

Exceptional service in the national interest

Risk-Informed LNG/CNG Maintenance Facility Codes and Standards

Project sponsored by DOE Clean Cities:

Technical & Analytical Assistance

Myra Blaylock, PhD

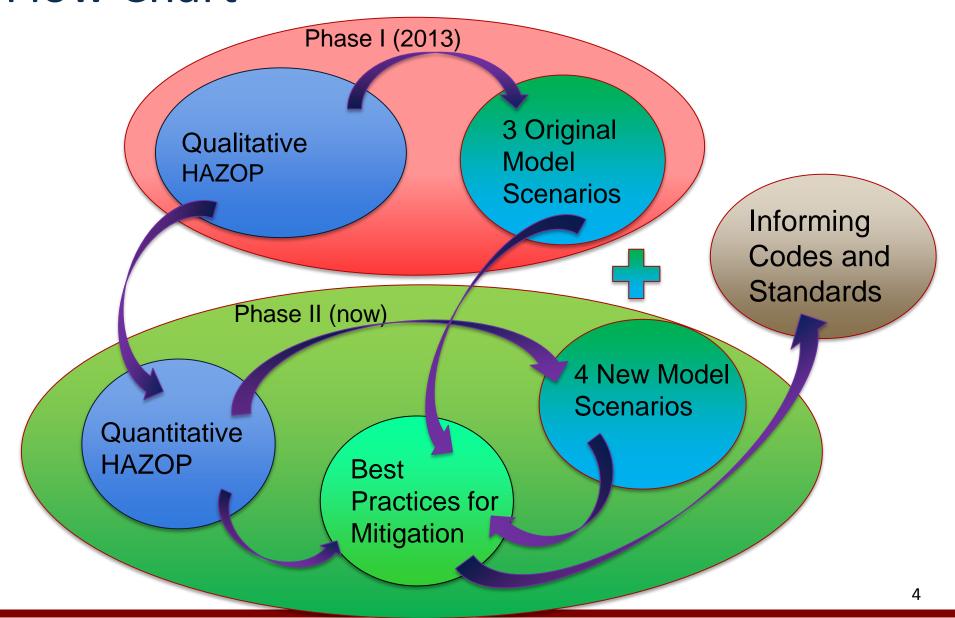
Sandia National Laboratories

Talk Objectives

- Review Sandia work
 - Hazardous and Operability Study (HAZOP)
 - Best Practices to mitigate hazards
- Get feedback from NGVTF on Best Practices and Scenarios
 - myra.blaylock@sandia.gov

- New website: altfuels.sandia.gov
 - Reports, videos, links, information, these slides

Project Motivation


 Improve codes and standards for gaseous fuel vehicle maintenance facility design and operation to reflect technology advancements

 Develop Risk-Informed guidelines for modification and construction of maintenance facilities using Quantitative Risk Assessment

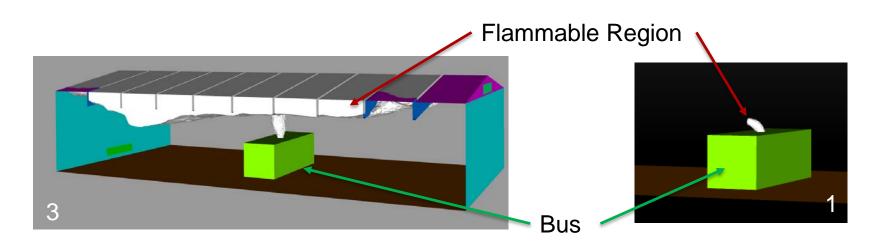
Flow Chart

HAZOP and Model Recommendations

HAZOP Frequency

 Failure Definition – Unexpected or uncontrolled release of natural gas (liquid or gaseous phase)

	Frequency Classifications for Release								
5	Intentional: Incident will occur on a set time frame		certain						
4	Anticipated: Incidents that might occur several times during the lifetime of the facility	f > 10 ⁻² /yr	1 in a 100 years						
3	Unlikely: Events that are not anticipated to occur during the lifetime of the facility	$10^{-4}/yr < f \le 10^{-2}/yr$							
2	Extremely unlikely: Events that will probably not occur during the occur during the lifetime of the facility	10 ⁻⁶ /yr < f ≤ 10 ⁻⁴ /yr							
1	Beyond extremely unlikely: All other incidents	f ≤ 10 ⁻⁶ /yr	1 in a million years						


HAZOP Consequence

Consequence: How big is the release?

Consequence Classifications for Release

- Major (all contents of tank) release of natural gas (for CNG multiple cylinders)
- Moderate release of natural gas (for CNG one cylinder)
- 1 Minor release of natural gas

HAZOP Escalation Factor

 Escalation: Assuming a release, what are the chances it will escalate? (i.e. Catch on fire)

Escalation Factor for Release							
4	Certain	Ignition is already present (+ faster release)					
3	High	Faster release					
2	Medium	Slow, large release					
1	Low	Employee present					

HAZOP Examples

	Frequency						
5	Intentional						
4	Anticipated						
3	Unlikely						
2	Extremely unlikely						
1	Beyond extremely unlikely						

	Consequence					
3	Major					
2	Moderate					
1	Minor					

Escalation Factor							
Ignition is already present							
4-Certain (+ faster release)							
3-High	Faster release						
2-Medium Slow, large release							
1-Low Employee present							

Hazard Scenario	Causes	Description	Consequence	Frequency	Escalation	Rank
LNG: Overpressure of tank due to warming and proper operation of relief valve	Excessive hold time, insulation failure	Minor release of GNG	1	5	Low	5
CNG: Outlet or fitting on tank fails	Manufacturing defect, instillation or maintenance error	Potential catastrophic release of CNG	2	3	High	18

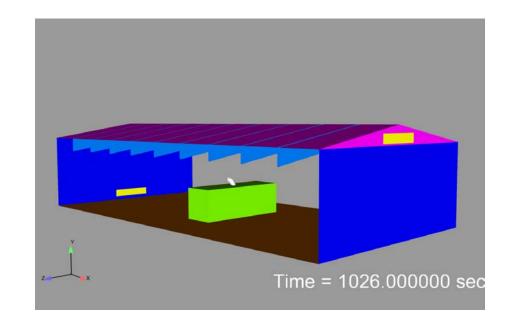
HAZOP Scenarios Selected for Further Analysis

HAZ	OP Scenario Number	Conse- quence	Frequency	Escalation Factor	Rank
1	External leakage from LNG regulator body	1	4	L	4
7	Overpressure of tank and proper operation of relief valve	1	5	L	5
12	Failure of LNG PRV to reclose after proper venting	3	4	Н	36
14	Overpressure of cylinder due to external fire	3	2	Н	18
15	Outlet or fitting on CNG cylinder fails	2	3	Н	18
19	CNG PRD fails open below activation pressure	2	4	Н	24
35 B	Leakage from CNG tubing	2	4	L	8
37	Human error or disregard for maintenance procedures	3	3	Н	27

HAZOP Scenario Number		Heavy-Duty Vehicle Representative Facility Modeling Number (100' x 50' x 20')		Light-Duty Vehicle Representative Facility Modeling Number (60' x 40' x 20')		
1	External leakage from LNG regulator body	A/B	LNG blow-off	N/A		
7	Overpressure of LNG tank and proper operation of relief valve	Α	LNG "Burping"/ "Weeping"	N/A		
12	Failure of LNG PRV to reclose after proper venting	G	(Modeling capabilities in development)	N/A		
14	Overpressure of cylinder due to external fire	F	Analytical Jet Fire (In development)	F	Analytical Jet Fire (In development)	
15	Outlet or fitting on CNG cylinder fails	С	PRD failure for a CNG cylinder	Е	PRD failure for a CNG cylinder	
19	CNG PRD fails open below activation pressure	С	PRD failure for a CNG cylinder	E	PRD failure for a CNG cylinder	
35B	Leakage from CNG tubing	В	CNG fuel system line cracking	D CNG fuel system line cracking		
37	Human error or disregard for maintenance procedures	All	Covered by other scenarios	All	Covered by other scenarios	

Best Practices to Mitigate Hazards Example - LNG "Burping" Release

- Release Prevention Features
 - Design
 - Administrative
- Release Detection Method
- Release Mitigation Features
 - Design
 - Administrative
- Ignition Prevention Features
 - Design
 - Administrative
- Ignition Detection Method
- Ignition Mitigation Features
 - Design
 - Administrative


Best practices were reviewed across the event sequence of the LNG burp

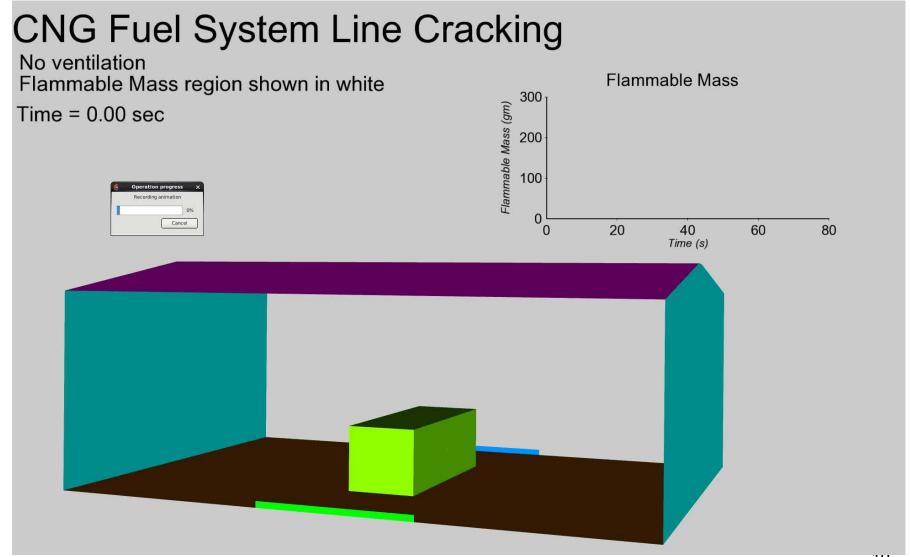
Release Prevention Features								
Design	Administrative							
	2 -Preventative Maintenance –							
	purposefully reducing pressure							
	outside							
	6 -Operator Training - hold times							

Ignition Prevention Features							
Design	Administrative						
Electrical classification areas - over vehicle (e.g. lights) Grounding & bonding of vehicle in bay	Prohibit smoking						

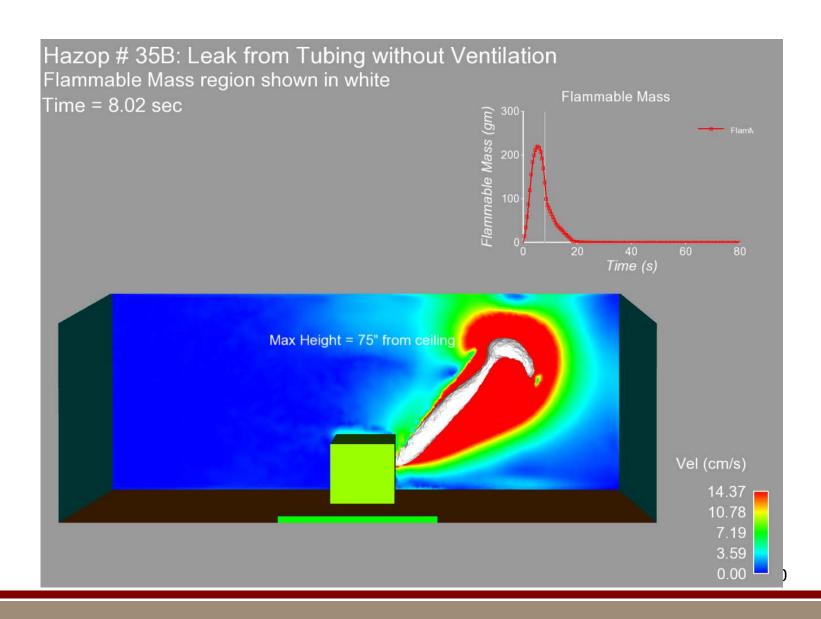
- Modeling results show no flammable concentration at the ceiling.
- Best practices can target specific consequences more strategically.
- They can also be applicable for facilities smaller or of a different layout than the maintenance garage modeled.

- Administrative Procedure: Operate the vehicle engine periodically so that the hold time is not exceeded.
 - This will maintain the LNG tank pressure below its seat pressure of 180 psig.
 - An administrative control to operate the vehicle(s) on a regular basis would reduce the frequency of release due to pressure buildup.
 - This best practice would prevent the release

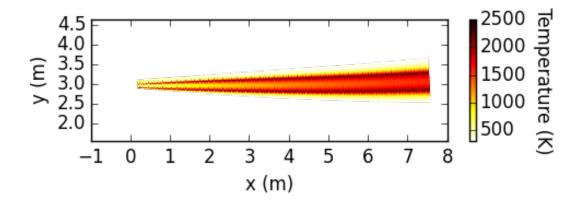
- Administrative Procedure: Check the vehicle's pressure gauge on a regular basis for pressure buildup.
 - The pressure gauge for the tank shows when the tank is close to an overpressure buildup (and subsequent release through the PRV).
 - An administrative control to check the vehicle's pressure gauge on a regular basis would allow the operator to determine the best time to operate the vehicle engine.
 - This practice would prevent the release.

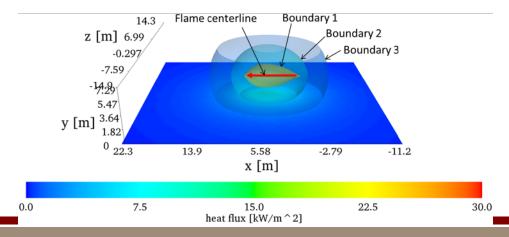

- Design: Install a flexible vent hose to connect the PRV to the facility's exhaust system.
 - If an LNG burp occurs, the LNG vapor would exhaust to the outside of the facility.
 - This would prevent any flammable buildup inside the maintenance facility.
 - This practice would prevent the ignition of the release. It would not prevent the release itself.

Other Modeling Work


#35B: Small Garage

#35B: Small Garage





Sandia National Laboratories

#14: Overpressure due to external fire

- 1D models
- Calculate jet plume length and heat flux

HAZOP Scenarios

HAZ	OP Scenario Number	Conseque ce	en	Frequency	Escalatio Factor	n F	Rank
1	External leakage from LNG regulator body	1		4	L		4
7	Overpressure of tank and proper operation of relief valve	1		5	L		5
12	Failure of LNG PRV to reclose after proper venting		What have you experienced?				36
14	Overpressure of cylinder due to external fire	3		2	Н		18
15	Outlet or fitting on CNG cylinder fails	2	What keeps you up at night?				18
19	CNG PRD fails open below activation pressure	2	u	4	Н		24
35 B	Leakage from CNG tubing	3		4	L		12
37	Human error or disregard for maintenance procedures	3		3	Н		27

22

What's Next?

- Potential Opportunities
 - HyRAM for NG: hyram.sandia.gov
 - Is NFPA 30A open to a risk based standard?
 - Experiments to validate models (LNG)
 - Cold LNG leak simulations
 - Ignited leak size and heat flux
 - Suggestions?

Thank you!

altfuels.sandia.gov Myra.Blaylock@sandia.gov

Thank you!

Questions?

altfuels.sandia.gov Myra.Blaylock@sandia.gov 24

Extra Slides

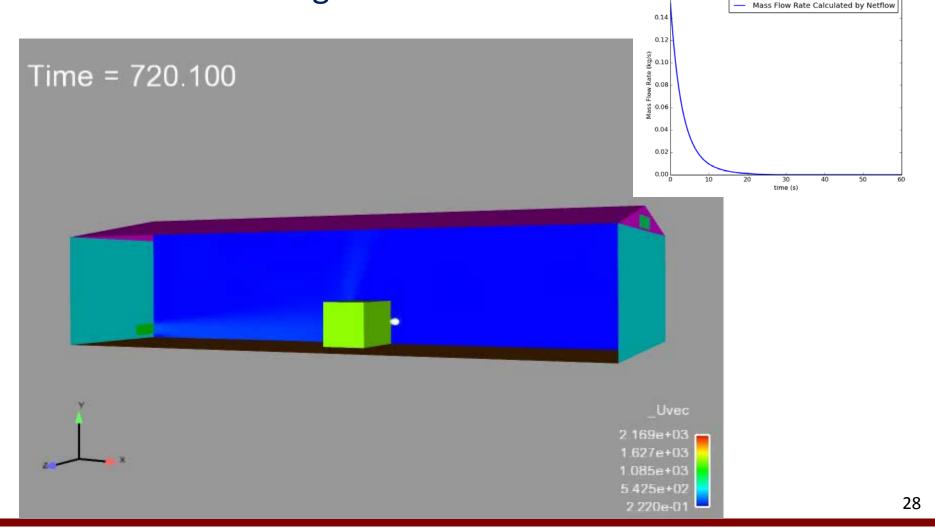
HAZOP Scenarios for Further Anlysis

HAZOP Scenario Number		Consequen ce	Frequency	Escalation Factor	Rank
1	External leakage from LNG regulator body	1	4	L	4
7	Overpressure of tank and proper operation of relief valve	1	5	L	5
12	Failure of LNG PRV to reclose after proper venting	3	4	Н	36
14	Overpressure of cylinder due to external fire	3	2	Н	18
15	Outlet or fitting on CNG cylinder fails	2	3	Н	18
19	CNG PRD fails open below activation pressure	2	4	Н	24
35 B	Leakage from CNG tubing	3	4	L	12
37	Human error or disregard for maintenance procedures	3	3	Н	27

26

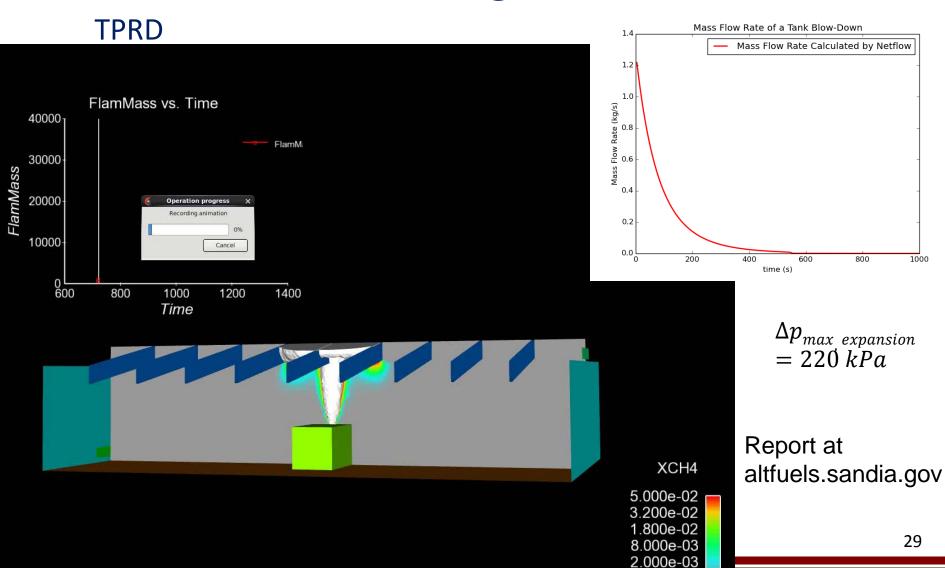
Next 8

						Laborat
	ШΛ	7OP Scanario	Consequence	Fraguency	Escalation	Dank
HAZOP Scenario				Frequency	Factor	Rank
		External leakage from heat				
_	,	exchanger due to defective				
5	 	materials, corrosion, etc.	2	3	M	12
	,	Valve fails to shut completely, or				
4B		leaks external or in-process	3	2	M	12
	LNG-4 (LNG	Overpressure of tank and failure of				
6A	tank)	relief valve to open during a fire	3	1	С	12
	LNG-4 (LNG	Outlet or fitting on tank fails due to				
8	tank)	defect or installation error	3	2	M	12
	LNG-7 (Fill	Release of GNG through fill port due				
	Port)	to failure to check valve	3	2	М	12
		Overpressurization of Cylinder due				
	CNG-1	to External fire AND failure of PRD				
13	(Cylinders)	to operate	3	1	С	12
	CNG-2	External leakage of CNG through				
	(Cylinder	body of solenoid or joint due to				
	Solenoid	Mechanical damage, material				
18	Valve)	failure, installation error	2	3	M	12
		External leakage through PRD of				
	CNG-3	CNG due to Mechanical defect,				
	(Pressure	material defect, installation error,				
20	\ \ \	maintenance error	2	3	М	12


Scenario 3: CNG Vehicle Fuel System Line

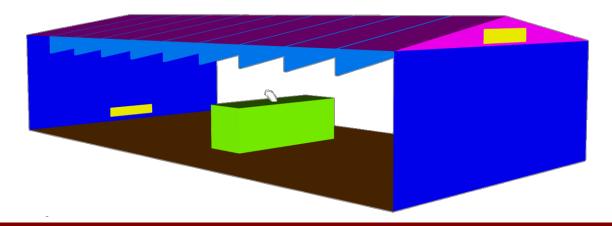
Mass Flow Rate of CH4 from a Cracked Line

Cracking: 3.3 liters @ 248 bar; 3% area leak


1.27 cm ID tubing

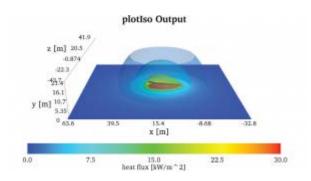
Scenario 4: Mechanical Failure PRD

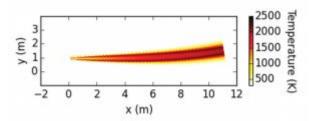
Release - 0.7 m³ volume @ 250 bar from a 6.2 mm


0.000e+00

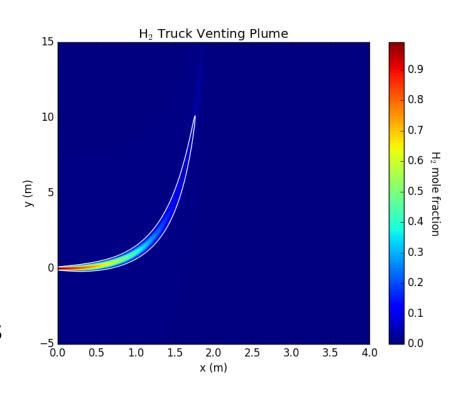
Natural Gas Vehicle Maintenance Garage

- Dimensions: 100' x 50' m x 20'; 1:6 roof pitch (60 x 40 x 20)
- Layouts w/ and w/o horizontal support beams investigated:
 - 9 beams (6" x 42") spaced 10' & parallel to the roof pitch
- Two vents were used for air circulation
 - Inlet near the floor outlet along roof of opposite side-wall
 - Vent area for both vents was 2' x 10'
 - Ventilation rate set to 5 air changes/hour (~2 m/s w/ current vent sizing)
 - Simulations were run with and without ventilation
- NGV modeled as a cuboid


 (8' x 8' x 24')



- Hydrogen Risk Assessment Model hyram.sandia.gov
- Generic data for gaseous hydrogen (GH2) systems: component leak frequencies, ignition probability; modifiable by users
- Models of GH2 physical effects for consequence modeling
 - Release characteristics (plumes, accumulation)
 - Flame properties (jet fires, deflagration within enclosures)
- Probabilistic models for human harm from thermal and overpressure hazards
- Fast running: to accommodate rapid iteration
- Calculates common risk metrics for user-defined systems: FAR, AIR, PLL; frequency of fires



"Cold Plume" Capabilities For LNG

- Modeling leaks from a twophase container is possible
 - From the top: gaseous region
 - From the bottom: liquid region
- Can use this to get rough calculations of plume characteristics
- Two phase flow through pipes is still in development

HAZOP Modeling Scenarios

Modeling Scenario	Scenario Description	Garage Details	Tank/Lea k Volume	Tank Pressure	Leak Size	HAZOP Scenarios
A	LNG Blow-Off	Heavy Duty: 100'x50'x20' with a 1:6 pitched roof	1.7% of 700 liters = 2.3 kg	248 bar	Diameter = 6.2mm	1,7
В	CNG Fuel System Line Cracking	Heavy Duty: 100'x50'x20' with a 1:6 pitched roof	3.3 liters	248 bar	3.8 mm ² 3% of tubing size	35B
С	PRD Failure for a CNG Cylinder	Heavy Duty: 100'x50'x20' with a 1:6 pitched roof	700 liters	248 bar	Diameter = 6.2mm	15,19
D	CNG Fuel System Line Cracking	Light Duty: 60'x40'x20'with a pitched roof	3.3 liters	248 bar	3.8 mm ² 3% of tubing size	35B
E	PRD Failure for a CNG Cylinder	Light Duty: 60'x40'x20'with a pitched roof	700 liters	248 bar	Diameter = 6.2mm	15,19
F	Overpressure of CNG cylinder due to external fire	No Garage: 1D analysis only	700 liters	248 bar	Diameter = 6.2mm	14