analysis," Sandia National Laboratories SAND2012-2389, 2012.

[13] J. S. Stein, C. W. Hansen, and M. J. Reno, "The Variability Index: A New and Novel Metric for

Quantifying Irradiance and PV Output Variability," in World Renewable Energy Forum, Denver,

CO, 2012.

[14] M. Lave, J. Kleissl, and J. S. Stein, "A Wavelet-Based Variability Model (WVM) for Solar PV

Power Plants," IEEE Transactions on Sustainable Energy, pp. 1-9, 2012.

[15] M. Lave and J. Kleissl, "Testing a wavelet-based variability model (WVM) for solar PV power

plants," in Power and Energy Society General Meeting, 2012 IEEE, 2012, pp. 1-6.

[16] M. Lave and J. Kleissl, "Cloud speed impact on solar variability scaling – Application to the

wavelet variability model," Solar Energy, vol. 91, pp. 11-21, 2013.

[17] J. W. Smith, W. Sunderman, R. Dugan, and B. Seal, "Smart inverter volt/var control functions for

high penetration of PV on distribution systems," in Power Systems Conference and Exposition

(PSCE), 2011 IEEE/PES, 2011, pp. 1-6.

[18] M. J. Reno, R. J. Broderick, and S. Grijalva, "Smart Inverter Capabilities for Mitigating Over-

Voltage on Distribution Systems with High Penetrations of PV," in IEEE Photovoltaic Specialists

Conference, Tampa, FL, 2013.

http://sourceforge.net/projects/electricdss/
http://code.google.com/apis/maps/index.html

132

9. DISTRIBUTION

1 MS1033 Robert J. Broderick 6112

1 MS1033 Jimmy Quiroz 6112

1 MS1033 Matthew J. Reno 6122

1 MS1033 Abraham Ellis 6122

1 MS0899 Technical Library 9536 (electronic copy)

134

	Grid Integrated Distributed PV (GridPV)
	Contents
	Figures
	Tables
	Nomenclature
	1. Introduction
	1.1. Objectives
	1.2. Overview of GridPV Features

	2. Download and Installation
	2.1. OpenDSS Installation
	2.2. Download GridPV
	2.3. GridPV Installation Instructions
	2.4. License Agreement
	2.5. GridPV Uninstall Instructions

	3. OpenDSS
	3.1. OpenDSS Resources
	3.1.1. Websites
	3.1.2. Documents

	4. Getting Started with the Toolbox
	4.1. OpenDSS COM Object Interface
	4.1.1. Initiating the COM Interface
	4.1.2. Compiling the Circuit
	4.1.3. Getting Data into MATLAB from OpenDSS
	4.1.4. Active Elements
	4.1.5. Running Commands
	4.1.6. Adding/Editing Elements

	4.2. Circuit Information Retrieval Using GridPV
	4.2.1. Using the GridPV Get Functions
	4.2.2. Working with Structures from the Toolbox

	4.3. Circuit Check Function
	4.3.1. Running Circuit Check Function
	4.3.2. Interpreting Circuit Check Output

	4.4. Plotting Tutorial
	4.4.1. Plotting Circuits
	4.4.2. Circuit Interaction
	4.4.3. Plot Editing

	4.5. Coordinate Conversion Tutorial
	4.5.1. Manual Conversion
	4.5.2. UTM Conversion

	4.6. Solar Tutorial
	4.6.1. Placing PV on the Circuit
	4.6.2. Adding Central PV
	4.6.3. Adding Distributed PV
	4.6.4. Editing Plant Info
	4.6.5. Editing Power Factor
	4.6.6. Creating the PV DSS Files

	4.7. Example Analyses
	4.7.1. Static Analysis
	4.7.2. Time-Series Analysis in OpenDSS
	4.7.3. Time-Series Analysis in MATLAB

	5. Distribution System Models
	5.1. Example Circuit
	5.2. Links to Other Circuits

	6. Feedback and Help
	7. Function Help Files
	7.1. OpenDSS Functions
	7.1.1. DSSStartup

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.1.2. getBusCoordinatesArray

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.1.3. getBusInfo

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.1.4. getCapacitorInfo

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.1.5. getCoordinates

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.1.6. getLineInfo

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.1.7. getLoadInfo

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.1.8. getPVInfo

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.1.9. getTransformerInfo

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.1.10. isinterfaceOpenDSS

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.2. Circuit Analysis Functions
	7.2.1. circuitCheck

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.2.2. findDownstreamBuses

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.2.3. findHighestImpedanceBus

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.2.4. findLongestDistanceBus

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.2.5. findSubstationLocation

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.2.6. findUpstreamBuses

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.3. Plotting Functions
	7.3.1. plotAmpProfile

	Syntax
	Description
	Inputs
	Outputs
	Notes
	Example
	7.3.2. plotCircuitLines

	Syntax
	Description
	Inputs
	Outputs
	Notes
	Example
	7.3.3. plotCircuitLinesOptions

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.3.4. plotKVARProfile

	Syntax
	Description
	Inputs
	Outputs
	Notes
	Example
	7.3.5. plotKWProfile

	Syntax
	Description
	Inputs
	Outputs
	Notes
	Example
	7.3.6. plotMonitor

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.3.7. plotVoltageProfile

	Syntax
	Description
	Inputs
	Outputs
	Notes
	Example
	7.4. Geographic Mapping Functions
	7.4.1. initCoordConversion

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.4.2. createCircuitCoordConversion

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.4.3. createCircuitCoordConversionUTM

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.4.4. plot_google_map

	Syntax
	Description
	Inputs
	Outputs
	References:
	Copyright
	Example
	7.5. Solar Modeling Functions
	7.5.1. placePVplant

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.5.2. createPVscenarioFiles

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.5.3. distributePV

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.5.4. findMaxPenetrationTime

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.5.5. IneichenClearSkyModel

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.5.6. makePFoutputFunction

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.5.7. makePFprofile

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.5.8. makePFschedule

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.5.9. makeVVCcurve

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.5.10. WVM

	Syntax
	Description
	Inputs
	Outputs
	Copyright
	Example
	7.6. Example Simulations
	7.6.1. examplePeakTimeAnalysis

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.6.2. exampleTimeseriesAnalyses

	Syntax
	Description
	Inputs
	Outputs
	Example
	7.6.3. exampleVoltageAnalysis

	Syntax
	Description
	Inputs
	Outputs
	Example

	8. References
	9. Distribution

