Energy Research

/Energy Research

Supporting the Scientific Base for Competencies Essential to Sandia Missions

DOE Office of Science

The DOE Office of Science (SC) is the single largest supporter of basic research in the physical sciences in the U.S., providing more than 40 percent of total funding in this area. Sandia has active research programs funded by:

ARPA-E-Full-Logo-v-3.0-1024x315

ARPA-E is an innovative and collaborative government agency that brings together America’s best and brightest scientists, engineers, and entrepreneurs.

The focus of Sandia’s ARPA-E program is to establish partnerships with universities, industry and other National Labs to create innovative energy solutions for the Nation through both maturation of industry capabilities and commercialization of our technologies.

  • Address Stationary and Transportation Energy pillars
  • Leverage differentiating facilities/capabilities and Research Foundations of Sandia Labs

Research Highlights

Hydrogen Fuel-Cell Unit to Provide Renewable Power to Honolulu Port

Pete Devlin, of the Department of Energy’s Fuel Cell Technology Office, cut the ribbon to initiate the Maritime Hydrogen Fuel Cell project to test a hydrogen-fuel-cell-powered generator at Young Brothers Ltd.’s Port of Honolulu facility. Left to right: Mark Glick, Hawaii State Energy Office, Glenn Hong, Young Brothers Ltd., Pete Devlin, John Quinn, US Dept. of Transportation Maritime Administration, and Marianne Walck, Sandia National Laboratories.

Pete Devlin, of the Department of Energy’s Fuel Cell Technology Office, cut the ribbon to initiate the Maritime Hydrogen Fuel Cell project to test a hydrogen-fuel-cell-powered generator at Young Brothers Ltd.’s Port of Honolulu facility. Left to right: Mark Glick, Hawaii State Energy Office, Glenn Hong, Young Brothers Ltd., Pete Devlin, John Quinn, US Dept. of Transportation Maritime Administration, and Marianne Walck, Sandia National Laboratories.

At Young Brothers Ltd.’s Port of Honolulu facility, Sandia is leading the Maritime Hydrogen Fuel Cell project to test a hydrogen-fuel-cell-powered generator as an alternative to conventional diesel generators. Last Friday’s project kickoff was attended by US Senator Brian Schatz (D-HI), Young Brothers President Glenn Hong, & Sandia-California VP Marianne Walck. “Today, we take another big step in transforming our nation to a clean energy economy,” said Schatz. “The fuel cell technology being deployed today will one day mean less carbon pollution in our ports and on the high seas. The great work from all the partners involved, especially Young Brothers, is helping lead the way to a cleaner, more energy-efficient future.”

Planning for the Maritime Hydrogen Fuel Cell project began in late 2012 with a study that determined that hydrogen fuel cells could replace diesel generators in providing auxiliary power on board and to ships at berth. The US Department of Energy’s (DOE) Fuel Cell Technologies Office and the US Department of Transportation’s Maritime Administration (MARAD) are funding the six-month deployment of the hydrogen-fuel-cell-powered generator.

Marine-port FC_(Glenn_Hong-Young Brothers Inc)_web

“We are pleased to help expand this clean energy technology to new applications,” said Young Brothers, Ltd., President Glenn Hong. Young Brothers is hosting a project led by Sandia National Laboratories to test a hydrogen-fuel-cell-powered generator as an alternative to diesel in powering refrigerated containers. (Photo by David Murphy)

“At the point of use, hydrogen fuel cells produce nothing but water—zero pollutant emissions and no greenhouse gases,” said Joe Pratt, Sandia’s project lead. “This technology could enable major commercial ports and marine vessels to lessen their environmental impacts.”

An analysis by Sandia and DOE showed that due to fluctuating loads in maritime auxiliary power applications, a hydrogen fuel cell, which only supplies power when it is needed, is more energy efficient than a diesel engine.

Hydrogenics Corp. designed and built the hydrogen fuel-cell generator unit, comprised of four 30 kW fuel cells, a hydrogen storage system and power-conversion equipment, all packaged in a 20 ft shipping container. With 75 kg of on-board hydrogen storage, the generator has enough energy to power 10 refrigerated containers for 20 continuous hours of operation.

“Young Brothers will be testing and demonstrating this technology on our on-shore and ocean environments over the next six months,” said Hong. “We are very pleased to have been selected to participate in this project with our many national and international partners in expanding this clean technology into new applications.”

Hickam Air Force Base in Honolulu is supplying the hydrogen to power the fuel cell. The hydrogen is produced by electrolysis, the process of splitting water into hydrogen and oxygen—using electricity supplied by Hickam’s solar-powered electric grid.

To learn more, visit Sandia’s Maritime Hydrogen website.

Read the Sandia news release.

Enhanced Nanoparticle Size Control by Extending LaMer’s Mechanism

The synthesis of well-defined nanoparticle materials has been an area of intense investigation, but size control in nanoparticle syntheses is largely empirical. Here, we introduce a general method for fine size control in the synthesis of nanoparticles by establishing steady state growth conditions through the continuous, controlled addition of precursor, leading to a uniform rate of particle growth. This approach, which we term the “extended LaMer mechanism” allows for reproducibility in particle size from batch to batch as well as the ability to predict nanoparticle size by monitoring
the early stages of growth. We have demonstrated this method by applying it to a challenging synthetic system: magnetite nanoparticles. To facilitate this reaction, we have developed a reproducible method for synthesizing an iron oleate precursor that can be used without purification. We then show how such fine size control affects the performance of magnetite nanoparticles in magnetic hyperthermia.

Biomimetic Approach to Nanoparticle Growth

Scientific Achievement
Akin to constant concentration biological growth, a new ‘Extended LaMer’ method for reproducible and predictable synthesis of nanoparticles was developed.
Significance and Impact
This general approach allows systematic production of precise, monodisperse nanoparticles of any size in a scale-independent approach. Applications include quantum dots, metal nanoparticles, and magnetic particles, which all display size-dependent properties.
Research Details
Using conventional reaction conditions, but in bio-inspired steady-state growth conditions (constant temperature, constant concentration) reproducible, constant particle growth occurs without ripening.
This is the only method known that allows systematic variation of size and size-dependent nanoparticle properties in a continuous, predictable manner.

Biology produces nanoparticles with exquisite control of size and crystallographic properties by growing crystals in controlled environments where critical parameters are held constant using the complex machinery of life. In contrast, the well-known methods of nanoparticle synthesis use wildly varying temperature (heating-up method) and concentration (hot-injection method) to produce nanoparticles. While these methods can yield highly crystalline, low size dispersity particles, reproducibility is challenging, and systematic size control is nearly impossible. These reactions are typically described by the “LaMer Mechanism” of growth where dramatic changes in concentration of the reactive species leads to extremely complex kinetics that are difficult to predict. We have developed a general methodology to produce nanoparticles that uses a biologically inspired approach, but conventional equipment and reaction conditions. By maintaining temperature constant throughout the reaction, and using a continuous addition of precursor to maintain reagent concentration constant (after a brief initial state of flux) we have demonstrated a dramatic improvement over conventional approaches. During the steady state regime (with constant temperature and concentration) of the “Extended LaMer” mechanism, particle growth is constant in time so particles may be grown to any size desired, in a way that is predictable by linear extrapolation. This approach is inherently scalable, as heat and mass-transport issues are minimized in a system without variations in temperature and concentration. This is a critical step to enable uniform, monodisperse nanoparticle scale-up for a range of electronic, magnetic, optical and thermal applications. Current applications being explored are the production of precisely tailored nanoparticles for biomedical imaging (on the multi-gram scale), as well as magnetic nanoparticles for high frequency, low loss inductors (on the multi-kg scale).

Sandia Develops Phased-Array Sources Based on Nonlinear Metamaterial Nanocavities

The SH-generating quantum well layer (pink) and the beam-shaping split-ring metamaterial resonators (the “C”-shaped structures). The phase-coherent emission from individual resonators opens the door for many beam-shaping applications, some of which are presented in the insets. Each device type can be achieved via proper design of individual metamaterial resonators and their arrangement on the surface.

The SH-generating quantum well layer (pink) and the beam-shaping split-ring metamaterial resonators (the “C”-shaped structures). The phase-coherent emission from individual resonators opens the door for many beam-shaping applications, some of which are presented in the insets. Each device type can be achieved via proper design of individual metamaterial resonators and their arrangement on the surface.

Plasmonic phased-array sources* have been the subject of much interest recently. They can perform a many useful optical-beam manipulations such as beam steering, beam splitting, polarization manipulation, and angular momentum generation (see illustration). Usually, these sources operate through simple linear scattering of an incident laser beam. In a paper in Nature Communications, our research team demonstrates a new, nonlinear phased-array source at infrared frequencies that uses nanocavities coupled to highly nonlinear semiconductor heterostructures.

This is the first time that metamaterial nanocavities coupled to semiconductors have been used to generate light at new wavelengths and manipulate the resulting beams. The electric field of the incident fundamental beam drives a nonlinear polarization in the vicinity of the gap of the split-ring resonator. The nonlinear polarization then acts as a source that “feeds” the resonators at the second harmonic (SH) frequency.

Our team’s phased-array source concept is a single active layer (call it a ‘metasurface’) complemented with a semiconductor heterostructure. Each split-ring nanocavity resonator on the metasurface can act as a point source for a higher-order nanocavity emission. Each nanocavity resonator can be individually tailored with a specific optical phase: to manipulate angular momentum, polarization, spin, etc. A benefit of this approach is that the desired output beam is at a different frequency (wavelength) than the pump—and residual unscattered pump radiation can easily be removed, something that is not possible with simple, linear phased arrays.

*   Phased antenna arrays comprise ensembles of subwavelength sources, each radiating with a definite phase relationship relative to the other array elements.

   Omri Wolf, Salvatore Campione, Sheng Liu, and Igal Brener (all in Sandia’s Applied Photonic Microsystems Dept.); Ting Luk (in Sandia’s Nanostructure Physics Dept.); Emil Kadlec and Eric Shaner (both in in Sandia’s Laser, Optics & Remote Sensing Dept.); John Klem (in Sandia’s RF/Optoelectronics Dept.); Michael Sinclair (in Sandia’s Electronic, Optical, & Nano Materials Dept.); Alexander Benz (no longer at Sandia); and Arvind Ravikumar (Electrical Engineering Dept., Princeton Univ.).

   A semiconductor heterostructure is a stack of very thin (a few nanometers) semiconducting layers having different properties (in this case, bandgaps and doping). When properly designed, these layers can exhibit quantum phenomena due to electrons being confined to specific layers; this subclass of heterostructures is known as quantum wells (QWs) due to the shape of the electronic potential. QWs can be designed to have a multitude of interesting properties. In this work, we design them to support very large second-order optical nonlinearities.

This technology delivers second harmonic generation in a device that is extremely thin, which could lead to a whole new line of very compact infrared sensors and devices such as tunable filters, lenses, polarization devices, beam splitters/steerers, angular-momentum generators, detectors, and/or modulators (and also to advancements in quantum information science and quantum computing). As an example, our team demonstrated two-second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 µm): a beam splitter and a polarizing beam splitter. Our metamaterial nanocavities coupled to highly nonlinear semiconductor heterostructures enhance second harmonic generation by orders of magnitude. Arrays of these coupled systems act like a phased array second harmonic source. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.

Our approach to phased-array sources at mid-infrared wavelengths extends our team’s past work on metamaterial nanocavities coupled to semiconductors by now including the optical nonlinearities of the quantum well (QW) to create a phase-locked, localized feed to resonators in the array. We also showed that we could manipulate the phase of the radiated second harmonic by changing the design of the metamaterial nanocavity. By spatially varying the nanocavity shape/orientation in the array, we are able to spatially vary the phase and manipulate the second harmonic beam.

  • We fabricated doubly resonant metamaterial arrays on top of a semiconductor heterostructure designed to have a large second-order nonlinearity (arising from intersubband transitions
[ISTs] in the QW).
  • Through measurements of the second harmonic radiation far-field pattern, we proved that the metamaterial resonators were emitting in a phase-coherent manner.
  • We varied the phase across the array at the second harmonic wavelength to create new functionality.
  • Metamaterial nanocavities were grown on top of an indium-gallium-arsenide/aluminum-indium-gallium-arsenide QW stack. The separations of subbands 1 → 2 and 2 → 3 are resonant with the fundamental beam, thereby causing the 3 → 1 separation to be resonant with the second harmonic.

    Metamaterial nanocavities were grown on top of an indium-gallium-arsenide/aluminum-indium-gallium-arsenide QW stack. The separations of subbands 1 → 2 and 2 → 3 are resonant with the fundamental beam, thereby causing the 3 → 1 separation to be resonant with the second harmonic.

    Exploiting the phase coherence of the second harmonic radiation, we designed and fabricated arrays with multiple resonators per unit cell. By adjusting the relative phase of the resonators within the unit cell we were able to experimentally demonstrate a polarization beam splitter combine with a source. For one polarization, a single output beam is generated at the second harmonic frequency in the broadside direction; and for an orthogonal polarization, two output lobes are produced at a predetermined angle.

    Exploiting the phase coherence of the second harmonic radiation, we designed and fabricated arrays with multiple resonators per unit cell. By adjusting the relative phase of the resonators within the unit cell we were able to experimentally demonstrate a polarization beam splitter combine with a source. For one polarization, a single output beam is generated at the second harmonic frequency in the broadside direction; and for an orthogonal polarization, two output lobes are produced at a predetermined angle.

    The nanocavities were designed to be resonant at both the fundamental and second harmonic frequencies. The second harmonic polarization depends quadratically on the fundamental E-field (left), so that it becomes symmetric with respect to the gap and can couple to the second harmonic resonance (right).

    The nanocavities were designed to be resonant at both the fundamental and second harmonic frequencies. The second harmonic polarization depends quadratically on the fundamental E-field (left), so that it becomes symmetric with respect to the gap and can couple to the second harmonic resonance (right).

    spacer paragraph

    Our preliminary results show that this design can be readily transferred to different wavelengths by changing the QW materials (e.g., III-nitrides have ISTs at near-infrared frequencies while most III–V heterostructures support ISTs in the terahertz range) and the nanocavity design.

    Although our example focuses on second harmonic generation, the new concept is general and can be applied to other types of nonlinear frequency generation. For example, large resonant third-order nonlinear susceptibilities have also been demonstrated in QWs and designing a triply resonant cavity is, in principle, achievable. We expect that our structure will serve as a model system for studying resonant nonlinearities in strongly coupled systems.

    This research was supported by the Department of Energy’s Office of Science Basic Energy Sciences (BES) Materials Sciences and Engineering (MSE) Division. All the work was done at Sandia: material growth was done at the Microsystems and Engineering Sciences Applications (MESA) Complex. Processing was done at MESA and the Center for Integrated Nanotechnologies (CINT) and made use of the extensive III-V semiconductor epitaxial growth, nanofabrication techniques, optical characterization, and modeling infrastructure at CINT.

    Phononic Crystals: Engineering the Flow of Heat

    A Sandia-led research team has, for the first time, observed the coherent propagation of thermal phonons in silicon at room temperature—in two-dimensional phononic crystals formed by introducing air holes in a silicon matrix with minimum feature sizes ~250 nm. To separate incoherent from coherent boundary scattering, the team fabricated phononic crystals with a fixed minimum feature size—differing only in unit cell geometry (see Figure 1). This research was presented in a paper in Nature Communications.

    Scanning electron microscope (SEM) image of the fabricated phononic crystal structures. All samples were fabricated to have a periodicity a = 1100 nm, thickness t = 366 nm and a chosen critical dimension Lc = 250 nm. Highlighted in white is the unit cell of each supercell lattice: (a) simple cubic, SC, (b) 1 × 1, (c) 2 × 2, (d) 3 × 3 and (e) 4 × 4.

    Figure 1.  Scanning electron microscope image of the fabricated phononic crystal structures. All samples were fabricated to have a periodicity a = 1100 nm, thickness t = 366 nm and a chosen critical dimension Lc = 250 nm. Highlighted in white is the unit cell of each supercell lattice: (a) simple cubic, SC, (b) 1 × 1, (c) 2 × 2, (d) 3 × 3 and (e) 4 × 4.

    Almost all physical processes produce heat as a byproduct, making heat one of the most abundant forms of energy. In semiconductors, this thermal energy is carried by quasiparticles called phonons, which are quantized molecular vibrations. Thermoelectric systems are among the few technologies that can convert heat directly into electricity, using the Peltier effect. While silicon-based semiconductors typically have very favorable power factors, making them attractive for chip cooling and ‘heat scavenging’ applications, their large phonon-dominated thermal conductivity has prevented their use in thermoelectric systems. At low temperatures (70 K and below), phonons behave like waves, undergoing constructive and destructive interference (and allowing one to develop methods of harnessing this behavior to harvest energy). However, around room temperature and higher, phonons were believed to always behave more like particles, undergoing purely incoherent scattering. This means that they would propagate from hot to cold randomly, with no hope of controlling their flow.

       Ihab El-Kady, Charles Reinke, and Zayd C. Leseman (in Sandia’s Applied Photonic Microsystems Dept. and at the University of New Mexico) and Seyedhamidreza Alaie, Drew Goettler, and Mehmet Su (all at UNM).

       A phonon is a quantum-mechanical description of an elementary vibrational motion in which a lattice of atoms or molecules uniformly oscillates at a single frequency. Due to the bonds between atoms, the displacement of one or more atoms from their equilibrium positions give rise to a set of vibration waves propagating through the lattice. Long-wavelength phonons give rise to sound; shorter-wavelength higher-frequency phonons give rise to heat. Phonons play a major role in many of the physical properties of condensed (solid) matter, like thermal conductivity and electrical conductivity.

    In previous journal articles, this research group has proposed that coherent boundary scattering in phononic crystals with relatively large feature sizes (≥100 nm) may hold the key to solving this problem by scattering phonons with minimal influence on electrons. As phonons traverse such a lattice, they can undergo two types of scattering processes:

    1. simple particle-like incoherent scattering as a result of encountering a boundary, and
    2. wave-like coherent scattering due to the periodic geometry of the artificial lattice of air holes.
    Normalized thermal conductivities of phononic crystal samples. The measured thermal conductivity of the SC and the 1 × 1, 2 × 2, 3 × 3 and 4 × 4 supercell phononic crystal samples, along with the predicted values using various models described in the text.

    Figure 2.  Normalized thermal conductivities of phononic crystal samples. The measured thermal conductivity of the SC and the 1 × 1, 2 × 2, 3 × 3, and 4 × 4 supercell phononic crystal samples, along with the predicted values using various models described in the text.

    Here, coherence implies that the phonon phase is preserved and that scattering from material boundaries exhibits at least some measure of specularity (angle of reflection is equal to the angle of incidence, past a perpendicular). Practically, this can have profound implications because, while incoherent boundary scattering depends only on the shape, size, and separation of the holes, coherent boundary scattering additionally depends on the symmetry and geometry with which these holes are distributed.

    In a novel experiment that uses microscale phononic crystals, i.e., periodic arrangements of different materials, our research team was able, for the first time, to distinguish coherent phonon events from incoherent phonon scattering. In addition, our team developed a hybrid thermal conductivity model that accounts for partially coherent and partially incoherent phonon boundary scattering: the concept of a threshold mean-free path in conjunction with a hybrid theoretical model—where the incoherent and coherent contributions to thermal conductivity are weighted according to the fractional portion of the phonon population mean-free paths relative to that threshold. We observe excellent agreement between this model and experimental data (see Figure 2), and the results suggest that significant room-temperature coherent phonon boundary scattering occurs.

    Although the periodicity of the phononic crystal samples is large compared to the average phonon wavelength, our results indicate that a significant portion of the phonon population remains coherent even after undergoing several scattering events. From a different perspective, because there is no direct way to measure the coherence length, our approach has enabled us to use the thermal conductivity as a macroscopic metric for inferring the average phonon coherence length in our phononic crystal samples.

    This work could profoundly impact thermoelectrics by allowing for an additional mechanism for reducing the thermal conductivity of a material without affecting its electrical conductivity—by simply arranging the pores in an optimal phononic crystal geometry. Coherent phonon effects can be amplified and engineered for applications such as thermal management, heat scavenging, and energy harvesting, opening the door for guiding heat on-chip and thermal isolation of sensitive microelectronics. While the coherent phononic crystal effects seen here represent a small yet significant fraction of the overall thermal conductivity reduction, their presence at room temperature is extremely encouraging. Given that a more pronounced effect is expected at lower temperatures, the impact on thermoelectric cooling could be profound.