PV System Reliability: An Operator's Perspective

Dr. Anastasios Golnas and Steve Voss SunEdison

Solar O&M Maturation

- Direct Sales (\$/W)
- DIY O&M

2000-2010

- FIT, PBI, **PPAs**
- Professional Maintenance

Future

- Expansion to Operations
- Power vs. Energy

MODULES

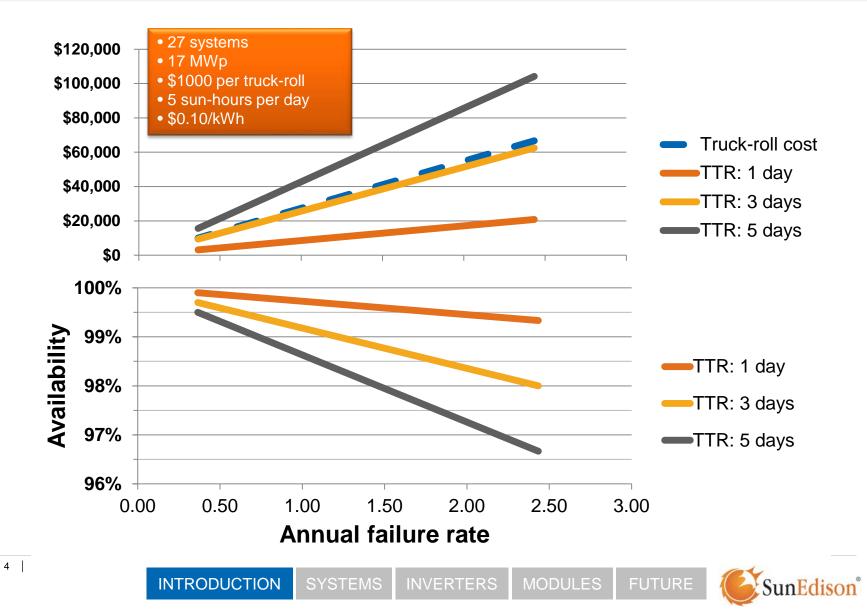
INVERTERS

SYSTEMS

2

The Importance of Reliability to an Operator

Low-reliability systems:


- Need attention \rightarrow drive up service costs
- Are less productive than expected \rightarrow drive down revenue

Collateral issues:

- Increased monitoring needs (and capital/service costs)
- Reputation cost (with customer and/or investor)
- Lengthier procurement process
- Increased risk of safety-related incidents

The Cost of Reliability and Time-To-Repair

SunEdison Services

- 750 plants with over 700 MW across 3 continents:
- North America: US (15 states), Canada, Puerto Rico
- Europe: Spain, Italy, Bulgaria
- Asia: South Korea, India, Thailand

3 Renewable Operations Centers (ROC):

INTRODUCTION

SYSTEMS

- North America: Belmont, CA
- Europe: Madrid, Spain
- Asia: Chennai, India

Geographical distribution

SunEdison service territory

INTRODUCTION SYSTEMS MODULES

6

Diversity of systems

- 15+ inverter vendors
- 30+ PV module vendors
 - x-Si (>80% of units)
 - CdTe
 - a-Si
- Structure types
 - Rooftop, fixed (ballasted and mounted)
 - Ground, fixed
 - Ground, tracking (single axis, dual axis)
- Climates
 - Tropical, Desert, Coastal, High Desert, etc
- Age
 - Up to 7 years

Tickets, Outages, and Impairments

Service ticket:

- A record of an issue affecting the PV system
 - May impact energy output, or not
 - Failure Area (Where did the issue manifest?)
 - Subsystem and Component level
 - Root Cause (Why did the issue manifest?)
 - General and Specific

Outage:

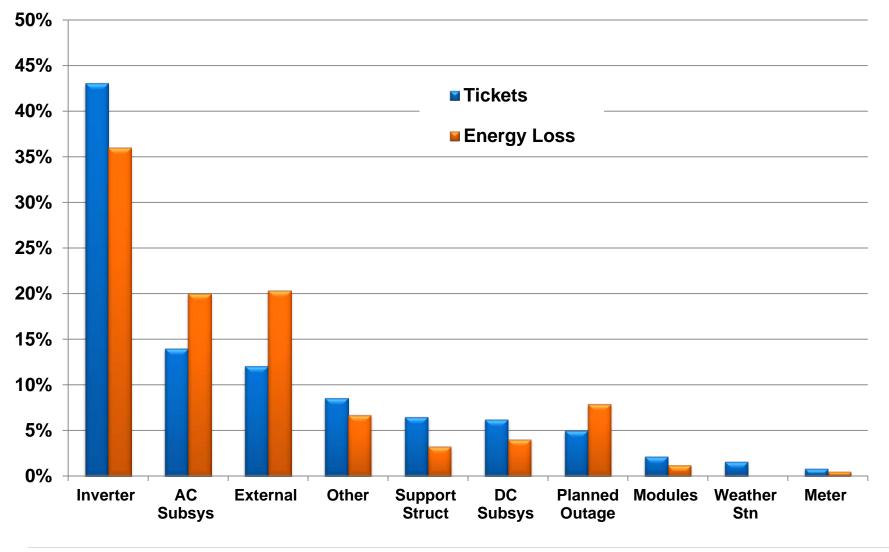
- An issue affecting a critical subsystem
- Visible immediately
- To be addressed urgently

Impairment:

- An issue affecting a non-critical subsystem
- Visible with advanced analytics or high-granularity monitoring
- Can be addressed in opportune timing
- Sensor or communications issue:
 - Not affecting production
 - Usually visible immediately
 - To be addressed immediately

Analyzed Dataset

- 3600 service tickets for 450 systems in 27 months
 - January 2010 March 2012
- Unrealized energy generation:

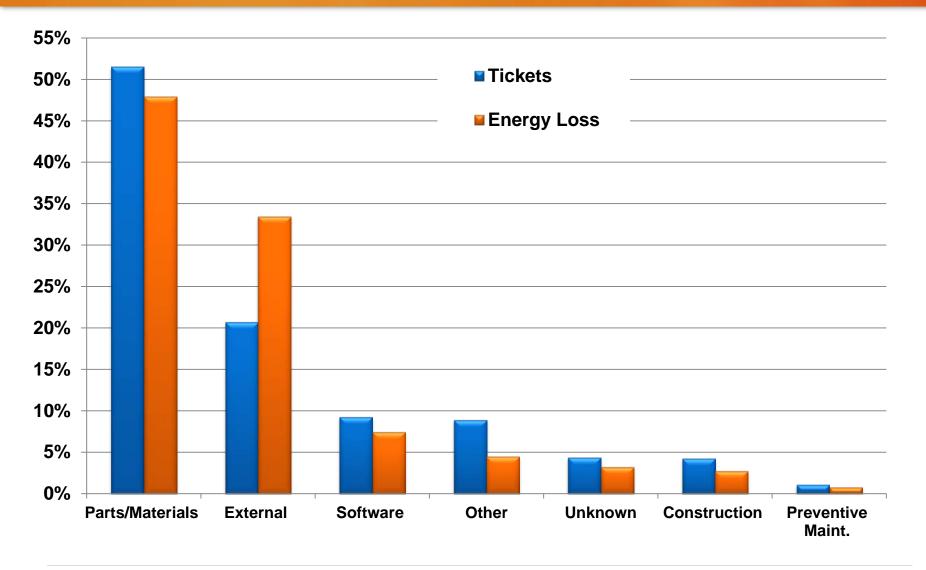

INTRODUCTION

SYSTEMS

~1% of total production in 27 months

Failure Areas: Frequency and Energy Impact

INVERTERS


SYSTEMS

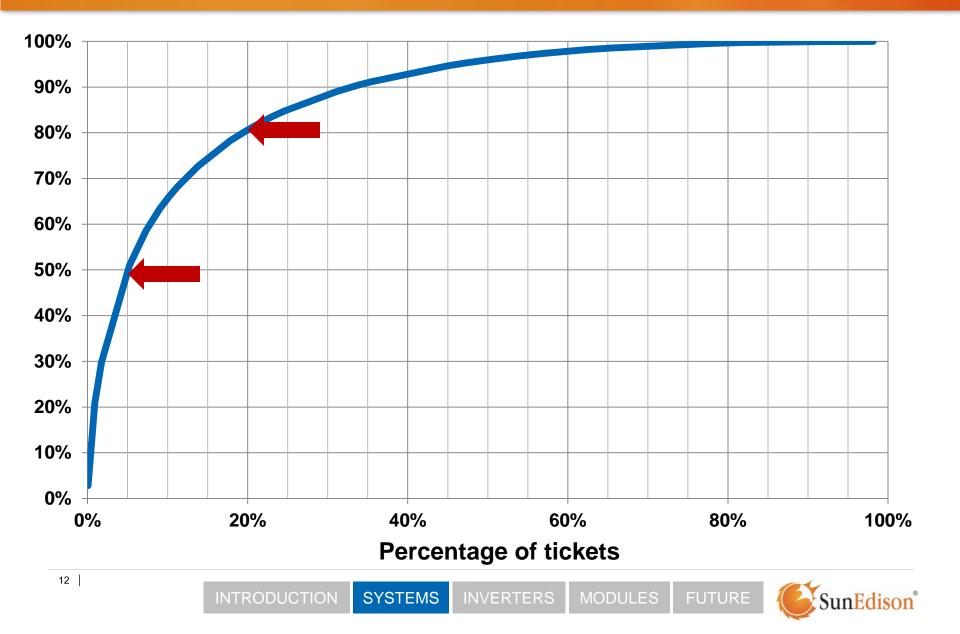
MODULES

SunEdison

INTRODUCTION

Root Causes: Frequency and Energy Impact

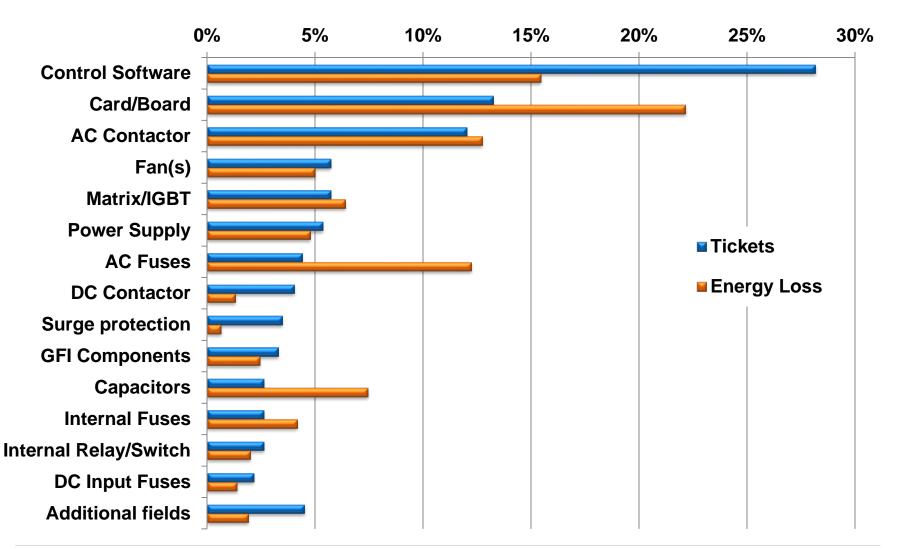
INVERTERS


SYSTEMS

MODULES

INTRODUCTION

Cumulative Energy Loss: the 80/20 rule


Conclusions - I

Inverters

- Highest frequency of issues
- Largest share of energy loss
- 75% of energy losses manifest at mission critical nodes
 - Inverter
 - AC subsystem
 - External subsystems (Interconnection, Grid)
- 50% of tickets and energy loss due to component failures

- 33% of energy losses attributed to external agents
- 50% of energy loss caused by 5% of incidents
- Largest losses represent long outages

Inverter Components that Fail



SYSTEMS

INVERTERS

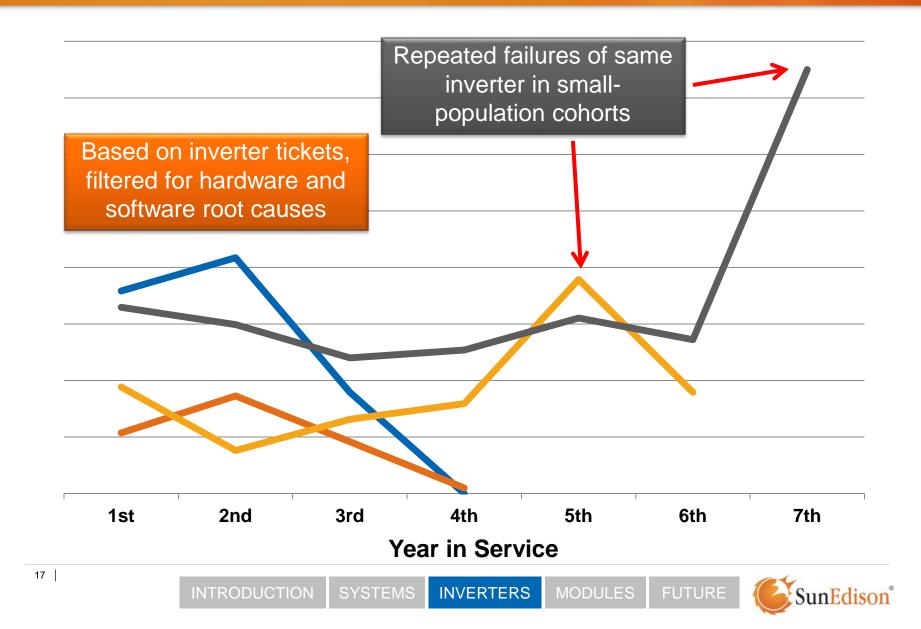
Reliability of Central Inverters – 5 vendors

SYSTEMS INVERTERS

MODULES

INTRODUCTION

Tracking Inverter Reliability with Age: Cohorts


	Number of inverters (from a specific vendor)								[Number of inve					rter tickets (for a specific vendor)				
system age in months	Jan 2010	Feb 2010				1ay 010	Jun 2010			syst age mor	in	Jan 2010	Feb 2010		/lar 010	Apr 2010	May 2010	Jun 2010	
1	22	3	1	6	;	3			Ì	1	L	4	1		1		2		
2		22	3	1		6	3		[2	2		2		3			1	
3			22	22 3		1	6			3					1				
4	22			22	2	3	1			4	L I					2			
5	1	22			2	22	3			5	;						3		
6	1	1	22				22			6	5				2			2	
7	4	1		Monthly failure rates (for a specific vendor)												1			
8		4	system									Í	Í.						
9	1		age in	Jan	Feb	Mar	Apr	May	Jui	n	Ma	ir						1	
10	9	1	months	2010	2010	2010	2010	2010	201	.0	201	2 /	Average						
11	4	9	1	0.18	0.33	1.00	0.00	0.67					0.12		<u> </u>		1		
12		4	2		0.09	1.00	0.00	0.00	0.3				0.12		Ŀ	2			
			3			0.05	0.00	0.00	0.0		0.0	-	0.04						
			4	0.00			0.09	0.00	0.0		0.0	-	0.07 0.05 0.18 0.08 0.02			٨	nnuo		
			5	0.00	0.00			0.14	0.0		0.0					Annual Failure Rate: 0.94			
			6	0.00	0.00	0.09			0.0	9	0.0	0							
			7	0.00	0.00	0.00	0.05												
		8		0.00	0.00	0.00	0.00												
			9	0.00		0.00	0.00	0.00	0.0				0.01						
			10	0.00	0.00		0.00	0.00	0.0		0.0	0	0.07						
			11	0.00	0.11	1.00		0.25	0.0				0.07						
			12		0.00	0.11	2.00		0.0	0	0.0	0	0.11		J				

INVERTERS MODULES FUTURE

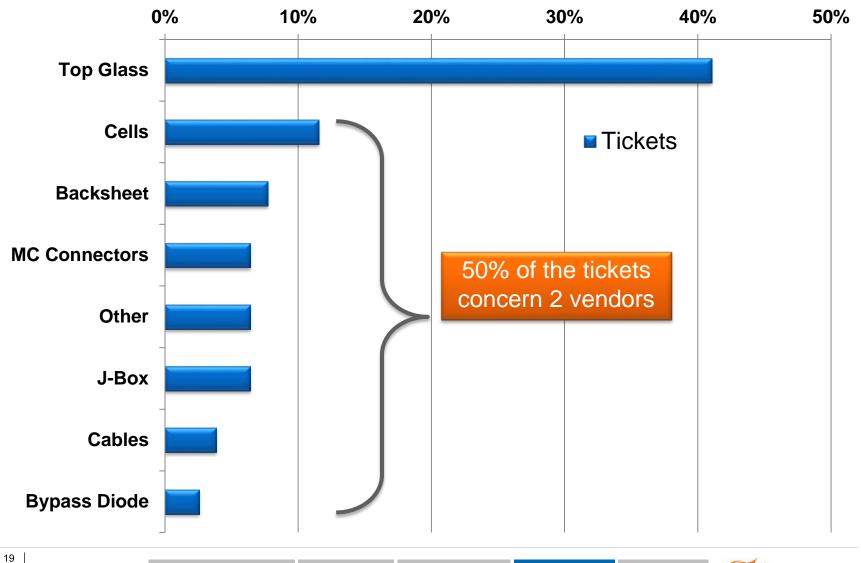
16

Annual Failure Rate for 4 Inverter Vendors

Conclusions - II

Most inverter failures manifest at

- the control software
- various PCBs
- the AC contactors
- Failures attributed to control S/W may include failures triggered by upstream or downstream issues that cause inverter shutdown without error codes
- Typical bathtub behavior is not observed
 - Infant mortality issues manifest during installation (before launch)
 - Long-term statistics not yet reliable, but some old inverters exhibit repeated issues


MODULES

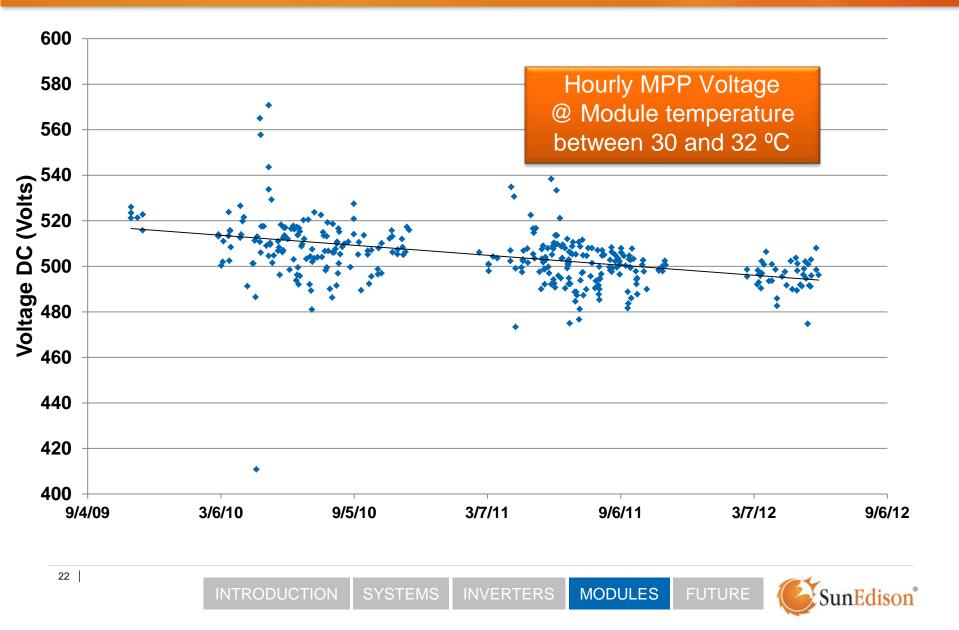
18

Module Components that Fail

INTRODUCTION

MODULES

SunEdison[®]


Photo by Morgan Smith

Systematic Underperformance

- Occasionally a system will underperform relative to expectations over an extended period without being affected by an outage
- During maintenance the field crews will check DC connectivity
- If all combiners and strings are connected and the underperformance persists, the field crews will take I-V curves from random strings and modules
- If the results show performance in breach of the power warranty, sampled modules are sent to an independent lab for flash testing

Example of Suspected Module Degradation

Conclusions - III

- Identified module failures represent a very small fraction of service tickets
- Vast majority of system data do not indicate that module failures are being overlooked
 - There are exceptions, which have led to closer investigation of module performance

MODULES

FUTURE

 Most frequent failure is the breakage of the front glass, which is caused by an external agent

Challenges in Quest for Reliability

Vendor Operator Data integrity Data scarcity No contextual information Staff training Data entry platform • Definition clarity Uncontrolled environment Uncontrolled environment Difficult to ID issue and cause Difficult to simulate and test Issue complexity Issue complexity Lack of tools and product Lack of data and system knowledge operation knowledge 24

INVERTERS

MODULES

FUTURE

INTRODUCTION

What Can Be Done About Reliability

- The PV system operator may <u>manage</u> reliability
 - Procurement
 - Standardization in design and construction
 - Service dispatch schedule
 - Performance monitoring and analytics
 - Inventory optimization
 - Supply chain QA
- The equipment vendor may <u>improve</u> reliability
 - Supply chain QA
 - Standardization in design and manufacturing
 - Continuous improvement

From Maintenance to O&M

- High penetration levels will make passive interconnections for PV unsustainable.
- What does it take for PV to be a better citizen of the grid?
 - Ability to manage Power as opposed to Energy;
 - Response times dramatically reduced;
 - More robust solutions;
 - Ability to "Say what you'll do and do what you say."

INVERTERS

MODULES

FUTURE

PV Power Forecasting: An example

- The primary challenge today remains sufficiently accurate meteorological forecast;
- Second order challenges include:
 - Accurate and timely power conversion models;

SYSTEMS

• Accurate, real-time Availability reporting.

MODULES

FUTURE

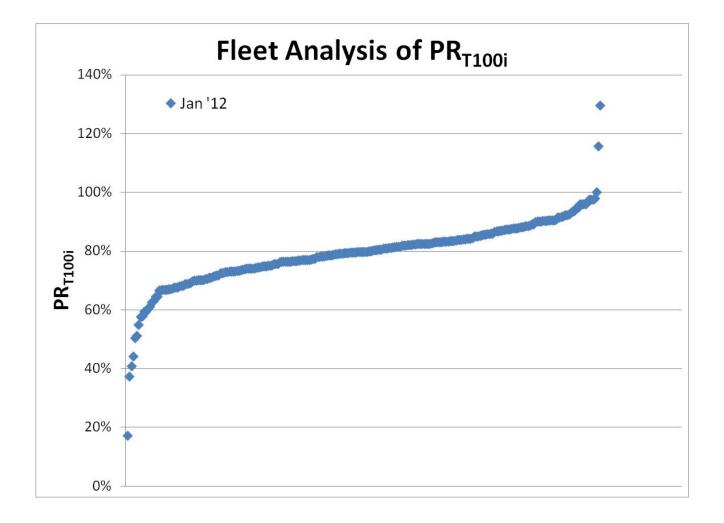
Performance Ratio

INTRODUCTION

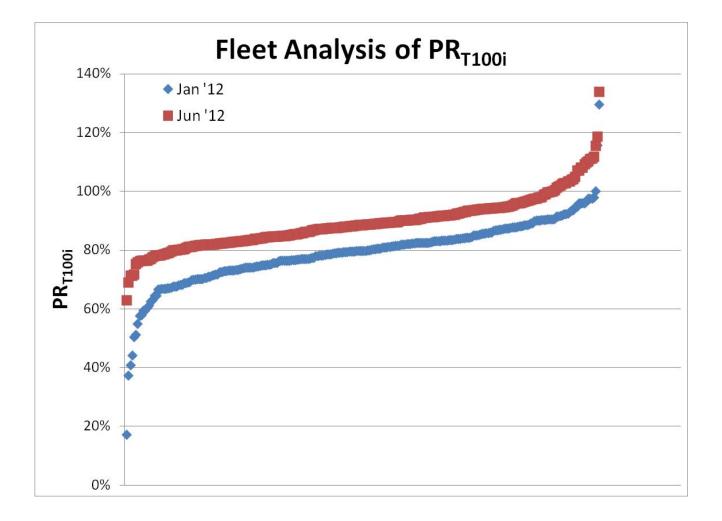
SYSTEMS

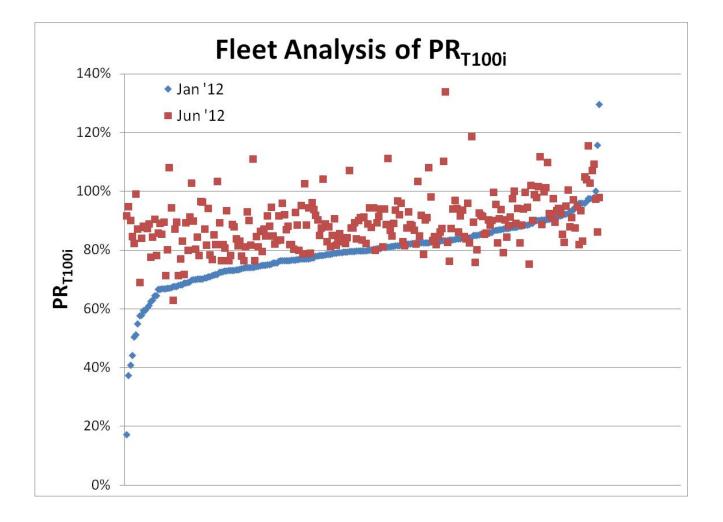
INVERTERS

MODULES


FUTURE

 Temperature Corrected Performance Ratio for hours with 100% inverter availability


"Big Data" for PV


INTRODUCTION SYSTEMS INVERT

"Big Data" for PV, continued

"Big Data" for PV, continued

Conclusion

- Continuous improvement of Maintenance practices and system reliability are needed;
- The transition from Maintenance to Operations and Maintenance has begun;
- Under high penetration scenarios, robust O&M of distributed assets will be critical to cost effective integration;
- Robust O&M requires: data quality, sophisticated modeling and data handling, automation and credibility.

Acknowledgments

- SunEdison Services Team
- Tassos Golnas
- Joe Bryan
- Jennifer Granata and Nadav Enbar

