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Abstract—Monitoring of photovoltaic (PV) systems can main-
tain efficient operations. However, extensive monitoring of large
quantities of data can be a cumbersome process. The present
work introduces a simple, inexpensive, yet effective data moni-
toring strategy for detecting faults and determining lost revenues
automatically. This was achieved through the deployment of
Raspberry Pi (RPI) device at a PV system’s combiner box.
The RPI was programmed to collect PV data through Modbus
communications, and store the data locally in a MySQL database.
Then, using a Gaussian Process Regression algorithm the RPI
device was able to accurately estimate string level current,
voltage, and power values. The device could also detect system
faults using a Support Vector Novelty Detection algorithm.
Finally, the RPI was programmed to output the potential lost
revenue caused by the abnormal condition. The system analytics
information was then displayed on a user interface. The interface
could be accessed by operations personal to direct maintenance
activity so that critical issues can be solved quickly.

Index Terms—Gaussian Process, support vector machine,
Raspberry Pi, modbus, photovoltaics, data collection, fault de-
tection

I. INTRODUCTION

Solar photovoltaic (PV) arrays require minimal maintenance
and operations to produce electricity, because fixed tilt arrays
have minimal moving parts. This differs from gas generators
or a wind turbines, which have components that must be oiled,
repaired, or replaced on a regular basis. Therefore, common
practice for many systems has been to install the PV panels
and then walk away without further monitoring. However,
faults do occur and can be costly. The fault conditions pose
significant financial risk because the long-term financing costs
have become a significant portion of the overall cost. The
financing agreements demand string performance reviews so
that financial returns match expectations. Therefore, large scale
developments require intensive monitoring and oversight.

Current recommendations for PV system oversight suggest
metrics such as performance ratio (PR) [1], temperature cor-
rected PR, Energy Performance Index (EPI) SAM model,
EPI Regression model, and Power Performance Index (PPI).
However, these approaches do not provide an effective means
to detect and quantify the impact of fault conditions. Instead,
the present work proposes the implementation of a low cost
intelligent Raspberry Pi (RPI) device to perform advanced

monitoring of PV sub-systems. The device was designed to
be deployed within combiner boxes or at inverters to collect
PV sensor data through Modbus communications. Then, the
PV sub-system data can be analyzed by the onboard analytics
that includes advanced machine learning algorithms.

The integration of an intelligent RPI device into a PV
system can provide detailed assessments of string level per-
formance that can lead to improved operations. The RPI
has the capability to estimate system performance using a
Gaussian Process Regression (GPR) algorithm. It also has
a Support Vector Novelty Detection (SVND) algorithm that
automatically detects faults. When a fault is detected the RPI
uses the GPR estimate to compute the lost energy production
caused by the fault condition. This paper describes the basic
set-up of the RPI device on an actual system.

The set-up includes custom Modbus code written in Python
programming language, a MySQL database, and a web-based
visualization as described in Section II-A. The embedded
algorithms used to estimate performance and detect faults
are described in Sections II-B and II-C. The RPI analytics

Fig. 1. The present work performed tests on a 10.8kWe array. The array has
four strings that each have 10 modules. The strings are combined prior to
entering the inverter. In addition, each of the string’s current and voltage are
monitored.

is running in real-time with an actual system and results
from the initial 30 day period are described in Section III.
The results section describes the user interface (III-A), the
PV performance estimate results (III-B), fault detection ac-
curacies (III-C), and a lost energy production calculation
example (III-D).



II. METHODOLOGY

The present work integrated an intelligent, inexpensive,
and deployable RPI device into a PV system. The device
was programmed to monitor operations, detect faults, and
estimate power losses caused by system faults automatically.
The proposed device was connected directly to an analog
input unit through Modbus RS-485 and TCP/IP protocols.
The collected PV sensor data was stored in a local MySQL
database. Then, advanced learning algorithms, that include

Fig. 2. The Raspberry Pi was located inside an enclosure attached to the
array. It was powered by a 5V power supply, and connected to the existing
data collection devices through Modbus TCP/IP and Serial ports. It also has
its own GPS time clock to maintain correct date and time throughout the data
collection process.

the GPR and SVND, analyzed the data and provide feedback
through a graphics-based web interface.

A. Device Set-up

The intelligent RPI was deployed on an actual 10.8kWe

PV array (Figure 1) located in Albuquerque, New Mexico.
The array had four strings of 10 modules that were combined
into one prior to entering the inverter. The RPI device, shown
in Figure 2, was deployed inside the combiner box and
offered an energy efficient way to perform computational
tasks [2]. A critical task was collecting actual sensor data.
This was achieved through Modbus communications as shown
in Figure 3. The device connected with the Modbus TCP/IP
points available on a network created by the Gantner Q.Station
101 data collection device. A Modbus serial connection was
established through the RPI USB port, and provided access to
inverter data. The data was extracted from the two Modbus
protocols using Python programing language script and stored
in a MySQL database on the RPI.

Machine learning algorithms, that include GPR and SVND,
were used to estimate actual performance and evaluate the
status of a PV system. The algorithms accessed the weather
and PV sensor data stored in the MySQL database. The GPR
estimator used the weather data to estimate ideal current, volt-
age, and power values. At the same time, the SVND analyzed

the stored data to define normal or abnormal conditions. The
results were then inserted back into the MySQL database and
were accessible for viewing through a web interface.
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Fig. 3. The intelligent RPI had complete interoperability with the existing
analog input unit and the PV system inverter. Data was collected through
Modbus TCP/IP and RS-485 and stored in a local MySQL database. The
machine learning algorithms analyzed the data. The data collection and
analysis results were displayed through a web-based graphical interface.

B. Estimate PV Performance
The estimated PV performance could be calculated using

a component-based or empirical model. For example, the
Python version of PV LIB [3] could be run on a RPI device.
However, in this experiment the estimator was the GPR
algorithm. The algorithm was presented with a training data
set, D = ((xi, y)|i = 1, ...n). The inputs xi included ambient
temperature and solar irradiance. Its outputs yi were current,
voltage, and power.

GPR can be defined as a random process where any finite
subset of these process have a joint Gaussian distribution [4].
GPR applies a distribution over functions that are specified by
a mean function and a covariance function as shown in Eqn. 1.

f(x) ∼ GP (µ(x), k(x, x′)) (1)

The mean function, µ(x), is usually defined to be zero
and the covariance k(x, x′) defines the prior properties of the
functions considered for inference [5]. The k in the covariance
represents the kernel function which projects the data into a
higher dimensional feature space to increase the computational
power of the algorithm [6].

The transformation from input into the higher dimensional
feature space, known as Hilbert space, was accomplished
through a nonlinear transformation (φ(·)) shown in Eqn 2.

yn = w>φ(xn) + εn (2)

This means that a nonlinear relationship has been established
between the input and output observations. Since the nonlinear
transformation φ(·) maps the input into a Kernel Reproducing
Hilbert Space (RKHS), by virtue of the Mercer’s theorem [7],
there exists a dot product

k(x,x′) = φ(x)>Σφ(x′) (3)



between the transformed observations. The dot product has co-
variance properties where Σ is a positive semidefinite matrix.

The GP approach assumes that the error (ε) has been drawn
from a Gaussian distribution N (0, σ2). The weight vector is
also modeled as a Gaussian random variable with a prior
that considered w ∼ N (0,Σw). Finally, it is assumed that
εn is an independent and identically distributed process. It
consists of an Additive White Gaussian Noise (AWGN), and
is independent from the observations (xn) as well as the
parameters described by Σw. In this case, the covariance
E(ynym|X) of regressors is

E(ynym|X) = E
(
(w>φ(xn) + εn)(w

>φ(xm) + εm)
)

= φ>(xn)E(ww>)φ(xm) + E(εmεm)

= φ>(xn)Σwφ(xm) + E(εmεm)

= k(xn,xm) + σ2δ(m− n)

(4)

where X is a column matrix containing all input observations
xn. The noise (εn) is an AWGN process independent of xn.
The covariance matrix, Σw, is assumed to be random process
and φ>(xn)Σwφ(xm) is a dot product in the Hilbert space.
Therefore, the last expression of Eqn. (4) can be considered a
kernel expression of this dot product and the covariance matrix
of the regressor sequence yn can be written as

Ky,y = K + σI (5)

where K is the matrix of kernel dot products between obser-
vations. This kernel matrix of the observations during noise
fee conditions is equivalent to the covariance matrix of the
regressors. Then, if the values xn, yn are used as the training
samples and a new sample x∗ is added, the prediction over
this sample is f∗ = w>φ(x∗).

The joint probability distribution of the process has a zero
mean Gaussian whose covariance matrix contains the covari-
ance of the new estimation, one of the training regressors, and
the cross covariance between them.

p(f∗,y) = N
(

0,
K∗,∗ Ky,∗
K∗,y Ky,y

)
(6)

K∗∗ = k(x∗,x∗) and K∗,y = K>y,∗ is the row vector of
all dot products k(x∗,xn). The GPR goal is to compute the
predictive posterior over the new sample x∗ given the training
data. Using the Bayes’ rule, this posterior has the form of
another Gaussian, with mean and variance given by

µ∗ = Ky,∗K
−1
y,yy

σ2
∗ = K∗,∗ −K>y,∗K

−1
y,yKy,∗

(7)

In absence of noise, the mean matches the minimum mean
square error prediction and the arbitrary value of σ2 matches
the Kernel Ridge Regression prediction [6]. The advantage
of the GPR is that it offers a posterior distribution over
the prediction rather than a prediction alone. Its variance is
reduced with respect to the variance of its prior in a quantity
K>y,∗K

−1
y,yKy,∗.

The noise variance, σ2, and the kernel parameters are, in
principle, free parameters and they must be adjusted. The

procedure starts with the computation of the log-likelihood
of the regressors yn. Then, this likelihood can be maximized
taking derivatives over the parameters and applying a standard
gradient ascent. The log likelihood is not necessarily convex,
so different initializations may be necessary to achieve a
good convergence. Finally, non Gaussian distributions for
the likelihood can be assumed, but then the GPR does not
have closed solutions. Nevertheless, in many cases the GPR
algorithm [8] can be applied to obtain asymptotically optimal
solutions.

C. Fault Detection

The detection of faults was performed using a Support
Vector Machine (SVM) algorithm. SVM algorithms can learn
through supervised [9], [10] or unsupervised [11], [12] meth-
ods. It learns by separating different classes in a training data
set with an optimal hyperplane. The hyperplane is created
by maximizing the minimum distance to the training points
closest to the plane. This is accomplished by mapping the input
vectors into a high dimension feature space. In this space, a
surface is constructed that separates the data.

For this experiment, the SVND algorithm was used to detect
faults. The SVND is an unsupervised algorithm that learns
a decision function for novelty detection. In this case, the
algorithm performed a fit on an input array only and it did
not consider class labels. The SVND algorithm used a radial
basis kernel

K(x,x′) = exp(−γ||x− x′||2) (8)

with a margin parameter, µ, equal to 0.12 and a γ equal to
45.

The SVND algorithm discovered a hyperplane that sepa-
rated the data with a maximum margin in the feature space
through the cost function

min{1
2
||w||2 + 1

νn

n∑
i=1

ξi − ρ} (9)

that is constrained to

(w · φ(xi)) ≥ p− ξi
ξi ≥ 0

(10)

The w and b were the gradient and intercept of the linear
decision boundary in the feature space, ξi were positive “slack
variables”, and ρ was the bias term. The µ parameter set the
upper bound on the fraction of outliers and a lower bound on
the number of training examples used as a support vector. The
decision function then became

f(x∗) = sign(w · φ(xi)− ρ) (11)

using the Lagrange techniques and a kernel function for the
dot-product calculation.



D. Experiment

The embedded GPR and SVND algorithms were run in
real-time with the actual system and their respective results
were displayed on a web interface. This paper provides an
overview of the systems performance by focusing on a 31
day period between January 28 and February 28, 2016. The
experiment began the training process on January 28th and the
first estimates and faults detection algorithms were conducted
on data from January 29th. The on-line training approach
updated the overall training set as time went on and as more
data became available.

III. RESULTS

The results for this integration and analysis experiment were
broken out into three sections. The first section (Sec. III-A)
described the user interface that the RPI provides through an
ethernet or internet connection. The next section, Sec. III-B,
reviews the results form the GPR estimation. The third section
(Sec. III-C) describes the fault detection results. The final
results section (Sec. III-D) describes an example calculation
that highlighted the approximation of lost power caused by a
fault condition.

A. Web-based Visualization

The web-based user interface includes a live data stream of
actual voltage, current, and power data as shown in Figure 4.
The graphs included in the web-site plot both the actual and
estimated values with respect to time. The site also graphs ac-

Fig. 4. The web-based visualization allows the user to review current and
past data weather and performance data.

tual weather data. This includes plane of array solar irradiance,
ambient temperature, and module temperature. Additionally,
the web-site allows the user to query current and past data
through simple dropdown menus.

B. PV Performance Estimates

The GPR algorithm estimated DC current, voltage, and
power for the PV system. The estimation could be performed
in real-time or at the end of each day depending on the
operations needs. In this case, the RPI was set-up to estimate
performance every hour throughout the entire day. On average,

Fig. 5. Gaussian Process estimate for DC power has significant uncertainty
at the beginning of the on-line learning process.

the computational time was about 2-4 minutes on the RPI to
train and then estimate a single hour. The training process was
conducted in an on-line learning approach. This meant that the
process began the day after the data collection started. The
algorithm was trained on the previous day and then estimated
the current day’s performance. Then, the next day estimates

Fig. 6. The Gaussian Process estimate of DC power is more confident after
a few days of training in the on-line learning approach.

used the previous two days for training and the most current
data for testing. This methodology continued, which meant
that as time went on the training set expanded.

It was evident that as the training increased the uncertainty
of the GPR results improved. For example, Figure 5 shows the



GPR estimation for power over a single day. The estimated
has a significant estimated range in the afternoon caused by
the uncertainty associated with the training data set. However,
after a few days of training the uncertainty decreased, and
the GPR estimation had a smaller distribution as shown in
Figure 6.
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Fig. 7. The Gaussian Process estimates had a strong linear relationship with
the actual values. The slope of the linear fit line was 1 and the intercept was
calculated to be 6.77.

This experiment, which was conducted over a 30 day period,
produced estimated power results that had a strong linear
relationship to the actual data as shown in Figure 7. The linear
fit had a slope of 1 and an intercept equal to 6.77. The linear
relationship between the actual and estimated values included
actual fault conditions. This inclusion may be the reason for
the numerous outlier data points plotted in Figure 7.

C. Fault Detection

The fault detection algorithm embedded in the RPI was the
SVND described in Section II-C. The algorithm accurately
detected normal and abnormal behavior over the 30 day
test period. The abnormal behavior included module shading,
inverter failure, and module hot spots. The algorithm used
voltage, current, power, solar irradiance, and module tempera-
tures as the inputs. The outputs were either 0 for normal or 1
for a fault condition. The fault detection results were analyzed
based on receiver operating characteristic (ROC) curve shown
in Figure 8.

The ROC curve is a graphical plot that describes binary
classification performance. The ROC plot, shown in Figure 8,
described the true positive rate (TPR) against the false positive
rate (FPR) at various threshold settings. The desired ROC
curve should have an area under the curve that is greater than
0.5. An area that is less than or equal to 0.5 would indicate
that the algorithm has a bad predictor and has produced
worse results than what a 50/50 guess would provide. In this
experiment, the SVND predicted was well above 0.5 at 0.98 as
shown in Figure 8. Based on the ROC curve result the optimal
threshold was determined to be -12. This threshold value was

then permanently set in the SVND that was embedded into
the RPI device.
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Fig. 8. The receiver operator curve produced by the SVND algorithm for the
30 day test. The curve produced a area much higher than 0.5 at 0.98.

The optimal threshold of -12 was based on the algorithms
ability to provide both a high TPR and a low FPR rate. After
setting the threshold, the SVND algorithm was applied to the
20 days of previously unseen data. The algorithm was able to
detect abnormal conditions at a very high accuracy as shown
in Figure 9. Figure 9 provides a two dimensional visualization
of how well the algorithm differentiated normal and abnormal
behavior. In this example, the data points arranged in a
diagonal line on the power versus irradiance plot were normal
performance data. Along this diagonal there no fault were
identified and therefore no large, colored circles surrounding
any of the points. Whereas, the data not found on the diagonal

Fig. 9. The SVND results for the 30 day period are depicted in this 2
dimensional plot of DC power against irradiance. The data points plotted
within the diagonal line were considered normal and the others highlighted
by the large circles were abnormal fault conditions.

are highlighted by the different circles. The range of colors
indicate the respective scores associated with the data point



assigned by the SVND. The scores can be considered an
estimate of probability that the given data point is a fault.
The data points surrounded by the larger circles indicate that
the point has a higher probability of being a fault. Whereas
the points with the smaller circles have lower probability.

D. Lost Production

The final task, performed by the intelligent RPI, was to
estimate the lost energy production caused by the fault condi-
tions. For example, Figure 10 compares the power output for
a single string in the array. Over the course of the day the
string experienced shading that decreased the overall power
output. The GPR estimate had an overall energy of 12.39kWh
and the actual system was calculated to produced 11.68kWh.
Therefore, the actual system produced 0.71kWh less than
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Fig. 10. The difference between the actual and estimated was used to calculate
the lost energy. In this case a total of 22.9kWh were not produced.

expected. This decrease in power equated to 6% loss in energy
production. This may not seem like much, but if an issue
like this went undetected in a large one megawatt system that
produced 1.7 million kWh a year it would amount to around
102,000 kWh in lost energy over an entire year.

IV. CONCLUSION

The intelligent RPI device was integrated into an existing
PV array. It successfully communicated with the inverter and
analogy sensor device through Modbus serial and TCP/IP
communications using Python scripts. The PV performance
and weather data was stored in a local MySQL database. The
database was then accessed by GPR and SVND algorithms.
The GPR algorithm, embedded in the RPI, was trained in an
on-line learning approach and was able to accurately estimate
PV performance. The GPR results had a very strong linear
relationship with the actual data. The detection of faults within
the PV array was performed using a support vector machine
novelty detection algorithm. This algorithm was evaluated
using the ROC curve and then applied to the data set to identify
fault conditions. The ROC curve results showed that it could

detect faults at a high TPR while maintaining a low FPR.
The RPI device also calculated the lost electrical production
caused by the fault condition. All of these results and the
actual data were stored in the local database. A web-based
interface accessed the data and displayed the actual and GPR
estimates graphically. The visualization also provided a table
of the detected faults and it’s associated time-stamp.

The RPI device is currently still a research tool and has not
been released for commercial use. Continued developments
and testing are required to improve it’s ability to adapt to
various weather conditions as well as different PV array sizes
and types.
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